Mesozoic⁃Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low⁃Temperature Thermochronology (Kuqa River Section, Xinjiang)
-
摘要: 天山造山带中新生代快速剥露对于了解天山构造演化过程意义重大.然而,人们对于中新生代精确的冷却时间还一直存在争议.本文报道了塔里木盆地北缘库车河剖面中生界砂岩中碎屑磷灰石裂变径迹数据和早二叠世流纹岩热史演化模拟结果. 热年代学年龄趋势显示碎屑磷灰石裂变径迹的主要年龄组分为143.0~148.9 Ma和35.7~38.1 Ma,其中较年轻的组分已经完全重置,揭示了库车坳陷的剥露信息. 热史模拟结果显示了160~140 Ma的快速冷却事件. 结合库车河剖面前人的碎屑锆石U-Pb和重矿物数据,笔者认为欧亚南缘拉萨地体的拼贴是通过刚性的塔里木将挤压应力传递至天山,导致其在晚侏罗世‒早白垩世强烈隆升剥蚀,大量碎屑被搬运沉积在塔里木盆地北缘,造成库车坳陷中广泛发育的早白垩世亚格列木组砾岩及其与晚侏罗世地层之间的角度不整合. 在欧亚板块南缘多块体持续拼贴的远程效应下,天山经历始新世快速隆升变形,变形持续向南扩展,导致库车坳陷在晚始新世遭受变形和抬升.Abstract: The rapid Mesozoic-Cenozoic exhumation of the Tianshan mountain range is of great significance for understanding its tectonic evolution process. However, the main exhumation time of the Mesozoic-Cenozoic remains controversial. In this study, we report new detrital apatite fission track data from the Mesozoic sedimentary succession on the northern margin of the Tarim basin (Kuqa river section) and the Early Permian rhyolite inverse thermal history modelling results. Thermochronologic age trends along the analyzed succession reveal two major age populations in 143.0-148.9 Ma and 35.7-38.1 Ma, of which the younger population has been completely reset, indicative of the exhumation information of the Kuqa depression. Inverse thermal history modelling results show a rapid cooling event occurred at 160-140 Ma. We infer that the compressive stress generated from collision between Lhasa and the southern margin of Eurasia transmitted to the Tianshan mountain range through the rigid Tarim, which caused that the Tianshan mountain range underwent strong uplift and denudation in the Late Jurassic-Early Cretaceous, generating widely distributed conglomerate in the Early Cretaceous Yageliemu Formation and angular unconformity developed in the Late Jurassic- Early Cretaceous strata. During the Eocene, the Tianshan was subjected to rapid uplift and intensified deformation in response to the continuous collision of several plates on the southern margin of Eurasia. And the compressive stress propagated southward, which caused that the Kuqa depression underwent uplift in the Late Eocene.
-
Key words:
- Tianshan /
- Kuqa depression /
- apatite fission track /
- uplift and exhumation /
- basin-mountain coupling /
- geochronology
-
图 1 天山区域地质简图及库车坳陷位置
图修改自Xiang et al.(2018). NTF. 北天山断裂;NF. 那拉提断裂;STF. 南天山断裂;QF. 秦布拉克断裂;TMF. 天山主断裂. 天山基岩裂变径迹年龄参考自Dumitru et al.(2001)、He et al.(2021)、Lü et al.(2013)、Jolivet et al.(2010)、Wang et al.(2009)、Wang et al.(2018)、Zhang et al.(2016)
Fig. 1. Sketch geological map of the Tianshan area showing the position of the Kuqa depression
表 1 塔里木盆地北缘库车河剖面磷灰石裂变径迹数据
Table 1. Detrital apatite fission track data of Kuqa river section from the northern margin of Tarim basin
样品号 沉积年龄(Ma) 样品位置 岩性 颗粒数量 ρs(105 cm‒2) 238U含量(10‒6) 年龄范围(Ma) P(x2)(%) 峰值年龄1 (Ma) 峰值年龄2 (Ma) 峰值年龄3 (Ma) 18K15 N42°17′17.16″
E83°16′11.28″流纹岩 31 9.21 14.68 93.4~162.6 0.21 126.6±
3.6 (100%)18K16 245 N42°15′48.24″
E83°15′31.32″砂岩 94 7.312 15.37 43.6~417.9 0 76.2±
1.8 (45%)180.2±
5.3 (55%)18K18 218 N42°11′55.68″
E83°11′17.16″砂岩 65 7.417 19.51 10.8~393.7 0 60.5±
3.1 (43%)180.4±
6.6 (57%)20K5B 188 N42°09′30.56″
E83°06′38.75″砂岩 99 12.55 37.40 19.9~635.1 0 58.5±
1.3 (68%)140.3±
5.6 (32%)20K7B 150 N42°08′03.88″
E83°06′11.49″砂岩 26 13.34 13.91 74.5~384.5 0 143±
12 (44%)250±
18 (56%)18K21 141 N42°06′37.80″
E83°08′37.32″砂岩 34 6.603 26.98 17.8~257.3 0 35.7±
3.8 (71%)145±
18 (29%)18K22 136 N42°06′35.28″
E83°08′34.80″砂岩 102 15.09 57.06 9.9~505.1 0 38.1±
1.1 (64%)147.6±
5.6 (36%)18K25 125 N42°06′11.52″
E83°08′25.44″砂岩 47 12.72 45.04 6.3~261.8 0 36.4±
2.8 (56%)148.9±
7.9 (44%)18K26 68 N42°06′03.96″
E83°08′11.40″砂岩 41 16.53 45.76 13.3~226.0 0 36.5±
4.8 (36%)82±
20 (23%)143±
11 (41%)注:ρs是自发裂变径密度. 表 2 塔里木盆地北缘库车河剖面流纹岩(U⁃Th)/He数据
Table 2. Apatite (U⁃Th)/He data of Kuqa river section from the northern margin of Tarim basin
样品号 U(10‒6) Th(10‒6) 4He (10‒14nmol/g) Th/U eU(10‒6) 等效半径(μm) Ft 校正年龄(Ma) ±σ(Ma) 18K15-A1 29.7 68.2 4.087 0 2.4 45.7 54.6 0.736 63.56 3.38 18K15-A2 22.9 40.2 3.229 3 1.8 32.4 51.4 0.727 87.95 4.70 18K15-A3 77.7 190.6 1.298 3 2.5 122.5 54.4 0.739 6.37 0.34 注:eU是等效U浓度,Ft是α粒子校正系数. -
[1] Allen, M. B., Windley, B. F., Zhang, C., et al., 1993. Evolution of the Turfan Basin, Chinese Central Asia. Tectonics, 12(4): 889-896. https://doi.org/10.1029/93TC00598 [2] Chang, J., Li, D., Min, K., et al., 2019. Cenozoic Deformation of the Kalpin Fold⁃and⁃Thrust Belt, Southern Chinese Tian Shan: New Insights from Low⁃T Thermochronology and Sandbox Modeling. Tectonophysics, 766: 416-432. https://doi.org/10.1016/j.tecto.2019.06.018 [3] Chen, Y. Y., Li, Y. Q., Wei, D. T., et al., 2022. Quantitative Relationship between Tectonic Deformation and Topography in Bogda Piedmont of Eastern Tianshan Mountains: Based on 3D Structural Modeling and Geomorphic Analysis. Earth Science, 47(2): 418-436 (in Chinese with English abstract). [4] De Pelsmaeker, E., Jolivet, M., Laborde, A., et al., 2018. Source⁃to⁃Sink Dynamics in the Kyrgyz Tien Shan from the Jurassic to the Paleogene: Insights from Sedimentological and Detrital Zircon U⁃Pb Analyses. Gondwana Research, 54: 180-204. https://doi.org/10.1016/j.gr.2017.09.004 [5] Du, Z. L., Wang, Q. C., Zhou, X. H., 2007. Mesozoic and Cenozoic Uplifting History of the Kuqa⁃South Tianshan Basin⁃Mountain System from the Evidence of Apatite Fission Track Analysis. Acta Petrologica et Mineralogica, 26(5): 399-408 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2007.05.002 [6] Dumitru, T. A., Zhou, D., Chang, E. Z., et al., 2001. Uplift, Exhumation, and Deformation in the Chinese Tian Shan. In: Hendrix, M. S., Davis, G. A., eds., Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America, Boulder. [7] Gillespie, J., Glorie, S., Jepson, G., et al., 2017. Differential Exhumation and Crustal Tilting in the Easternmost Tianshan (Xinjiang, China), Revealed by Low⁃Temperature Thermochronology. Tectonics, 36(10): 2142-2158. https://doi.org/10.1002/2017TC004574 [8] Gleadow, A. J. W., Gleadow, S. J., Belton, D. X., et al., 2009. Coincidence Mapping: A Key Strategy for the Automatic Counting of Fission Tracks in Natural Minerals. Geological Society, London, Special Publications, 324(1): 25-36. https://doi.org/10.1144/sp324.2 [9] Glorie, S., De Grave, J., 2016. Exhuming the Meso⁃Cenozoic Kyrgyz Tianshan and Siberian Altai⁃Sayan: A Review Based on Low⁃Temperature Thermochronology. Geoscience Frontiers, 7(2): 155-170. https://doi.org/10.1016/j.gsf.2015.04.003 [10] He, Z. Y., Wang, B., Nachtergaele, S., et al., 2021. Long⁃Term Topographic Evolution of the Central Tianshan (NW China) Constrained by Low⁃Temperature Thermochronology. Tectonophysics, 817: 229066. https://doi.org/10.1016/j.tecto.2021.229066 [11] Jia, Y. Y., Sun, J. M., Lü, L. X., et al., 2020. Late Oligocene⁃Miocene Intra⁃Continental Mountain Building of the Harke Mountains, Southern Chinese Tian Shan: Evidence from Detrital AFT and AHe Analysis. Journal of Asian Earth Sciences, 191: 104198. https://doi.org/10.1016/j.jseaes.2019.104198 [12] Jolivet, M., Barrier, L., Dauteuil, O., et al., 2018. Late Cretaceous⁃Palaeogene Topography of the Chinese Tian Shan: New Insights from Geomorphology and Sedimentology. Earth and Planetary Science Letters, 499: 95-106. https://doi.org/10.1016/j.epsl.2018.07.004 [13] Jolivet, M., Dominguez, S., Charreau, J., et al., 2010. Mesozoic and Cenozoic Tectonic History of the Central Chinese Tian Shan: Reactivated Tectonic Structures and Active Deformation. Tectonics, 29(6): TC6019. https://doi.org/10.1029/2010TC002712 [14] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa⁃Qiangtang and Indo⁃Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8): 917-933. https://doi.org/10.1130/b26033.1 [15] Ketcham, R. A., Donelick, R. A., Balestrieri, M. L., et al., 2009. Reproducibility of Apatite Fission⁃Track Length Data and Thermal History Reconstruction. Earth and Planetary Science Letters, 284(3-4): 504-515. https://doi.org/10.1016/j.epsl.2009.05.015 [16] Li, J. L., Xiao, W. J., Yan, Z., 2003. Basin⁃Range Coupling and Its Sedimentation. Acta Sedimentologica Sinica, 21(1): 52-60 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2003.01.009 [17] Li, S. J., Wang, Q. C., Li, Z., et al., 2006. Detrital Modes of Sandstones and Their Implications for Basin⁃ Mountain Evolution between the Kuqa Depression and South Tianshan Mountains. Chinese Journal of Geology, 41(3): 465-478 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2006.03.008 [18] Li, Z., Peng, S. T., 2013. U⁃Pb Geochronological Records and Provenance System Analysis of the Mesozoic⁃Cenozoic Sandstone Detrital Zircons in the Northern and Southern Piedmonts of Tianshan, Northwest China: Responses to Intracontinental Basin⁃Range Evolution. Acta Petrologica Sinica, 29(3): 739-755 (in Chinese with English abstract). [19] Li, Z., Song, W. J., Peng, S. T., et al., 2004. Mesozoic⁃Cenozoic Tectonic Relationships between the Kuqa Subbasin and Tian Shan, Northwest China: Constraints from Depositional Records. Sedimentary Geology, 172(3-4): 223-249. https://doi.org/10.1016/j.sedgeo.2004.09.002 [20] Lu, H. F., Wang, S. L., Jia, D., et al., 2005. The Late Cenozoic Basin/Mountain Coupling Mechanics of the Tarim Basin and the Tianshan Mountains. Geological Journal of China Universities, 11(4): 493-503 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2005.04.004 [21] Lü, H. H., Chang, Y., Wang, W., et al., 2013. Rapid Exhumation of the Tianshan Mountains since the Early Miocene: Evidence from Combined Apatite Fission Track and (U⁃Th)/He Thermochronology. Science China Earth Sciences, 56(12): 2116-2125. https://doi.org/10.1007/s11430⁃013⁃4715⁃1 [22] Luo, M., Zhu, W. B., Zhang, B. H., et al., 2012. Mesozoic⁃Cenozoic Tectonic Evolution of the Kuqa Basin: Evidence from Apatite Fission⁃Track Data. Earth Science, 37(5): 893-902 (in Chinese with English abstract). [23] Morin, J., Jolivet, M., Robin, C., et al., 2018. Jurassic Paleogeography of the Tian Shan: An Evolution Driven by Far⁃Field Tectonics and Climate. Earth⁃Science Reviews, 187: 286-313. https://doi.org/10.1016/j.earscirev.2018.10.007 [24] Niu, Z. J., Wang, M., Sun, H. R., et al., 2005. Contemporary Velocity Field of Crustal Movement of Chinese Mainland from Global Positioning System Measurements. Chinese Science Bulletin, 50(8): 839-840 (in Chinese). doi: 10.1360/csb2005-50-8-839 [25] Peng, S. T., Li, Z., Huang, B. C., et al., 2005. Magnetostratigraphic Study of Cretaceous Depositional Succession in the Northern Kuqa Depression, Northwest China. Chinese Science Bulletin, 50(19): 2136-2144 (in Chinese). doi: 10.1360/csb2005-50-19-2136 [26] Sobel, E. R., Chen, J., Heermance, R. V., 2006. Late Oligocene⁃Early Miocene Initiation of Shortening in the Southwestern Chinese Tian Shan: Implications for Neogene Shortening Rate Variations. Earth and Planetary Science Letters, 247(1-2): 70-81. https://doi.org/10.1016/j.epsl.2006.03.048 [27] Sun, J. M., Li, Y., Zhang, Z. Q., et al., 2009. Magnetostratigraphic Data on Neogene Growth Folding in the Foreland Basin of the Southern Tianshan Mountains. Geology, 37(11): 1051-1054. https://doi.org/10.1130/g30278a.1 [28] Wang, F. J., Luo, M., He, Z. Y., et al., 2022. Late Mesozoic Intracontinental Deformation and Magmatism in the Chinese Tianshan and Adjacent Areas, Central Asia. Geological Society of America Bulletin, Online. https://doi.org/10.1130/B36318.1 [29] Wang, M., Zhang, J. J., Qi, G. W., et al., 2014. Geochemistry and Geochronology of Early Permian Acid Volcanic Rocks along Kuqa River and Its Tectonic Implication in the Southern Margin of South Tianshan Orogen, Xinjiang. Chinese Journal of Geology, 49(1): 242-258 (in Chinese with English abstract). [30] Wang, Q. C., Li, S. J., Du, Z. L., 2009. Differential Uplift of the Chinese Tianshan since the Cretaceous: Constraints from Sedimentary Petrography and Apatite Fission⁃Track Dating. International Journal of Earth Sciences, 98(6): 1341-1363. https://doi.org/10.1007/s00531⁃009⁃0436⁃2 [31] Wang, X., Jia, C. Z., Yang, S. F., et al., 2002. The Time of Deformation on the Kuqa Fold⁃and⁃Thrust Belt in the Southern Tianshan⁃Based on the Kuqa River Area. Acta Geologica Sinica, 76(1): 55-63 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.01.008 [32] Wang, Y. N., Cai, K. D., Sun, M., et al., 2018. Tracking the Multi⁃Stage Exhumation History of the Western Chinese Tianshan by Apatite Fission Track (AFT) Dating: Implication for the Preservation of Epithermal Deposits in the Ancient Orogenic Belt. Ore Geology Reviews, 100: 111-132. https://doi.org/10.1016/j.oregeorev.2017.04.011 [33] Wu, H., Li, C., Hu, P. Y., et al., 2015. Early Cretaceous (100-105 Ma) Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for the Bangong⁃Nujiang Ocean Subduction and Slab Break⁃off. International Geology Review, 57(9-10): 1172-1188. https://doi.org/10.1080/00206814.2014.886152 [34] Xiang, D. F., Zhang, Z. Y., Xiao, W. J., et al., 2018. Episodic Meso⁃Cenozoic Denudation of Chinese Tianshan: Evidence from Detrital Apatite Fission Track and Zircon U⁃Pb Data, Southern Junggar Basin Margin, NW China. Journal of Asian Earth Sciences, 175: 199-212. https://doi.org/10.1016/j.jseaes.2018.07.042 [35] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio⁃Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). [36] Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [37] Yu, S., Chen, W., Evans, N. J., et al., 2014. Cenozoic Uplift, Exhumation and Deformation in the North Kuqa Depression, China as Constrained by (U⁃Th)/He Thermochronometry. Tectonophysics, 630: 166-182. https://doi.org/10.1016/j.tecto.2014.05.021 [38] Zhang, P. Z., Deng, Q. D., Yang. X. P., et al., 1996. Late Cenozoic Tectonic Deformation and Mechanism along the Tianshan Mountain, Northwestern China. Earthquake Research in China, 12(2): 127-140 (in Chinese with English abstract). [39] Zhang, T., Fang, X. M., Song, C. H., et al., 2014. Cenozoic Tectonic Deformation and Uplift of the South Tian Shan: Implications from Magnetostratigraphy and Balanced Cross⁃Section Restoration of the Kuqa Depression. Tectonophysics, 628: 172-187. https://doi.org/10.1016/j.tecto.2014.04.044 [40] Zhang, X., Wang X. S., Jiang, T., et al., 2022. Petrogenesis and Tectonic Setting of the Late Carboniferous Igneous Rocks in the Baluntai Region of the Chinese Western Tianshan. Earth Science, 47(3): 1038-1058 (in Chinese with English abstract). [41] Zhang, Z. L., Sun, J. M., Lü, L. X., et al., 2018. Neogene Paleomagnetic Study of the Western Baicheng Depression: Implications for the Intensified Deformation of Tian Shan since the Latest Miocene. Journal of Geophysical Research: Solid Earth, 123(12): 10349-10369. https://doi.org/10.1029/2018JB016953 [42] Zhang, Z. Y., Zhu, W. B., Zheng, D. W., et al., 2016. Apatite Fission Track Thermochronology in the Kuluketage and Aksu Areas, NW China: Implication for Tectonic Evolution of the Northern Tarim. Geoscience Frontiers, 7(2): 171-180. https://doi.org/10.1016/j.gsf.2015.08.007 [43] 陈莹莹, 李一泉, 魏东涛, 等, 2022. 东天山博格达山前构造变形与地形定量关系: 基于三维建模与地貌分析. 地球科学, 47(2): 418-436. doi: 10.3799/dqkx.2021.097 [44] 杜治利, 王清晨, 周学慧, 2007. 中新生代库车‒南天山盆山系统隆升历史的裂变径迹证据. 岩石矿物学杂志, 26(5): 399-408. doi: 10.3969/j.issn.1000-6524.2007.05.002 [45] 李继亮, 肖文交, 闫臻, 2003. 盆山耦合与沉积作用. 沉积学报, 21(1): 52-60. doi: 10.3969/j.issn.1000-0550.2003.01.009 [46] 李双建, 王清晨, 李忠, 等, 2006. 砂岩碎屑组份变化对库车坳陷和南天山盆山演化的指示. 地质科学, 41(3): 465-478. doi: 10.3321/j.issn:0563-5020.2006.03.008 [47] 李忠, 彭守涛, 2013. 天山南北麓中‒新生界碎屑锆石U⁃Pb年代学记录、物源体系分析与陆内盆山演化. 岩石学报, 29(3): 739-755. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303002.htm [48] 卢华复, 王胜利, 贾东, 等, 2005. 塔里木盆地与天山山脉晚新生代盆山耦合机制. 高校地质学报, 11(4): 493-503. doi: 10.3969/j.issn.1006-7493.2005.04.004 [49] 罗梦, 朱文斌, 郑碧海, 等, 2012. 库车盆地中新生代构造演化: 磷灰石裂变径迹证据. 地球科学, 37(5): 893-902. doi: 10.3799/dqkx.2012.098 [50] 牛之俊, 王敏, 孙汉荣, 等, 2005. 中国大陆现今地壳运动速度场的最新观测结果. 科学通报, 50(8): 839-840. doi: 10.3321/j.issn:0023-074X.2005.08.020 [51] 彭守涛, 李忠, 黄宝春, 等, 2005. 库车坳陷北部白垩系磁性地层划分. 科学通报, 50(19): 2136-2144. doi: 10.3321/j.issn:0023-074X.2005.19.013 [52] 王盟, 张进江, 戚国伟, 等, 2014. 新疆南天山南缘库车河流域早二叠世酸性火山岩的地球化学、锆石年代学及构造意义. 地质科学, 49(1): 242-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401018.htm [53] 汪新, 贾承造, 杨树锋, 等, 2002. 南天山库车冲断褶皱带构造变形时间: 以库车河地区为例. 地质学报, 76(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201010.htm [54] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979 [55] 张培震, 邓起东, 杨晓平, 等, 1996. 天山的晚新生代构造变形及其地球动力学问题. 中国地震, 12(2): 127-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199602002.htm [56] 张喜, 王信水, 江拓, 等, 2022. 西天山巴仑台地区晚石炭世岩浆岩的岩石成因及其构造背景. 地球科学, 47(3): 1038-1058. doi: 10.3799/dqkx.2021.187