Development of Extensional Decollement Faults and Its Petroleum Implications in Wushi East Subsag, Beibuwan Basin
-
摘要: 北部湾盆地乌石凹陷从古新世早期到渐新世末期经历了多幕次的伸展,在裂陷Ⅱ幕时期形成了一组近E-W向的伸展滑脱断裂系,但其形成机制及演化过程尚未明确. 基于油气勘探过程中获取的全新高精度三维地震资料,应用构造‒地层综合解释以及定量分析的技术方法,对乌石凹陷东洼伸展滑脱构造进行了深入的解析. 结果表明,乌石东洼新生代地层共发育7条近E-W或NE-SW向展布的伸展滑脱断层(Fa‒Fg),这些伸展滑脱断层与北倾的7号断层相向倾斜发育,共同控制了流沙港组一段到涠洲组一段的跷跷板式地层沉积和大型滚动背斜的形成. 从演化上来讲,在始新世早中期(T100-T83)盆地为由NE-SW向展布的7号断层和局部基底小规模正断层控制的地堑或半地堑盆地,早期局部沉积的流沙港组三段被晚期连续沉积的厚层流沙港组二段油页岩覆盖. 始新世晚期‒渐新世晚期(T83-T60),盆地沉积了由对倾发育的伸展滑脱断层和7号断层共同控制的流沙港组一段‒涠洲组一段,对倾断层的先后活动导致了沉降沉积中心的迁移,控制了复杂的“跷跷板式”滚动背斜及“包心菜”构造的发育. 新近纪以来(T60-海底),盆地的构造活动性减弱,转变为坳陷型盆地. 描述了乌石凹陷东洼裂陷Ⅱ幕时期形成的伸展滑脱构造的几何学特征,并解析了伸展滑脱构造的形成模式,提出了滑脱断裂发育有自下坡断层组向上坡断层组迁移的规律,对解决油气的运移、储存、保存等问题有重要的意义.Abstract: From the Early Paleocene to the end of the Oligocene, Wushi Sag of the Beibuwan Basin experienced multiple phases of extension. A group of extensional decollement faults formed during the 2nd phase of rifting, but their formation mechanism and evolution process are not clear. Based on the new high-quality 3-D seismic data obtained in the process of petroleum exploration, an in-depth analysis of the extensional decollement faults in the Wushi East subsag is conducted in this study. The results show that there are 7 extensional decollement faults (Fa‒Fg) in the Wushi East subsag, which are distributed in the near E-W or NE-SW direction. These decollement faults, together with north-dipping No.7 boundary fault, controlled sedimentation from the 1st Member of Liushagang Formation to the 1st Member of Weizhou Formation, which formed a huge rollover anticline. In terms of evolution, during the Early-Middle Eocene, the basin was a graben or half-graben controlled by the NE-SW No.7 boundary fault and other local small basement faults. The 3rd Member of Liushagang Formation strata was discretely distributed and was overlain by thick layer oil shale of the 2nd Member of Liushagang Formation. From the Late Eocene to the Late Oligocene, 1st Member of Liushagang Formation to the 1st Member of Weizhou Formation deposited in the basin, which was controlled by the oppositely dipping extensional decollement faults and the No.7 boundary fault. From the Early Miocene to the present, the basin changed into a sag basin. This study has depicted the geometry of extensional decollement structure which formed during the second episodic rift phase of Wushi East subsag, analyzed the growth and linkage pattern of decollement faults, and proposed the decollement faults upslope-ward migration model, which has a great significance for solving the problems of oil and gas migration, storage and preservation.
-
图 2 北部湾盆地地层构造综合柱状图(据李春荣等(2012)修改)
Fig. 2. Summary of strata and tectonic event of Beibuwan Basin(modified from Li et al., 2012)
图 5 断层生长发育平面厚度图
a. 流一段(T83-T80),该段沉积时期Fa西段活动,Fb局部活动,Fc不活动,Fd全段活跃活动,Fe西段不活动,中西段、中段和东段活动;b. 涠三段(T80-T72),该段沉积时期Fa暂停活动,Fb西段暂停活动、东段活动,Fc中、西段活动,Fd全段和Fe中段、东段活动;c. 涠二段(T72-T70),该段沉积时期Fa全段、Fb全段、Fc全段、Fe中段及东段活动,Fd全段停止活动. d. 涠一段(T70-T60),该段沉积时期Fa、Fb、Fc和Fe断层局部微弱活动
Fig. 5. Plan view of fault growth and development
表 1 研究区主要伸展滑脱断层的特征
Table 1. Characteristics of extensional decollement faults in the study area
断层名 走向 倾向 沿走向长度(km) 最大落差(m) 最大落差所处位置 Fa E-W S 2.9 1 500 西侧与6号断层连接的位置 Fb E-W S 9.0 810 断层中东部,Fd的正北方 Fc E-W S 8.9 1 000 东部 Fd NE-SW SE 2.7 750 中部 Fe E-W S 22.0 780 中部 Ff E-W S 6.3 380 东部 Fg E-W S 5.4 680 中部 -
[1] Ai, N. P., Ren, J. Y., Qi, P., et al., 2009. The Redefinition and Geological Siginificance of Extensional Decollement Structure Systems in the Qikou Depression. Geotectonica et Metallogenia, 33(3): 343-351 (in Chinese with English abstract). [2] Back, S., Strozyk, F., Kukla, P. A., et al., 2008. Three⁃ Dimensional Restoration of Original Sedimentary Geometries in Deformed Basin Fill, Onshore Brunei Darussalam, NW Borneo. Basin Research, 20(1): 99-117. https://doi.org/10.1111/j.1365⁃2117.2007.00343.x [3] Bai, B., Kang, H. Q., Cheng, T., et al., 2016. Gravity Dcollement Structural System in Offshore Basins of Northeast Brazil. Marine Geology Frontiers, 32(4): 31-36 (in Chinese with English abstract). [4] Fazlikhani, H., Back, S., 2015. The Influence of Differential Sedimentary Loading and Compaction on the Development of a Deltaic Rollover. Marine and Petroleum Geology, 59: 136-149. https://doi.org/10.1016/j.marpetgeo.2014.08.005 [5] Fazlikhani, H., Back, S., Kukla, P. A., et al., 2016. Interaction between Gravity-Driven Listric Normal Fault Linkage and Their Hanging-Wall Rollover Development: A Case Study from the Western Niger Delta, Nigeria. Geological Society, London, Special Publications, 439(1): 169-186. https://doi.org/10.1144/sp439.20 [6] Hou, G. W., Liu, H. F., Zuo, S. J., 2005. A Study of Distribution Characteristics of Petroleum in Niger Delta Basin and Their Controling Factors. Oil & Gas Geology, 26(3): 374-378 (in Chinese with English abstract). [7] Hu, D. S., Deng, Y., Zhang, J. X., et al., 2016. Palaeogene Fault System and Hydrocarbon Accumulation in East Wushi Sag. Journal of Southwest Petroleum University (Science & Technology Edition), 38(4): 27-36 (in Chinese with English abstract). [8] Hu, L., Li, C., Jin, Q. Y., et al., 2021. Experimental Analysis on Influence of Plastic Formation on Characteristics of Fault Development under Extensional Stress. Earth Science, 46(5): 1749-1757 (in Chinese with English abstract). [9] Huang, B. J., Huang, H. T., Wu, G. X., et al., 2012. Geochemical Characteristics and Formation Mechanism of Eocene Lacustrine Organic⁃Rich Shales in the Beibuwan Basin. Acta Petrolei Sinica, 33(1): 25-31 (in Chinese with English abstract). [10] Jackson, C. A. L., Larsen, E., 2009. Temporal and Spatial Development of a Gravity⁃Driven Normal Fault Array: Middle⁃Upper Jurassic, South Viking Graben, Northern North Sea. Journal of Structural Geology, 31(4): 388-402. https://doi.org/10.1016/j.jsg.2009.01.007 [11] Laubscher, H. P., 1988. Décollement in the Alpine System: An Overview. Geologische Rundschau, 77(1): 1-9. https://doi.org/10.1007/BF01848672 [12] Li, C. R., Zhang, G. C., Liang, J. S., et al., 2012. Characteristics of Fault Structure and Its Control on Hydrocarbons in the Beibuwan Basin. Acta Petrolei Sinica, 33(2): 195-203 (in Chinese with English abstract). [13] Lei, B. H., 2012. Review of Methods with Quantitative Studies of Activity Intensity of the Growth Fault. Advances in Earth Science, 27(9): 947-956 (in Chinese with English abstract). [14] Liu, J. B., Xia, B., Lü, B. F., et al., 2010. Comparative Analysis of Inversion Structure with Its Easily Confused Structures. Geoscience, 24(4): 744-748 (in Chinese with English abstract). [15] Liu, X. F., Dong, Y. X., Wang, H., 2010. Antiformal Negative Flower Structure in Nanpu Sag, Bohai Bay Basin. Earth Science, 35(6): 1029-1034 (in Chinese with English abstract). [16] Ma, X. Y., Suo, S. T., 1984. On Gliding Nappes and Multi⁃Level Detachment Structures in the Lithosphere. Acta Geologica Sinica, 58(3): 205-213 (in Chinese with English abstract). [17] Man, X., Hu, D. S., Fan, C. W., et al., 2021. Study on the Origin of "Antiform Negative Flower Structure" and the Difference of Oil and Gas Enrichment Law in Wushi Sag. China Offshore Oil and Gas, 33(5): 32-39 (in Chinese with English abstract). [18] Muraoka, H., Kamata, H., 1983. Displacement Distribution along Minor Fault Traces. Journal of Structural Geology, 5(5): 483-495. https://doi.org/10.1016/0191⁃8141(83)90054⁃8 [19] Ren, J. Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra⁃Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract). [20] Wang, H. R., Fu, G., Su, B. L., et al., 2018. A Method to Determine Preferential Pathways for Hydrocarbon Migration in "Lower Source Rock and Upper Reservoir" Combination and Its Application. Oil & Gas Geology, 39(6): 1237-1245 (in Chinese with English abstract). [21] Wang, J., Luan, X. W., He, B. S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928 (in Chinese with English abstract). [22] Xu, C. G., Fan, C. W., 2021. New Exploration Progress and Thinking of Offshore Large⁃Medium⁃Sized Oil and Gas Fields in the Western South China Sea. China Offshore Oil and Gas, 33(2): 13-25 (in Chinese with English abstract). [23] Xue, Y. A., Zhao, M., Liu, X. J., 2021. Reservoir Characteristics and Controlling Factors of the Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin. Journal of Earth Science, 32(4): 919-926. https://doi.org/10.1007/s12583⁃021⁃1415⁃1 [24] Yang, X. B., Chen, Z. Y., Man, Y., et al., 2017. Sand Distribution Mechanism of Liushagang Formation in Eastern Wushi Area. Fault⁃Block Oil & Gas Field, 24(3): 342-345 (in Chinese with English abstract). [25] Yue, P. S., 2012. Research of Petroleum Geology and Petroleum Resource Potential in Niger Delta Basin (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [26] Zhang, D. D., Liu, C. Y., Huang, Y. J., 2013. Analysis on Decollement Structure of Qikou Sag and the Petroleum Geological Significance. Chinese Journal of Geology (Scientia Geologica Sinica), 48(1): 263-274 (in Chinese with English abstract). [27] Zhang, J. L., Meng, Q. A., Zhang, C. H., et al., 2009. A Quantitative Study on the Growth of Boundary Faults of the Xujiaweizi Faulting Depression in the Songliao Basin. Earth Science Frontiers, 16(4): 87-96 (in Chinese with English abstract). [28] 艾能平, 任建业, 祁鹏, 等, 2009. 歧口凹陷伸展滑脱构造系统的厘定及其地质意义. 大地构造与成矿学, 33(3): 343-351. doi: 10.3969/j.issn.1001-1552.2009.03.003 [29] 白博, 康洪全, 程涛, 等, 2016. 巴西东北部海域盆地重力滑脱构造体系特征. 海洋地质前沿, 32(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201604005.htm [30] 侯高文, 刘和甫, 左胜杰, 2005. 尼日尔三角洲盆地油气分布特征及控制因素. 石油与天然气地质, 26(3): 374-378. doi: 10.3321/j.issn:0253-9985.2005.03.019 [31] 胡德胜, 邓勇, 张建新, 等, 2016. 乌石凹陷东区古近系断裂系统与油气成藏. 西南石油大学学报(自然科学版), 38(4): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201604004.htm [32] 胡林, 李才, 金秋月, 等, 2021. 伸展背景下塑性地层对断裂发育特征影响的实验分析. 地球科学, 46(5): 1749-1757. doi: 10.3799/dqkx.2020.137 [33] 黄保家, 黄合庭, 吴国瑄, 等, 2012. 北部湾盆地始新统湖相富有机质页岩特征及成因机制. 石油学报, 33(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201201002.htm [34] 李春荣, 张功成, 梁建设, 等, 2012. 北部湾盆地断裂构造特征及其对油气的控制作用. 石油学报, 33(2): 195-203. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202004.htm [35] 雷宝华, 2012. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 27(9): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201209005.htm [36] 刘见宝, 夏斌, 吕宝凤, 等, 2010. 反转构造与其易混淆构造的对比分析. 现代地质, 24(4): 744-748. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201004015.htm [37] 刘晓峰, 董月霞, 王华, 2010. 渤海湾盆地南堡凹陷的背形负花状构造. 地球科学, 35(6): 1029-1034. doi: 10.3799/dqkx.2010.116 [38] 马杏垣, 索书田, 1984. 论滑覆及岩石圈内多层次滑脱构造. 地质学报, 58(3): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198403003.htm [39] 满晓, 胡德胜, 范彩伟, 等, 2021. 乌石凹陷"背形负花构造"成因及油气富集规律差异性研究. 中国海上油气, 33(5): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202105004.htm [40] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水‒超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm [41] 王浩然, 付广, 宿碧霖, 等, 2018. 下生上储式油气运移优势路径确定方法及其应用. 石油与天然气地质, 39(6): 1237-1245. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201806014.htm [42] 王嘉, 栾锡武, 何兵寿, 等, 2021. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学, 46(3): 916-928. doi: 10.3799/dqkx.2020.381 [43] 徐长贵, 范彩伟, 2021. 南海西部近海大中型油气田勘探新进展与思考. 中国海上油气, 33(2): 13-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202102002.htm [44] 杨希冰, 谌志远, 满勇, 等, 2017. 乌石东区流沙港组地层断裂控砂机制. 断块油气田, 24(3): 342-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703011.htm [45] 岳鹏升, 2012. 尼日尔三角洲盆地地质特征及油气资源潜力研究(硕士学位论文). 西安: 长安大学. [46] 张东东, 刘池洋, 黄翼坚, 2013. 歧口凹陷滑脱构造剖析及对油气地质意义. 地质科学, 48(1): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201301018.htm [47] 张军龙, 蒙启安, 张长厚, 等, 2009. 松辽盆地徐家围子断陷边界断裂生长过程的定量分析. 地学前缘, 16(4): 87-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904011.htm