Large Submarine Fan System Controlled by Narrow Continental Shelf-Faulted Continental Slope in Northern South China Sea
-
摘要: 南海北部狭窄陆架-断裂陆坡控制的深水沉积体系研究程度极低.以“源-渠-汇”耦合思想为指导,基于岩石学特征、测井相、地震相分析,刻画了揭阳凹陷珠海组深水扇砂体的垂向叠置和横向迁移特征,并将其形成演化划分为珠海组四段初始形成期、珠海组三段-二段发展扩大期、珠海组一段萎缩消亡期.揭阳凹陷珠海组大型盆底扇的形成受控于易剥蚀的中生界物源、多期的相对海平面快速下降、狭窄陆架-断裂陆坡的有利地貌这3个关键因素的耦合作用;在区域三级相对海平面快速下降的背景下,揭阳凹陷北侧东沙隆起富砂的下白垩统快速剥蚀,沉积物直接沿狭窄陆架区的侵蚀下切谷或小型陆架边缘三角洲的水下分流河道搬运,顺断裂坡折带或构造转换带调节,以重力流形式经峡谷水道继续搬运至下陆坡盆地形成大型海底扇.Abstract: The sedimentary system controlled by the narrow continental shelf-faulted continental slope in the northern South China Sea is very poorly studied. Guided by the coupling idea of "source-conduit-sink" and based on petrological characteristics, logging facies and seismic facies analysis, the vertical superposition and lateral migration characteristics of submarine fan sand bodies of the Zhuhai Formation in Jieyang Sag are characterized, and its evolution history is divided into the initial formation period of Member Ⅳ of Zhuhai Formation, the development and expansion period of Member Ⅲ-Ⅱ of Zhuhai Formation and the shrinkage and extinction period of Member Ⅰ of Zhuhai Formation. It is considered that the formation of large submarine fan of Zhuhai Formation in Jieyang Sag was controlled by the coupling effect of three key factors: easily eroded Mesozoic provenance, multi-stage rapid decline of relative sea level, favorable geomorphology of the narrow continental shelf -faulted continental slope. Under the background of rapid decline of regional third order relative sea level, the sand-prone Lower Cretaceous was rapidly eroded from the Dongsha uplift on the north side of Jieyang Sag. The sediments were transported directly along the erosion downcut valley or the underwater distributary channel of the small shelf-margin delta in the narrow continental shelf area, adjusted along the fault slope break zone or structural transition zone, and continued to be transported to the lower slope basin in the form of gravity flow through the canyon channels to form a large submarine fan.
-
图 2 珠江口盆地渐新统综合柱状图(据庞雄等,2005修改)
Fig. 2. Oligocene comprehensive column of the Pearl River Mouth Basin (modified from Pang et al., 2005)
图 4 珠江口盆地揭阳凹陷揭阳主洼洼陷结构剖面(剖面位置见图 3)
Fig. 4. Structural profile of Jieyang main sub-sag in Jieyang Sag, Pearl River Mouth Basin
-
[1] Chen, Y., Zhang, D.J., Huang, C., et al., 2019. Controlling Factors and Sedimentary Characteristics of the Large Submarine Fan in Meishan Formation in the South Parts of the Yingdong Slope Area, Yinggehai Basin. Journal of Northeast Petroleum University, 43(4): 40-49 (in Chinese with English abstract). [2] Du, J.Y., Zhang, X.T., Liu, P., et al., 2021. Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706 (in Chinese with English abstract). [3] Gao, Y.D., Sun, D.Q., Chen, M., et al., 2018. Gravity Flow Sedimentary Characteristics and Patterns of Huangliu Formation in LS17-2 Deep Water Gas Field. China Offshore Oil and Gas, 30(1): 22-30 (in Chinese with English abstract). [4] Lin, A. T., Yang, C. C., Wang, M. H., et al., 2021. Oligocene-Miocene Sequence Stratigraphy in the Northern Margin of the South China Sea: An Example from Taiwan. Journal of Asian Earth Sciences, 213: 104765. https://doi.org/10.1016/j.jseaes.2021.104765 [5] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015. Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1): 9-20 (in Chinese with English abstract). [6] Liu, B.J., Pang, X., Yan, C.Z., et al., 2011. Evolution of the Oligocene-Miocene Shelf Slope-Break Zone in the Baiyun Deep-Water Area of the Pearl River Mouth Basin and Its Significance in Oil-Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract). [7] Liu, X.Y., 2013. Depositional Characteristics and Evolution of the Tertiary Deep-Water Fan in West Africa. Journal of Northeast Petroleum University, 37(3): 24-31 (in Chinese with English abstract). [8] Liu, Z.Y., Lü, M., Lu, J.M., et al., 2017. Deepwater Depositional System in the Background of Narrow Shelf in the Ruvuma Basin, Eastern Africa. Marine Origin Petroleum Geology, 22(4): 27-34 (in Chinese with English abstract). [9] Lu, W.Y., Zhu, H.T., Xu, C.G., et al., 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336 (in Chinese with English abstract). [10] Pang, X., Chen, C.M., Shi, H.S., et al., 2005. Response between Relative Sea-Level Change and the Pearl River Deep-Water Fan System in the South China Sea. Earth Science Frontiers, 12(3): 167-177 (in Chinese with English abstract). [11] Pang, X., Peng, D.J., Chen, C.M., et al., 2007. Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System. Acta Geologica Sinica, 81(6): 857-864 (in Chinese with English abstract). [12] Ren, J.Y., Lu, Y.C., Zhang, Q.L., 2004. Forming Mechanism of Structural Slope-Break and Its Control on Sequence Style in Faulted Basin. Earth Science, 29(5): 596-602 (in Chinese with English abstract). [13] Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). [14] Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/b32053.1 doi: 10.1130/B32053.1 [15] Shao, L., Pang, X., Zhang, G.C., et al., 2009. Late Oligocene Tectonic Event in the Northern South China Sea and Its Implications. Earth Science, 34(5): 717-724 (in Chinese with English abstract). [16] Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting- Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract). [17] Wu, J.F., Xu, Q., Zhu, Y.H., 2010. Generation and Evolution of the Shelf-Edge Delta in Oligocene and Miocene of Baiyun Sag in the South China Sea. Earth Science, 35(4): 681-690 (in Chinese with English abstract). [18] Xing, Z.C., Lin, C.S., Zhang, Z.T., et al., 2017. Deposit Evolution of Continental Margin Delta in the Zhuhai Formation in Deep Water Area of Baiyun Sag. Special Oil & Gas Reservoirs, 24(5): 15-20 (in Chinese with English abstract). [19] Xing, Z.C., Zhang, Z.T., Lin, C.S., et al., 2020. Sedimentary Types and Features of Gravity Flow Depositional Systems from Late Oligocene to Early Miocene in Liwan Sag, Pearl River Mouth Basin. Journal of Palaeogeography (Chinese Edition), 22(6): 1143-1156 (in Chinese with English abstract). [20] Xu, C. H., Shi, H. S., Barnes, C. G., et al., 2016. Tracing a Late Mesozoic Magmatic Arc along the Southeast Asian Margin from the Granitoids Drilled from the Northern South China Sea. International Geology Review, 58(1): 71-94. https://doi.org/10.1080/00206814.2015.1056256 [21] Yao, G.Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract). [22] Yi, H., Zhong, G.J., Ma, J.F., 2007. Fracture Characteristics and Basin Evolution of the Taixinan Basin in Cenozoic. Petroleum Geology & Experiment, 29(6): 560-564 (in Chinese with English abstract). [23] Zeng, Q.B., Chen, G.J., Zhang, G.C., et al., 2015. The Shelf-Margin Delta Feature and Its Significance in Zhuhai Formation of Deep-Water Area, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 33(3): 595-606 (in Chinese with English abstract). [24] Zhang, L.L., 2020. Early Oligocene-Miocene Biostratigraphy and Sedimentary Environment of the Jieyang Sag in Pearl River Mouth Basin. Acta Micropalaeontologica Sinica, 37(3): 266-277 (in Chinese with English abstract). [25] Zhang, M.L., Lin, C.S., He, M., et al., 2019. Sequence Architecture and Evolution of Shelf-Margin Deltaic Systems of the Late Oligocene in Pearl River Mouth Basin. Oil & Gas Geology, 40(4): 875-885 (in Chinese with English abstract). [26] Zhang, Q.L., Zhang, H.F., Zhang, X.T., et al., 2018. The Upper Cretaceous Prototype Basin of the Chaoshan Depression in the Northern South China Sea and Its Tectonic Setting. Chinese Journal of Geophysics, 61(10): 4308-4321 (in Chinese with English abstract). [27] Zhang, Z.T., Zhang, X.T., Sun, H., et al., 2019. Sedimentary Characteristics of Oligocene Shelf Edge Delta and Their Control on Hydrocarbon Accumulation in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 81-89 (in Chinese with English abstract). [28] Zhao, C.L., Zhu, X.M., 2000. Sedimentary Petrology. Petroleum Industry Press, Beijing, 57-71 (in Chinese). [29] Zhu, X.M., Ge, J.W., Zhao, H.C., et al., 2017. Development of Shelf-Edge Delta Researches and Typical Case Analyses. Acta Sedimentologica Sinica, 35(5): 945-957 (in Chinese with English abstract). [30] 陈杨, 张道军, 黄灿, 等, 2019. 莺歌海盆地莺东斜坡南段梅山组大型海底扇沉积特征及控制因素. 东北石油大学学报, 43(4): 40-49. doi: 10.3969/j.issn.2095-4107.2019.04.004 [31] 杜家元, 张向涛, 刘培, 等, 2021. 珠江口盆地珠一坳陷古近系"源-汇"系统分类及石油地质意义. 地球科学, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133 [32] 高永德, 孙殿强, 陈鸣, 等, 2018. 陵水17-2深水气田黄流组重力流沉积特征及模式. 中国海上油气, 30(1): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801003.htm [33] 林畅松, 夏庆龙, 施和生, 等, 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [34] 柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102008.htm [35] 刘新颖, 2013. 西非第三系深水扇沉积特征及发育演化规律. 东北石油大学学报, 37(3): 24-31. doi: 10.3969/j.issn.2095-4107.2013.03.004 [36] 刘子玉, 吕明, 卢景美, 等, 2017. 东非鲁伍马盆地窄陆架背景下的深水沉积体系. 海相油气地质, 22(4): 27-34. doi: 10.3969/j.issn.1672-9854.2017.04.004 [37] 陆威延, 朱红涛, 徐长贵, 等, 2020. 源-汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123 [38] 庞雄, 陈长民, 施和生, 等, 2005. 相对海平面变化与南海珠江深水扇系统的响应. 地学前缘, 12(3): 167-177. doi: 10.3321/j.issn:1005-2321.2005.03.018 [39] 庞雄, 彭大钧, 陈长民, 等, 2007. 三级"源-渠-汇"耦合研究珠江深水扇系统. 地质学报, 81(6): 857-864. doi: 10.3321/j.issn:0001-5717.2007.06.016 [40] 任建业, 陆永潮, 张青林, 2004. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制. 地球科学, 29(5): 596-602. doi: 10.3321/j.issn:1000-2383.2004.05.015 [41] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. [42] 邵磊, 庞雄, 张功成, 等, 2009. 南海北部渐新世末的构造事件. 地球科学, 34(5): 717-724. doi: 10.3321/j.issn:1000-2383.2009.05.001 [43] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371 [44] 吴景富, 徐强, 祝彦贺, 2010. 南海白云凹陷深水区渐新世-中新世陆架边缘三角洲形成及演化. 地球科学, 35(4): 681-690. doi: 10.3799/dqkx.2010.083 [45] 邢作昌, 林畅松, 张忠涛, 等, 2017. 白云深水区珠海组陆架边缘三角洲沉积演化. 特种油气藏, 24(5): 15-20. doi: 10.3969/j.issn.1006-6535.2017.05.003 [46] 邢作昌, 张忠涛, 林畅松, 等, 2020. 珠江口盆地荔湾凹陷晚渐新世-早中新世重力流沉积类型及其特征. 古地理学报, 22(6): 1143-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202006009.htm [47] 姚光庆, 姜平, 2021. 储层"源-径-汇-岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327 [48] 易海, 钟广见, 马金凤, 2007. 台西南盆地新生代断裂特征与盆地演化. 石油实验地质, 29(6): 560-564. doi: 10.3969/j.issn.1001-6112.2007.06.006 [49] 曾清波, 陈国俊, 张功成, 等, 2015. 珠江口盆地深水区珠海组陆架边缘三角洲特征及其意义. 沉积学报, 33(3): 595-606. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DIDD201505008015.htm [50] 张丽丽, 2020. 珠江口盆地揭阳凹陷早渐新世-中新世古生物地层及沉积环境. 微体古生物学报, 37(3): 266-277. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT202003008.htm [51] 张曼莉, 林畅松, 何敏, 等, 2019. 珠江口盆地晚渐新世陆架边缘三角洲沉积层序结构及演化. 石油与天然气地质, 40(4): 875-885. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904017.htm [52] 张青林, 张航飞, 张向涛, 等, 2018. 南海北部潮汕坳陷上白垩统盆地原型及其大地构造背景分析. 地球物理学报, 61(10): 4308-4321. doi: 10.6038/cjg2018L0571 [53] 张忠涛, 张向涛, 孙辉, 等, 2019. 珠江口盆地渐新世陆架边缘三角洲沉积特征及其对成藏的控制作用. 石油学报, 40(S1): 81-89. doi: 10.7623/syxb2019S1007 [54] 赵澄林, 朱筱敏, 2000. 沉积岩石学. 北京: 石油工业出版社, 57-71. [55] 朱筱敏, 葛家旺, 赵宏超, 等, 2017. 陆架边缘三角洲研究进展及实例分析. 沉积学报, 35(5): 945-957. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705007.htm