Reservoir Superposed Pattern Characterization of Well-Logging and Seismic Data Calibration with Meandering Channels: A Case Study of Jurassic Toutunhe Formation in Fudong No.5 Well Area, Eastern Junggar Basin
-
摘要: 针对阜东5井区大井距下曲流型河道储层叠置样式认识不清的问题,应用岩心、地震、测井、试油试采等资料,采用井震联合、层次结构和地震正演等研究方法,确立了沉积微相类型,分层次开展了河道储层叠置样式和地震正演河道砂体叠置地震响应特征研究,提出了曲流型河道储层叠置分布样式.研究表明:(1)目的层自下而上呈曲流河三角洲→曲流型分流河道体系→曲流河.头一段时期发育曲流河三角洲沉积,多个朵叶状砂体连片叠置.头二段演变为曲流型分流河道体系,砂体呈条带状叠置;头三段为曲流河,砂体呈宽条带交错叠置状.(2)在合理地震正演参数设置后,对曲流型河道分4类开展正演模拟.不同期次的单河道相互叠置使得复合河道的地震反射表现出单斜状、阶梯状、下凹状的特征,同时伴随振幅的横向强弱变化,结合单井测井标定可判断单河道的发育期次和叠置关系.(3)曲流型河道储层叠置样式主要分为单河道型、多河道叠置型和稳定迁移型3种样式.单河道型地震反射振幅短轴强振幅特征,呈窄连续条带状分布(约250 m);多河道叠置型地震反射振幅强弱变化大,呈连续性较差宽条带状分布(约500 m);稳定迁移型地震响应波形振幅强度变化弱且连续,呈大范围连片状分布(约1 500 m).研究不仅对曲流型河道油气储层提高采收率具有重要的指导意义,也对井震结合大井距河道砂体储层构型表征方法的拓展意义重大.Abstract: Characterization of meandering channel reservoir superposed pattern is difficult to Fudong No.5 well area with large well spacing. Using the data of core, seismic, logging, and production test, and the methods of well-logging seismic data calibration, hierarchical architecture, and seismic forward modeling, in this study it established the microfacies, hierarchical meandering channel sand bodies, and the response characteristics of the waveform in the seismic forward modeling of superimposed channel sand body. The results show follows: (1) It is a complete cycle from bottom to top, with meandering river delta, distributary channel system to meandering river. At the first member, it is the development of meandering river delta depositional system, superposition of multiple lobes sand body. At the second member, it has evolved into meandering distribution channel system, and the sand body is stacked with banded shape. At the third member, it is the meandering river depositional system, and the sand body is wide banded shape overlapped. (2) There are four classes of the meandering channel to be launched in seismic forward modeling, after setting up the reasonable parameters of the work area. The relationship between developmental stages of single channel can be comprehensively determined by the well-logging calibration and the monoclinal, stepped, concave characteristics that overlapping of single channels at different periods shows in the seismic reflection, along with the transverse strength change of the amplitude. (3) The meandering channel sand bodies in the study area can be divided into three types: single channel, multi-channel superposition and stable migration channels. The single channel type seismic reflection amplitude is strong in the middle and weak on both sides, presenting a continuous banded distribution, with a width about 250 m, while the multi-channel superimposed type seismic reflection amplitude is greatly varied in strength and the distribution of superimposed banded poorly continued, with a width about 500 m. The stable migration channel type seismic response waveform changes weakly and continuously, presenting a large range of continuous distribution, and a width about 1 500 m. The research is not only of great practical significance for improving oil recovery of meandering channel reservoirs by using horizontal wells, but also of great significance for enriching characterization method of large well spacing meandering channel architecture combined with well-logging and seismic.
-
图 2 岩心特征
a.灰绿色泥岩,块状层理发育,2 972.82 m,阜东052井;b.灰色泥岩,2 827.72 m,阜东7井;c.灰色细砂岩,交错层理发育,2 367.33 m,阜29井;d.灰色细砂岩,2 751.73 m,阜东7井;e.灰色粉细砂岩,含油性较好,底部冲刷构造发育,2 972.59 m,阜东052井;f.灰色砂砾岩,分选磨圆较差,2 370.0 m,阜29井;g.灰色细砂岩,交错层理发育,荧光显示一般,3 105.26 m,阜009井;h.灰色砂砾岩,荧光显示弱,2 369.79 m,阜29井;i.灰色中细砂岩,荧光显示强,3 370.78 m,阜28井
Fig. 2. Characteristics of well cores
图 7 单河道型多个地震剖面反射特征
剖面位置见图 5g
Fig. 7. Reflection characteristics of multiple seismic profiles with single channel type
图 8 多河道侧向叠置型多个地震剖面反射特征
剖面位置见图 5d
Fig. 8. Reflection characteristics of multiple seismic profiles with multi-channel superposition type
图 9 稳定迁移型地震反射特征
剖面位置见图 5a
Fig. 9. Reflection characteristics of seismic with stable migration channel type
图 10 阜东056_H水平井轨迹曲流型河道叠置样式验证
FD056_H井轨迹位置见图 5f
Fig. 10. Verification Fudong 056_H horizontal well trajectory by means of meandering reservoir channel superposed pattern
表 1 沉积微相分类特征
Table 1. Classification of sedimentary microfacies
相 微相 岩性 韵律 沉积构造 单砂体厚度(m) 几何形态 测井曲线 测井响应 曲流型河道沉积体系 储集层单元 分流河道 砂砾岩、中细砂岩 正韵律 交错层理、块状构造 3~6 顶平底凸 中-高幅钟形或箱型 点坝 中细砂岩、粉细砂岩 正韵律 交错层理、平行层理 3~10 顶平底凸 中-高幅钟形底部突变 决口扇 细砂岩、粉砂岩 反韵律 小型交错层理 1~3 透镜体、底凸顶平 齿化漏斗形 天然堤 粉砂岩、泥岩 正韵律 小型交错层理 1~3 楔状 高幅指形 河口现 细砂岩 反韵律 大型交错层理 4~12 底平顶凸 漏斗形、箱形 隔夹层 废弃河道 泥质粉砂岩、泥岩 正韵律 水平层理 1~4 尖灭楔状 指形或尖峰形 表 2 岩性和波阻抗地震正演参数
Table 2. Lithology and wave impedance seismic forward modeling parameters setting
岩性(沉积微相) 速度(m/s) 密度(g/cm2) 泥岩(湖相、泛滥平原) 3 800 2.412 砂岩(分流河道、河口坝、溢岸) 3 500 2.375 -
[1] Bridge, J. S., 2003. Rivers and Floodplains: Forms, Processes and Sedimentary Record. Blackwell Publishing, Oxford, 491. [2] Bridge, J. S., Tye, R. S., 2000. Interpreting the Dimensions of Ancient Fluvial Channel Bars, Channels and Channel Belts from Wire-Line Logs and Cores. AAPG Bull., 84: 1205-1228. [3] He, W. A., Barzgar, E., Feng, W. P., et al., 2021. Reservoirs Patterns and Key Controlling Factors of the Lenghu Oil & Gas Field in the Qaidam Basin, Northwestern China. Journal of Earth Science, 32(4): 1011-1021. doi: 10.1007/s12583-020-1061-z [4] He, W. X., Wu, S. H., Tang, Y. J., et al., 2005. The Architecture Analysis of the Underground Point Bar-Taking Gudao Oilfield as an Example. Journal of Mineralogy and Petrology, 25(2): 81-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2005.02.014 [5] Hu, G. Y., Chen, F., Fan, T. E., et al., 2014. Analysis of Fluvial Facies Compound Sandbody Architecture of the Neogene Minghuazhen Formation of S Oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 32(3): 586-592 (in Chinese with English abstract). [6] Ji, Y. L., Zhou, Y., Wu, S. H., et al., 2012. Formation Mechanism and Recognizing Method of High Resolution Strata Architecture Boundary in Fluvial Strata. Journal of China University of Petroleum (Edition of Natural Science), 36(2): 8-15 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2012.02.002 [7] Jin, J., Ye, Y., Wen, H. G., et al., 2016. Reservoir Forming Conditions and Controlling Factors Analysis in the Second Member of Toutunhe Formation in Fudong Slope. Xinjiang Geology, 34(2): 257-262 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2016.02.018 [8] Li, B. E., Yin, T. J., Wang, Y. J., et al., 2022. Characteristics of the Reservoir Architecture of the Meandering River under the Conditions of the Thin Well Network in the Bohai Sea. Petroleum Geology & Oilfield Development in Daqing, 41(2): 1-10 (in Chinese with English abstract). [9] Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.013 [10] Li, W., Yue, D. L., Hu, G. Y., et al., 2017. Frequency-Segmented Seismic Attribute Optimization and Sandbody Distribution Prediction: An Example in North Block, Qinhuangdao 32-6 Oilfield. Oil Geophysical Prospecting, 52(1): 121-130, 17 (in Chinese with English abstract). [11] Liang, H. W., Wu, S. H., Mu, L. X., et al., 2013. Fluvial Reservoir Characterization with Phase-Controlled Forward Modeling in the North Block of the Qinhuangdao 32-6 Oilfield, a Case Study. Oil Geophysical Prospecting, 48(6): 978-984 (in Chinese with English abstract). [12] Lin, C. Y., Zhang, X. G., Wang, Y. J., et al., 2008. Seismic Reservoir Geology Research and Its Application in Dagang Offshore Area. Earth Science Frontiers, 15(1): 140-145 (in Chinese with English abstract). [13] Liu, X. P., Lu, S. F., Tang, M. M., et al., 2021. Numerical Simulation of Sedimentary Dynamics to Estuarine Bar under the Coupled Fluvial-Tidal Control. Earth Science, 46(8): 2944-2957 (in Chinese with English abstract). [14] Ma, S. Z., Yang, Q. Y., 2000. Sedimentary Model, Three-Dimensional Configuration and Heterogeneity Model of Meandering Point DAMS. Acta Sedimentologica Sinica, 18(2): 241-247 (in Chinese with English abstract). [15] Meng, Y. J., Zhao, Y. C., Xiong, S., et al., 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493 (in Chinese with English abstract). [16] Miall, A D., 1985. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth Science Reviews, 22(4): 261-308. doi: 10.1016/0012-8252(85)90001-7 [17] Miall, A. D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag Inc., Heidelberg, 582. [18] Miall, A. D., 2013. Fluvial Depositional Systems. Springer-Verlag Inc., Heidelberg, 316. [19] Patricia, C., David, D., María, H. M., et al., 2018. From Conventional Outcrop Datasets and Digital Outcrop Models to Flow Simulation in the Pont de Montanyana Point-Bar Deposits (Ypresian, Southern Pyrenees). Marine and Petroleum Geology, 94: 19-42. https://doi.org/10.1016/j.marpetgeo.2018.03.040 [20] Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73: 367-388. doi: 10.1306/111302730367 [21] Wang, W. F., Yue, D. L., Zhao, J. Y., et al., 2020. Research on Stratigraphic Structure Based on Seismic Forward Modeling: A Case Study of the Third Member of the Yanchang Formation in Heshui Area, Ordos Basin. Oil Geophysical Prospecting, 55(2): 411-418, 232 (in Chinese with English abstract). [22] Wu, S. H., Yue, D. L., Feng, W. J., et al., 2021. Research Progress of Depositional Architecture of Clastic Systems. Journal of Palaeogeography, 23(2): 245-262 (in Chinese with English abstract). [23] Yin, S. L., Chen, G. Y., Dai, C. M., et al., 2015. Reservoir Architecture and Remaining Oil Distribution in Mouth Bar-A Case Study on the Braided Delta of Long-Axis Gentle Slope in Zaonan Fault Block of Dagang Oilfield. Oil & Gas Geology, 36(4): 630-639 (in Chinese with English abstract). [24] Yu, J. W., Zheng, R. C., Liu, N., et al., 2015. Characterization of Clay Minerals in Toutunhe Formation of Fudong Slope Area in Eastern Junggar Basin. Oil & Gas Geology, 36(6): 945-954 (in Chinese with English abstract). [25] Yu, X. H., 2012. Existing Problems and Sedimentogenesis-Based Methods of Reservoir Characterization during the Middle and Later Periods of Oilfield Development. Earth Science Frontiers, 19(2): 1-14 (in Chinese with English abstract). [26] Yue, D. L., Hu, G. Y., Li, W., et al., 2018. Meandering Fluvial Reservoir Architecture Characterization Method and Application by Combining Well Logging and Seismic Data: A Case Study of QHD32-6 Oilfield. China Offshore Oil and Gas, 30(1): 99-109 (in Chinese with English abstract). [27] Yue, D. L., Wu, S. H., Tan, H. Q., et al., 2008. An Anatomy of Paleochannel Reservoir Architecture of Meandering River Reservoir—A Case Study of Guantao Formation, the West 7th Block of Gudong Oilfield. Earth Science Frontiers, 15(1): 101-109 (in Chinese with English abstract). [28] Zhang, C. M., Zhu, R., Zhao, K., et al., 2017. From End Member to Continuum: Review of Fluvial Facies Model Research. Acta Sedimentologica Sinica, 35(5): 926-944 (in Chinese with English abstract). [29] Zheng, R. C., Fu, Z. G., Zhang, Y. Q., et al., 2008. Distribution Character of the Interior Interlayer in Meander Channel Sandbodies of PU I -2 Oil-Bed in Sabei of Daqing Oil Field, China. Journal of Chengdu University of Technology (Science & Technology Edition), 35(5): 489-495 (in Chinese with English abstract). [30] Zhu, X. M., Ge, J. W., Zhao, H. C., et al., 2017. Development of Shelf-Edge Delta Researches and Typical Case Analyses. Acta Sedimentologica Sinica, 35(5): 945-957 (in Chinese with English abstract). [31] Zeng, H. L., Wang, W., Liang, Q. S., et al., 2017. Seismic Expression of Delta to Deep-Lake Transition and Its Control on Lithology, Total Organic Content, Brittleness, and Shale-Gas Sweet Spots in Triassic Yanchang Formation, Southern Ordos Basin, China. Interpretation-A Journal of Subsurface Characterization, 5(2): 1-14. https://doi.org/10.1190/INT-2016-0095.1 [32] Zeng, H. L., Zhu, X. M., Zhu, R. K., et al., 2012. Guidelines for Seismic Sedimentologic Study in Non-Marine Postrift Basins. Petroleum Exploration and Development, 39(3): 295-304. https://doi.org/10.1016/S1876-3804(12)60045-7 [33] Zeng, Z. W., Zhu, H. T., Zeng, H. L., et al., 2021. Seismic Sedimentology Analysis of Fluvial-Deltaic Systems in a Complex Strike-Slip Fault Zone, Bohai Bay Basin, China: Implications for Reservoir Prediction. Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2021.109290 [34] Zhang, T., Zhang, X. G., Lin, C. Y., et al., 2015. Seismic Sedimentology Interpretation Method of Meandering Fluvial Reservoir: From Model to Real Data. Journal of Earth Science, 26(4): 598-606. [35] 何文祥, 吴胜和, 唐义疆, 等, 2005. 地下点坝砂体内部构型分析: 以孤岛油田为例. 矿物岩石, 25(2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200502014.htm [36] 胡光义, 陈飞, 范廷恩, 等, 2014. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 32(3): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201403021.htm [37] 纪友亮, 周勇, 吴胜和, 等, 2012. 河流相地层高精度地层构型界面形成机制及识别方法. 中国石油大学学报(自然科学版), 36(2): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201202001.htm [38] 靳军, 叶勇, 文华国, 等, 2016. 阜东斜坡带头屯河组二段成藏条件及控制因素研究. 新疆地质, 34(2): 257-262. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201602019.htm [39] 李冰娥, 尹太举, 王杨君, 2022. 渤海海域稀井网条件下曲流河储层构型表征. 大庆石油地质与开发, 41(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202202001.htm [40] 李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202211003.htm [41] 李伟, 岳大力, 胡光义, 等, 2017. 分频段地震属性优选及砂体预测方法: 秦皇岛32-6油田北区实例. 石油地球物理勘探, 52(1): 121-130, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201701017.htm [42] 梁宏伟, 吴胜和, 穆龙新, 等, 2013. 应用相控正演模拟方法精细描述河流相储层: 秦皇岛32-6油田北区实例. 石油地球物理勘探, 48(6): 978-984, 1015. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201306019.htm [43] 林承焰, 张宪国, 王友净, 等, 2008. 地震油藏地质研究及其在大港滩海地区的应用. 地学前缘, 15(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801018.htm [44] 刘雪萍, 卢双舫, 唐明明, 等, 2021. 河流‒潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944-2957. doi: 10.3799/dqkx.2020.305 [45] 马世忠, 杨清彦, 2000. 曲流点坝沉积模式、三维构形及其非均质模型. 沉积学报, 18(2): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200002011.htm [46] 孟玉净, 赵彦超, 熊山, 等, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226 [47] 王文枫, 岳大力, 赵继勇, 等, 2020. 利用地震正演模拟方法研究地层结构: 以鄂尔多斯盆地合水地区延长组三段为例. 石油地球物理勘探, 55(2): 411-418, 232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202002020.htm [48] 吴胜和, 岳大力, 冯文杰, 等, 2021. 碎屑岩沉积构型研究若干进展. 古地理学报, 23(2): 245-262. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202102002.htm [49] 印森林, 陈恭洋, 戴春明, 等, 2015. 河口坝内部储层构型及剩余油分布特征: 以大港油田枣南断块长轴缓坡辫状河三角洲为例. 石油与天然气地质, 36(4): 630-639. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504014.htm [50] 于景维, 郑荣才, 柳妮, 等, 2015. 准噶尔盆地东部阜东斜坡带头屯河组粘土矿物特征. 石油与天然气地质, 36(6): 945-954. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506011.htm [51] 于兴河, 2012. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法. 地学前缘, 19(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202003.htm [52] 岳大力, 胡光义, 李伟, 等, 2018. 井震结合的曲流河储层构型表征方法及其应用——以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801012.htm [53] 岳大力, 吴胜和, 谭河清, 等, 2008. 曲流河古河道储层构型精细解剖: 以孤东油田七区西馆陶组为例. 地学前缘, 15(1): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200801013.htm [54] 张昌民, 朱锐, 赵康, 等, 2017. 从端点走向连续: 河流沉积模式研究进展述评. 沉积学报, 35(5): 926-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705006.htm [55] 郑荣才, 付志国, 张永庆, 等, 2008. 大庆萨北开发区下白垩统青山口组葡Ⅰ-2油层曲流河边滩砂体内部建筑结构. 成都理工大学学报(自然科学版), 35(5): 489-495. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200805000.htm [56] 朱筱敏, 葛家旺, 赵宏超, 等, 2017. 陆架边缘三角洲研究进展及实例分析. 沉积学报, 35(5): 945-957. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705007.htm