Sedimentary Characteristics, Evolution and Controlling Factors of the Pearl River Canyon System in the Northern South China Sea
-
摘要: 深水海底峡谷内部的粗粒碎屑沉积物不仅可以作为良好的油气储层,也可以较为完整地记录海洋地质环境变迁的相关信息,是目前海洋地质领域研究的热点.为揭示南海北部珠江口外峡谷体系沉积演化过程及其控制因素,利用多波束测深和高分辨率二维多道地震数据,对珠江口外峡谷体系地形特征、沉积充填特征、形成发育过程和控制因素进行研究.研究发现珠江口外峡谷呈三段式发育:上段为NW-SE走向,宽度超过30 km,侵蚀强度不大,横截面为不规则形态;中段为E-W走向,宽度开始变窄(25~30 km),横截面呈U型;下段为NW-SE走向,宽度达到最大(25~45 km),横截面呈U型,中段和下段以沉积作用为主.珠江口外峡谷体系沉积演化主要分为3个阶段:早期阶段(23~15.5 Ma),水道‒海底扇阶段(15.5~11.6 Ma)和峡谷‒海底扇/块体流阶段(11.6~0 Ma).揭示了该峡谷珠江口外峡谷体系的发育和演化主要受构造运动、海平面变化和沉积物供给的控制作用,通过以上分析,将对南海北部海洋灾害地质、深水沉积体系研究及油气资源勘探有重要的指导意义.Abstract: The coarser clastic sediment in deep-water submarine canyons is a hot topic in the field of marine geology, not only because it can be good oil and gas reservoirs, but also because it records the complete information of marine geological environment change. In order to reveal the sedimentary evolution process and controlling factors of the Pearl River Canyon system, in this paper it combined multibeam bathymetric and high resolution 2D multi-channel seismic data to study the topography characteristics, sedimentary filling characteristics, the formation processes and controlling factors of the Pearl River Canyon system. The study shows that Pearl River Canyon system has developed in three sections. The upper section is in NW-SE trend, with a width of more than 30 km, low erosion intensity, and irregular cross section. The middle section is in E-W trend, with narrower width (25-30 km), and U-shaped cross section. The lower sections is in NW-SE trend with the largest width (25-45 km) and U-shaped cross section. The middle and the lower sections are dominated by sedimentation. The evolution of Pearl River Canyon system could be divided into three stages: the early stage (23-15.5 Ma), the channel-submarine fan form stage (15.5-11.6 Ma) and the canyon-submarine fan/block flow stage (11.6-0 Ma). It's revealed that the development and evolution of the Pearl River Canyon system are mainly controlled by tectonic movement, sea level change and sediment supply. The above analysis has practical significance for the study of marine disaster, deep-water depositional system and hydrocarbon resources exploration in the northern South China Sea.
-
图 1 研究区三维地形图和测线位置
图a据Gao et al.(2019)修改
Fig. 1. Three-dimensional bathymetry map of the study area and the location of the seismic lines
图 2 珠江口盆地地层综合柱状图
据庞雄等(2007),朱伟林和米立军(2010)修改
Fig. 2. Stratigraphic column in the Pearl River Mouth basin
图 4 珠江口外峡谷上段地震反射特征(a)及解释剖面(b)
剖面位置见图 1
Fig. 4. Seismic-reflection feature (a) and corresponding interpretation (b) of the upper segment crossing the Pearl River Canyon
图 5 神狐峡谷群地震反射特征(a)及解释剖面(b)
剖面位置见图 1,地震剖面据Chen et al.(2020)修改
Fig. 5. Seismic-reflection feature (a) and corresponding interpretation (b) of the Shenhu Canyon system
图 6 珠江口外峡谷中段地震反射特征(a)及解释剖面(b)
剖面位置见图 1
Fig. 6. Seismic-reflection feature (a) and corresponding interpretation (b) of the middle segment crossing the Pearl River Canyon
图 7 珠江口外峡谷下段地震反射特征(a)及解释剖面(b)
剖面位置见图 1
Fig. 7. Seismic-reflection feature (a) and corresponding interpretation (b) of the lower segment of the Pearl River Canyon
图 8 过珠江口外峡谷下段至西北次海盆地震反射特征(a)及解释剖面(b)
剖面位置见图 1
Fig. 8. Seismic-reflection feature (a) and corresponding interpretation (b) of the lower segment crossing the Pearl River Canyon to northwest sub-basin
图 10 珠江口外峡谷体系强侵蚀界面与海平面变化曲线的对应关系
剖面位置见图 1
Fig. 10. The correspondence relationship between strong erosion interface and sea level change curve of the Pearl River Canyon system
图 11 珠江口外峡谷体系北部沉积物源供给特征
剖面位置见图 1
Fig. 11. The north sediment supply characteristics of the Pearl River Canyon system
表 1 珠江口外峡谷体系平面形态特征
Table 1. Morphology parameter statistics of different sections of the Pearl River Canyon system
参数 上段 中段 下段 走向 SE E SE 形态 V型 U型 U型 长度(m) 62 78 118 宽度(m) 16 000 26 000 34 000 切割深度(m) 120 180 145 宽深比 133 154 234 坡度(°) 1 0.7 0.5 -
[1] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z [2] Deptuck, M. E., Steffens, G. S., Barton, M., et al., 2003. Architecture and Evolution of Upper Fan Channel-Belts on the Niger Delta Slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6-8): 649-676. doi: 10.1016/j.marpetgeo.2003.01.004 [3] Ding, W. W., Li, J. B., Li, J., 2010. Forming Mechanism of the Submarine Canyon on the North Slope of the South China Sea. Journal of Marine Sciences, 28(1): 26-31 (in Chinese with English abstract). [4] Ding, W. W., Li, J. B., Li, J., et al., 2013. Morphotectonics and Evolutionary Controls on the Pearl River Canyon System, South China Sea. Marine Geophysical Research, 34(3-4): 221-238. https://doi.org/10.1007/s11001-013-9173-9 [5] Du, W. B., Huang, W. K., Zhu, H. T., et al., 2020. Sedimentary System, Stratigraphic Architecture and Petroleum Exploration Prospect in the Western Taiwan Strait. Geology in China, 47(5): 1542-1553 (in Chinese with English abstract). [6] Du, W. B., Sun, G. H., Huang, Y. J., et al., 2015a. Reservoir Prediction Based on Seismic Multi-Attributes Analysis: An Example from Paleogene Enping Formation of Enping Sag in the Pearl River Mouth Basin. Marine Geology Frontiers, 31(8): 62-70 (in Chinese with English abstract). [7] Du, W. B., Sun, G. H., Shu, Y., 2015b. Seismic Sedimentology of Paleogene Enping Formation in Enping Sag, Pearl River Mouth Basin. Geological Science and Technology Information, 34(3): 220-229 (in Chinese with English abstract). [8] Fu, C., Yu, X. H., He, Y. L., et al., 2018. Stratigraphic and Structural Differences and Their Controls in the Shenhu Submarine Canyon, Northern South China Sea. Geoscience, 32(4): 807-818 (in Chinese with English abstract). [9] Gao, H. F., Nie, X., Luo, W. D., 2021. "Source to Sink" Analysis of a Sea Basin: The Quaternary Deepwater Turbidite Fan System in Pearl River Valley Northwest Subbasin, Northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1-12 (in Chinese with English abstract). [10] Gao, J. W., Bangs, N., Wu, S. G., et al., 2019. Post-Seafloor Spreading Magmatism and Associated Magmatic Hydrothermal Systems in the Xisha Uplift Region, Northwestern South China Sea. Basin Research, 31(4): 688-708. doi: 10.1111/bre.12338 [11] Han, X. B., Li, J. B., Chu, F. Y., et al., 2010. Geomorphology and Tectonic Interpretation of Zhujiang Submarine Canyon in the Northern South China Sea. Oceans 10 IEEE Sydney, Sydney, 1-4. [12] Harris, P. T., Whiteway, T., 2011. Global Distribution of Large Submarine Canyons: Geomorphic Differences between Active and Passive Continental Margins. Marine Geology, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008 [13] Liu, C. S., Ding, W. W., Yin, S. R., et al., 2019. Geomorphology, Sedimentary Characteristics and Controlling Factors of Submarine Canyons in the Northern Continental Slope of the South China Sea. Journal of Marine Sciences, 37(2): 28-43 (in Chinese with English abstract). [14] Liu, J., Su, M., Qiao, S. H., et al., 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950 (in Chinese with English abstract). [15] Luo, W. D., Zhou, J., Li, X. J., et al., 2018. Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6): 2172-2183 (in Chinese with English abstract). [16] Mao, K. N., 2015. Internal Architectures and Depositional Model of the Pearl River Submarine Canyon System (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [17] Pang, X., Peng, D. J., Chen, C. M., et al., 2007. Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System. Acta Geologica Sinica, 81(6): 857-864 (in Chinese with English abstract). [18] Su, M., Lin, Z. X., Wang, C., et al., 2020. Geomorphologic and Infilling Characteristics of the Slope-Confined Submarine Canyons in the Pearl River Mouth Basin, Northern South China Sea. Marine Geology, 424: 106166. doi: 10.1016/j.margeo.2020.106166 [19] Sun, Q., Alves, T., Lu, X., et al., 2018. True Volumes of Slope Failure Estimated from a Quaternary Mass-Transport Deposit in the Northern South China Sea. Geophysical Research Letters, 45(6): 2642-2651. doi: 10.1002/2017GL076484 [20] Tian, J., Song, J., Ma, B. J., et al., 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718 (in Chinese with English abstract). [21] Wang, C. S., Zhu, J. J., Zhao, D. D., et al., 2021. Origin and Evolution of Submarine Canyons. Marine Geology Frontiers, 37(3): 1-15 (in Chinese with English abstract). [22] Wang, X. X., Cai, F., Sun, Z. L., et al., 2021. Sedimentary Evolution and Geological Significance of the Dongsha Submarine Canyon in the Northern South China Sea. Earth Science, 46(3): 1023-1037 (in Chinese with English abstract). [23] Xie, X. N., Ren, J. Y., Pang, X., et al., 2019. Stratigraphic Architectures and Associated Unconformities of Pearl River Mouth Basin during Rifting and Lithospheric Breakup of the South China Sea. Marine Geophysical Research, 40(2): 129-144. https://doi.org/10.1007/s11001-019-09378-6 [24] Yi, S. T., Hu, X. S., Luo, Z. J., et al., 2020. Geomorphological Characteristics and Controlling Factors of the Yitong Canyon Group on the Northern Slope of the South China Sea. Marine Geology Frontiers, 36(4): 18-26 (in Chinese with English abstract). [25] Zhu, J. J., Li, S. Z., Lu, J. A., et al., 2020. Scientific Implications and Preliminary Surveying Results of Geological and Physical Oceanography Environment in the Shenhu Area of the Northern South China Sea. Earth Science, 45(4): 1416-1426 (in Chinese with English abstract). [26] Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic. Marine Petroleum Geology, 27(1): 307-319. doi: 10.1016/j.marpetgeo.2009.05.005 [27] Zhu, R. W., Yao, Y. J., Liu, H. L., et al., 2021. Tectonic Contact Relationship of Continental Margins of the Southwest Sub-Basin, South China Sea in Late Mesozoic. Earth Science, 46(3): 885-898 (in Chinese with English abstract). [28] Zhu, W. L., Mi, L. J., 2010. Atlas of Oil and Gas Basin, China Sea. Petroleum Industry Press, Beijing (in Chinese). [29] 丁巍伟, 李家彪, 李军, 2010. 南海北部陆坡海底峡谷形成机制探讨. 海洋学研究, 28(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY201001005.htm [30] 杜文波, 黄文凯, 朱红涛, 等, 2020. 台湾海峡西部海域沉积体系、地层架构与油气勘探前景. 中国地质, 47(5): 1542-1553. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005020.htm [31] 杜文波, 孙桂华, 黄永健, 等, 2015a. 基于地震多属性的储层预测: 以珠江口盆地恩平凹陷古近系恩平组为例. 海洋地质前沿, 31(8): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201508009.htm [32] 杜文波, 孙桂华, 舒誉, 2015b. 珠江口盆地恩平凹陷古近系恩平组地震沉积学研究. 地质科技情报, 34(3): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503032.htm [33] 付超, 于兴河, 何玉林, 等, 2018. 南海北部神狐海域峡谷层序结构差异与控制因素. 现代地质, 32(4): 807-818. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201804017.htm [34] 高红芳, 聂鑫, 罗伟东, 2021. 海盆沉积"源‒汇"系统分析: 南海北部珠江海谷‒西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102001.htm [35] 刘丛舒, 丁巍伟, 殷绍如, 等, 2019. 南海北部陆坡区海底峡谷地貌、沉积特征及控制因素. 海洋学研究, 37(2): 28-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY201902004.htm [36] 刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm [37] 罗伟东, 周娇, 李学杰, 等, 2018. 南海海盆盆西峡谷的形态与结构及形成演化. 地球科学, 43(6): 2172-2183. doi: 10.3799/dqkx.2017.615 [38] 毛凯楠, 2015. 珠江口外峽谷体系内部构成特征及沉积模式(博士学位论文). 武汉: 中国地质大学. [39] 庞雄, 彭大钧, 陈长民, 等, 2007. 三级"源‒渠‒汇"耦合研究珠江深水扇系统. 地质学报, 81(6): 857-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706015.htm [40] 田洁, 宋军, 马本俊, 等, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062 [41] 王长盛, 朱俊江, 赵冬冬, 等, 2021. 全球海底峡谷成因及演化研究. 海洋地质前沿, 37(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202103001.htm [42] 王星星, 蔡峰, 孙治雷, 等, 2021. 南海北部东沙海底峡谷沉积演化过程及其地质意义. 地球科学, 46(3): 1023-1037. doi: 10.3799/dqkx.2020.277 [43] 伊善堂, 胡小三, 罗宗杰, 等, 2020. 南海北部陆坡一统峡谷群地貌特征及控制因素分析. 海洋地质前沿, 36(4): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202004002.htm [44] 朱俊江, 李三忠, 陆敬安, 等, 2020. 南海北部神狐海域地质环境综合调查及科学意义. 地球科学, 45(4): 1416-1426. doi: 10.3799/dqkx.2019.109 [45] 朱荣伟, 姚永坚, 刘海龄, 等, 2021. 南海西南次海盆两侧陆缘中生代晚期构造接触关系. 地球科学, 46(3): 885-898. doi: 10.3799/dqkx.2020.369 [46] 朱伟林, 米立军, 2010. 中国海域含油气盆地图集. 北京: 石油工业出版社.