• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国近海古近纪碎屑岩储层特征与溶蚀作用规律

    吴克强 谢晓军 廖计华 韩雅坤

    吴克强, 谢晓军, 廖计华, 韩雅坤, 2023. 中国近海古近纪碎屑岩储层特征与溶蚀作用规律. 地球科学, 48(2): 385-397. doi: 10.3799/dqkx.2022.151
    引用本文: 吴克强, 谢晓军, 廖计华, 韩雅坤, 2023. 中国近海古近纪碎屑岩储层特征与溶蚀作用规律. 地球科学, 48(2): 385-397. doi: 10.3799/dqkx.2022.151
    Wu Keqiang, Xie Xiaojun, Liao Jihua, Han Yakun, 2023. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China. Earth Science, 48(2): 385-397. doi: 10.3799/dqkx.2022.151
    Citation: Wu Keqiang, Xie Xiaojun, Liao Jihua, Han Yakun, 2023. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China. Earth Science, 48(2): 385-397. doi: 10.3799/dqkx.2022.151

    中国近海古近纪碎屑岩储层特征与溶蚀作用规律

    doi: 10.3799/dqkx.2022.151
    基金项目: 

    国家“十三五”科技重大专项 2016ZX05026

    中海石油(中国)有限公司重大科研生产项目“中国近海富烃凹陷深层(含潜山)大中型油气田勘探方向” 2019KT⁃SC⁃22

    详细信息
      作者简介:

      吴克强(1970-),男,教授级高级工程师,主要从事中国近海油气勘探综合研究. E-mail:wukq@cnooc.com.cn

    • 中图分类号: TE122.3

    The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China

    • 摘要: 随着中国近海浅层(新近系为主)勘探程度日益增加,中深层(古近系为主)特别是始新统和渐新统是未来油气勘探的重要领域之一. 然而,针对中国近海中深层碎屑岩储层特征及溶蚀作用规律尚缺乏系统研究. 基于大量新钻井、物性数据及多种分析测试等,以辽中凹陷、西湖凹陷和白云凹陷为靶区,系统阐明了中国近海古近纪碎屑岩储层岩石学特征、物性及孔隙类型,分析并总结了其溶蚀作用规律. 研究表明:中国近海古近纪砂岩储层岩石类型以长石岩屑砂岩或岩屑长石砂岩为主,同一凹陷不同构造的岩性差异明显,不同层位石英、岩屑含量略有变化;储层物性主体为中低孔-低渗,中-高孔渗储层主要发育在辽中凹陷沙一-二段和白云凹陷珠海组上段;孔隙类型均以次生孔隙为主,原生孔隙仅在西湖凹陷平湖斜坡北侧、辽中凹陷沙四段和白云凹陷珠海组上段较为发育. 溶蚀作用整体以酸性流体对长石、连生方解石和部分岩屑的溶蚀为主. 辽中凹陷不同构造溶蚀作用差异明显,受浅埋深火山岩母岩与中深层刚性母岩控制的砂岩储层溶蚀作用显著,而西湖凹陷西斜坡平湖组一段-平湖组三段则为早期连生方解石溶蚀,白云凹陷溶蚀作用主要为长石的高岭石化和高岭石的伊利石化. 研究旨在为中国近海古近纪碎屑岩储层勘探开发提供借鉴.

       

    • 图  1  中国近海盆地分布、研究区位置及其构造区划

      Fig.  1.  Distribution of China Offshore Basins, location and structural district of Liaozhong Sag, Xihu Sag and Baiyun Sag

      图  2  辽中凹陷沙河街组砂岩储层岩石类型三角图

      Ⅰ.石英砂岩;Ⅱ.长石质石英砂岩;Ⅲ.岩屑质石英砂岩;Ⅳ.长石砂岩;Ⅴ.岩屑(质)长石砂岩;Ⅵ.长石(质)岩屑砂岩;Ⅶ.岩屑砂岩;井点位置见图 1]]> 辽中凹陷钻遇沙四段的井较少,主要在凹陷西南侧(A1)以及东侧(A5). A1井在3 600 m以下沙四段发现了较好的油气显示且测试成功,薄片鉴定发现该构造沙四段储层以长石岩屑砂岩为主,岩屑长石砂岩次之(图 2a). 孔隙度位于10%~30%区间,渗透率0.1~90 mD,属于中高孔、特低渗-中渗储层. 原生粒间孔较为发育,占总面孔率的68.4%,次生孔隙为粒间溶孔、粒内溶孔,偶见铸模孔. 辽中凹陷钻遇沙三段的井相对较多,不同部位岩性及储层发育呈现出强非均质性(图 2b). 北侧A3井主要以岩屑长石砂岩为主,岩屑类型主要为花岗岩、石英岩等刚性颗粒,实测孔隙度为15.2%~19.9%,渗透率从低于1 mD到14 mD,为中低孔低渗储层,储集空间多为粒间孔以及粒间溶蚀扩大孔. 东北侧A4井主要为长石岩屑砂岩,东侧A2/5井则以岩屑长石砂岩为主,长石岩屑砂岩次之,碎屑组分主要为石英、长石及变质砂岩岩屑,孔隙度在8.5%~18.6%,均值14.9%,渗透率0.4~74.2 mD,均值为44.3 mD,为中低孔、中低渗储层,储集空间多为粒内与粒间微裂缝及相关溶蚀扩大空间. 西侧A11/6井位于辽西凸起及周缘,埋藏深度浅,多低于1 800 m,孔隙度1%~35%,渗透率0.03~2 256 mD,发育中高孔中高渗储层. 储集空间多为粒间孔与粒内溶孔. 辽中凹陷沙河街组沙一二段钻井丰富,分布广泛,岩石类型差异显著(图 2c). 北侧A3/7井与沙三段岩石类型类似,但其粒度较粗,孔隙度13%~20%,渗透率1~68 mD,物性优于沙三段储层;东北侧砂岩成熟度相对较高,A8井近凹陷内部,埋深超过3 500 m,储层主要以岩屑长石砂岩为主,平均孔隙度10%左右,渗透率变化大,从小于1 mD到26.6 mD,均值3.6 mD,为低孔低渗储层;东侧A2/5井垂向岩性变化大,以长石砂岩和岩屑砂岩为主,局部发育少量火山岩岩屑砂岩. 西北侧A10井位于辽西凸起北侧,近中生界火山岩物源,以岩屑砂岩为主;西侧A11/6井构造以岩屑长石砂岩与长石岩屑砂岩为主,储层位于辽西凸起周缘,埋深浅,储层物性好,多为中高孔中高渗储层. 结合沉积体系分析,辽中凹陷沙河街组储层非均质性强,储集空间多样,凹陷东侧以胶辽隆起为物源,辫状河三角洲前缘水下分流河道砂体成熟度较高,粒间孔与砾内溶孔发育,储层物性相对较好. 凹陷西侧以盆内辽西凸起为物源,扇三角洲沉积体,埋深相对较浅,残留粒间孔与溶蚀孔发育,整体物性较好. 西湖凹陷 西湖凹陷平湖组整体为障壁海岸体系,发育受潮汐影响的三角洲-滨浅海沉积环境,有利相带为水下分流河道和潮道微相. 受潮汐影响的三角洲主要发育在西部斜坡带,斜坡北部以三角洲为主、斜坡中部以三角洲-潮坪为主、斜坡南部以潮坪为主. 依据沉积环境和层序,可进一步划分为平五、四、三、二、一段. 垂向上,自下而上,岩石类型相似、粒度逐渐变细,平均孔隙度12%~17%左右,平均渗透率30~85 mD之间. 其中,平五-四段主要岩石类型为中粗粒长石岩屑砂岩和岩屑长石砂岩,平五段孔隙度2.6%~25.59%,平均为15.08%,渗透率10.02~419.15 mD,均值29.97 mD;平四段孔隙度8.1%~23.25%,平均为17.1%,渗透率0.07~343.30 mD,均值45.18 mD;平三-一段主要岩石类型为细、极细粒长石岩屑砂岩和岩屑长石砂岩,平三段孔隙度1.3%~22.72%,平均为14.35%,渗透率在0.01~975.92 mD之间,均值84 mD;平一、二段孔隙度1%~24.01%,平均为12.12%,渗透率在0.000 1~842.120 mD之间,均值53.1 mD. 平面上,由北往南,岩石类型由石英砂岩为主逐渐过渡到南部的岩屑长石砂岩为主(图 3),孔隙类型由原生孔隙为主过渡到以次生孔隙为主. 斜坡北部以石英砂岩的原生孔隙为主,在平湖组各段占比72%~90%;中部和南部以长石岩屑砂岩/岩屑长石砂岩的次生孔隙为主,溶蚀孔占比70%~95%. 孔隙发育类型差异与岩石类型密切相关:北部以石英比较发育为特征,长石含量相对较低,后期溶蚀溶解相对较弱;中南部以长石岩屑砂岩和岩屑长石砂岩为主,为溶蚀溶解的发生提供物质基础. 西湖凹陷平湖组由于南北地层温度差异,从孔雀亭东到平南区,次生溶蚀带深度呈现北低南高的特征(图 4);而主要胶结物连生方解石是淡水海水混合效应,故与古环境相关度高,而与具体层段和区域位置关系不大. 西湖凹陷西斜坡平湖组砂岩储层岩石类型三角图 Triangle diagram of sandstone types in Pinghu Formation of western slope belt, Xihu Sag Ⅰ.石英砂岩;Ⅱ.长石质石英砂岩;Ⅲ.岩屑质石英砂岩;Ⅳ.长石砂岩;Ⅴ.岩屑(质)长石砂岩;Ⅵ.长石(质)岩屑砂岩;Ⅶ.岩屑砂岩

      Fig.  2.  Triangle diagram of sandstone types in Shahejie Formation of Liaozhong Sag

      图  4  西湖凹陷西斜坡不同构造区平湖组次生溶蚀带发育特征

      Fig.  4.  Characteristics of secondary dissolution zone of Pinghu Formation in different areas of western slope belt, Xihu Sag

      图  5  白云凹陷恩平组和珠海组砂岩储层岩石类型三角图

      Fig.  5.  Triangle diagram of sandstone types in Enping formation and Zhuhai Formation in Baiyun Sag

      图  6  辽中凹陷溶蚀作用典型微观特征(井点位置见图 1

      a. 长石颗粒溶解形成铸模孔(MP),A1井,3 674.51 m,沙四段,铸体薄片,蓝色铸体,Q为石英,R为岩屑颗粒;b. 粒间碳酸盐胶结物溶蚀(红色箭头),产生溶蚀粒间孔,A1井,3 680.68 m,沙四段,铸体薄片,蓝色铸体;c. 长石沿节理溶蚀(红色箭头),A1井,3 628.9 m,沙四段,扫描电镜照片;d. 长石岩屑颗粒溶蚀强烈,溶蚀产物高岭石(K)充填粒间,P为孔隙,A3井,3 141.7 m,沙三段;e. 火山岩砾内及砾间火山基质溶蚀,A5井,1 488 m,沙一二段,铸体薄片,蓝色铸体;f. 裂缝溶蚀扩大,呈港湾状、凹凸状,A12井,2 524 m,沙一二段,铸体薄片,蓝色铸体;g. 花岗岩砾石(R)砾内不稳定矿物溶蚀,A10井,2 340.40 m,沙一二段,铸体薄片,蓝色铸体;h. 坡积物,颗粒呈棱角状,不稳定矿物强烈溶蚀,A6井,1 829 m,沙一二段,铸体薄片,蓝色铸体,M为黑云母;i. 坡积物不稳定矿物强烈溶蚀,A6井,1 829 m,沙一二段,背散射照片

      Fig.  6.  Typical microscopic characteristics of dissolution in Liaozhong Sag(See Fig. 1 for the location of wells)

      图  7  西湖凹陷溶蚀作用典型微观特征(井点位置见图 1

      a.连晶方解石溶蚀孔隙,B1井,4 183.5 m,平三段,铸体薄片,蓝色铸体;b. 粒间长石溶蚀孔隙,B1井,4 183.7 m,平三段,铸体薄片,蓝色铸体;c. 连晶方解石溶蚀残余,B1井,4 183.5 m,平三段,阴极发光,亮红色;d. 连晶方解石溶蚀残余,阴极发光,亮红色,白云石胶结,阴极发光,暗红色,B1井,4 183.7 m;e. 连晶方解石溶蚀孔隙,B1井,4 183.5 m,平三段,扫描电镜;f. 长石溶蚀残余孔隙,B2井,3 445.97 m,平三段,扫描电镜;g.长石溶蚀残余孔隙,B3井,4 203 m,平五段,蓝色铸体;h. 长石溶蚀残余孔隙,B3井,4 046 m,平四段,蓝色铸体;i. 长石溶蚀残余孔隙,B3井,4 041.5 m,平四段,蓝色铸体;Q.石英;C.方解石:F.长石;D.白云石

      Fig.  7.  Typical microscopic characteristics of dissolution in Xihu Sag(See Fig. 1 for the location of wells)

      图  8  白云凹陷不同地温梯度区高岭石、伊利石含量随埋深和温度变化规律

      Fig.  8.  Variation of kaolinite content and illite content with buried depth and temperature in different geothermal gradient areas of Baiyun Sag

      Gra < 4.5 ℃/100 m; b. Gra > 4.5 ℃/100 m

      表  1  中国近海辽中凹陷、西湖凹陷与白云凹陷区域地质特点与古近系砂岩储层溶蚀作用对比

      Table  1.   Comparison of regional geological characteristics and Paleogene sandstone reservoir dissolution of Liaozhong sag, Xihu Sag and Baiyun Sag in Offshore China

      凹陷名称 区域特点 母岩组成 溶蚀孔隙带 平面分布 主控因素
      辽中凹陷 南北狭长物源复杂 前寒武变质岩,古生界碳酸盐岩与中生界火山岩 沙一二段最为显著 辽西凸起周缘,薄层溶蚀带,横向连续性强 物源类型与埋深,火山岩物源浅埋下岩屑溶蚀;前寒武变质岩物源深埋下,长石溶蚀
      西湖凹陷 海陆过渡潮汐影响 以远古代变质岩、中生代侵入岩为主,局部发育晚白垩纪沉积岩 平一-平三段最发育 斜坡带的中上部 水动力条件强的粗相带更容易溶蚀,(水下)分流河道和潮道是主要溶蚀发育区
      白云凹陷 高变地温差异 前寒武纪与古生代变质岩,中生代侵入岩 珠海组下段、恩平组上段中粗粒相带最为发育 白云北坡、西南断阶带、及流花29凸起带周缘 以长石、岩屑溶蚀为主,长石高岭石化与高岭石的伊利石化石是溶蚀作用的主要类型,溶蚀带发育可能受有机酸、超压及断层演化与分布控制
      下载: 导出CSV
    • [1] Barth, T., Andresen, B., Iden, K., et al., 1996. Modelling Source Rock Production Potentials for Short-Chain Organic Acids and CO2: A Multivariate Approach. Organic Geochemistry, 25(8): 427-438. https://doi.org/10.1016/s0146-6380(96)00147-7
      [2] Barth, T., Borgund, A. E., Hopland, A. L., et al., 1988. Volatile Organic Acids Produced during Kerogen Maturation: Amounts, Composition and Role in Migration of Oil. Organic Geochemistry, 13(1/2/3): 461-465. https://doi.org/10.1016/0146-6380(88)90067-8
      [3] Blake, R. E., Walter, L. M., 1999. Kinetics of Feldspar and Quartz Dissolution at 70~80 ℃ and Near-Neutral pH: Effects of Organic Acids and NaCl. Geochimica et Cosmochimica Acta, 63(13/14): 2043-2059. https://doi.org/10.1016/s0016-7037(99)00072-1
      [4] Chen, G. J., Lü, C. F., Wang, Q., et al., 2010. Characteristics of Pore Evolution and Its Controlling Factors of Baiyun Sag in Deepwater Area of Pearl River Mouth Basin. Acta Petrolei Sinica, 31(4): 566-572(in Chinese with English abstract).
      [5] Geng, W., Zheng, R. C., Wei, Q. L., et al., 2008. Reservoir Sedimentology of Paleogene Zhuhai Formation in Baiyun Depression. Lithologic Reservoirs, 20(4): 98-104(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2008.04.018
      [6] Guo, C. Q., Shen, Z. M., Zhang, L. Y., et al., 2003. The Corrosion and Its Mechanism of Organic Acids on Main Minerals in Oil-Gas Reservoir Sand Rocks. Geology-Geochemistry, 31(3): 53-57(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200303010.htm
      [7] Hou, Y. L., Shao, L., Qiao, P. J., et al., 2020. Provenance of the Eocene-Miocene Sediments in the Baiyun Sag, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28(in Chinese with English abstract).
      [8] Jiang, S., Cai, D. S., Zhu, X. M., et al., 2007. Diagenesis of Liaozhong Sag in Liaohe Depression and Pore Evolutionin Its Middle-Deep Strata. Oil & Gas Geology, 28(3): 362-369(in Chinese with English abstract).
      [9] Jin, F. M., Zhang, K. X., Wang, Q., et al., 2018. Formation Mechanisms of Good-Quality Clastic Reservoirs in Deep Formations in Rifted Basins: a Case Study of Raoyang Sag in Bohai Bay Basin, East China. Petroleum Exploration and Development, 45(2): 264-272(in Chinese with English abstract). doi: 10.1016/S1876-3804(18)30029-6
      [10] Kawamura, K., Tannenbaum, E., Huizinga, B., et al., 1986. Volatile Organic Acids Generated from Kerogen during Laboratory Heating. Geochemical Journal, 20: 51-59. https://doi.org/10.2343/geochemj.20.51
      [11] Lai, J., Wang, G. W., Ran, Y., et al., 2015. Predictive Distribution of High-Quality Reservoirs of Tight Gas Sandstones by Linking Diagenesis to Depositional Facies: Evidence from Xu-2 Sandstones in the Penglai Area of the Central Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 97-111. https://doi.org/10.1016/j.jngse.2015.01.026
      [12] Liu, Y. J., Xu, C. G., Wu, K., et al., 2015. Different Characteristics of Strike-Slip Faults and the Formation of Large and Medium-Scaled Oil and Gas Fields in the Liaodong Bay Depression. Petroleum Geology & Experiment, 37(5): 555-560(in Chinese with English abstract).
      [13] Lü, C. F., Chen, G. J., Zhang, G. C., et al., 2011. Reservoir Characteristics of Detrital Sandstones in Zhuhai Formation of Baiyun Sag, Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 42(9): 2763-2773(in Chinese with English abstract).
      [14] Ma, M., Chen, G. J., Li, C., et al., 2017. Quantitative Analysis of Porosity Evolution and Formation Mechanism of Good Reservoir in Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Natural Gas Geoscience, 28(10): 1515-1526(in Chinese with English abstract).
      [15] MacGowan, D. B., Fisher, K. J., Surdam, R. C., 1986. Alumino-Silicate Dissolution in the Subsurface: Experimental Simulation of a Specific Geologic Environment: Abstract. AAPG Bulletin, 70: 1048. https://doi.org/10.1306/9488682b-1704-11d7-8645000102c1865d
      [16] McDonald Volkmar Schmidt David A. 1977. Role of Secondary Porosity in Sandstone Diagenesis: Abstract. AAPG Bulletin, 61: 1390-1391. https://doi.org/10.1306/c1ea4572⁃16c9⁃11d7⁃8645000102c1865d
      [17] Meshri, I. D., 1986. On the Reactivity of Carbonic and Organic Acids and Generation of Secondary Porosity. Roles of Organic Matter in Sediment Diagenesis. SEPM (Society for Sedimentary Geology), London, 123-128. https://doi.org/10.2110/pec.86.38.0123
      [18] Pang, J., Luo, J. L., Ma, Y. K., et al., 2019. Forming Mechanism of Ankerite in Tertiary Reservoir of the Baiyun Sag, Pearl River Mouth Basin, and Its Relationship to CO2-Bearing Fluid Activity. Acta Geologica Sinica, 93(3): 724-737 (in Chinese with English abstract).
      [19] Salman Robert, H. L. L., 2002. Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 86: 301-328. https://doi.org/10.1306/61eedabc-173e-11d7-8645000102c1865d
      [20] Shu, Y., Hu, M. Y., Jiang, H. J., et al, 2011. Diagenesis and Reservoir Porosity Evolution of Western Slope Zone of Xihu Sag. Offshore Oil, 31(4): 63-67 (in Chinese with English abstract). doi: 10.3969/j.issn.1008-2336.2011.04.063
      [21] Su, A., Chen, H. H., Cao, L. S., et al., 2014. Distribution and Genesis of the Secondary Pore of Paleogene Reservoir in Xihu Depression, Eastern Sea Basin. Acta Sedimentologica Sinica, 32(5): 949-956 (in Chinese with English abstract)
      [22] Surdam, R. C., Boese, S. W., Crossey, L. J., 1984. The Chemistry of Secondary Porosity, Clastic Diagenesis. AAPG Bulletin, 37: 127-151. https://doi.org/10.1306/m37435c8
      [23] Taylor, T. R., Giles, M. R., Hathon, L. A., et al., 2010. Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality. AAPG Bulletin, 94(8): 1093-1132. https://doi.org/10.1306/04211009123
      [24] Tian, L. X., Zhang, Z. T., Pang, X., et al., 2020. Characteristics of Overpressure Development in the Mid-Deep Strata of Baiyun Sag and Its New Enlightenment in Exploration Activit. China ffshore oil and gas, 32(6): 1-11 (in Chinese with English abstract).
      [25] Wang, B. J., Wang, D. Y., Wu, K., et al., 2019. Chiaracterstics of Overpressure and Its Influence on Reservoir Physical Properties in JZ20 Oilfield, Liaodong Bay Depression, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(5): 608-617 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2019.05.11
      [26] Wang, D. F., Luo, J. L., Chen, S. H., et al., 2017. Carbonate Cementation and Origin Analysis of Deep Sandstone Reservoirs in the Baiyun Sag, Pearl River Mouth Basin. Acta Geologica Sinica, 91(9): 2079-2090 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.09.011
      [27] Wang, L., Wang, X. P., Yu, X. B., 2015. Study about Reservoir Characteristics and the Controlling Factors on the Deep Tight Gas Reservoir in Xihu Sag. Offshore Oil, 35(3): 20-26 (in Chinese with English abstract).
      [28] Wang, L. W., Guan, D. Y., Li, X. H., et al., 2020. Differentiated Sand-Rich Deposits and Their Seismic Responses: a Case from E2s2 in Liaodong Bay. Marine Geology Frontiers, 36(6): 36-45 (in Chinese with English abstract).
      [29] Wang, Q., Hao, L. W., Chen, G. J., et al., 2010. Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag. Acta Petrolei Sinica, 31(4): 553-565 (in Chinese with English abstract).
      [30] Wang, Q. B., Li, J. P., Zang, C. Y., et al., 2012. Authigenic Chlorite Occurrence, Enrichment Factor and Its Impacts on Reservoir Petrophysics in Member 4 of Shahejie Formation in A21 Structure, Liaozhong Sag. China Offshore Oil and Gas, 24(5): 11-15 (in Chinese with English abstract).
      [31] Xiao, X. G., Qin, L. Z., Zhang, W., et al., 2021. The Origin of Carbonate Cements and the Influence on Reservoir Quality of Pinghu Formation in Xihu Sag. Chinese Journal of Geology, 56(4): 1062-1076 (in Chinese with English abstract).
      [32] Xie, X. J., Cai, L. L., Xiong, L. Q., et al., 2021. Study on Comprehensive Prediction of Deep Clastic Reservoirs in Offshore China. China Offshore Oil and Gas, 33(4): 1-13 (in Chinese with English abstract).
      [33] Xu, C. G., Lai, W. C., 2005. Predication Technologies of Paleogene Mid Deep Reservoir and Their Application in Bohai Sea. China Offshore Oil and Gas, 17(4): 231-236 (in Chinese with English abstract).
      [34] Xu, F. H., Xu, G. S., Liu, Y., et al., 2020. Factors Controlling the Development of Tight Sandstone Reservoirs in the Huagang Formation of the Central Inverted Structural Belt in Xihu Sag, East China Sea Basin. Petroleum Exploration and Development, 47: 101-113(in Chinese with English abstract).
      [35] Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract).
      [36] Yuan G. H., Cao Y. C., Yang T., et al., 2013. Porosity Enhancement Potential through Mineral Dissolution by Organic Acids in the Diagenetic Process of Clastic Reservoir. Earth Science Frontiers, 20(5): 207-219 (in Chinese with English abstract).
      [37] Zeng, Z. W., Zhu, H. T., Yang, X. H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Peral River Mouth Basin. Earth Science, 42(11): 1936-1954 (in Chinese with English abstract).
      [38] Zhang, G. C., Zhang, H. H., Zhao, Z., et al., 2016. "Joint Control of Source Rocks and Geothermal Heat": Oil Enrichment Pattern of China's Offshore Basins. China Petroleum Exploration, 21(4): 38-53 (in Chinese with English abstract).
      [39] Zhang, W., Hou, G. W., Xiao, X. G., et al., 2019. Genesis of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs in Xihu Sag, East China Sea Basin. China Offshore Oil and Gas, 31(3): 40-49 (in Chinese with English abstract).
      [40] Zhang, Y. Y., Pe-Piper, G., Piper, D. J. W., 2015. How Sandstone Porosity and Permeability Vary with Diagenetic Minerals in the Scotian Basin, Offshore Eastern Canada: Implications for Reservoir Quality. Marine and Petroleum Geology, 63: 28-45. https://doi.org/10.1016/j.marpetgeo.2015.02.007
      [41] Zou, M. L., Huang, S. J., Hu, Z. W., et al., 2008. The Origin of Carbonate Cements and the Influence on Reservoir Quality of Pinghu Formation in Xihu Sag, East China Sea. Lithologic Reservoirs, 10(1): 47-52 (in Chinese with English abstract).
      [42] 曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. doi: 10.3799/dqkx.2017.123
      [43] 陈国俊, 吕成福, 王琪, 等, 2008. 珠江口盆地深水区白云凹陷储层孔隙特征及影响因素. 石油学报, 31(4): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004007.htm
      [44] 耿威, 郑荣才, 魏钦廉, 等, 2008. 白云凹陷珠海组储层沉积学特征. 岩性油气藏, 20(4): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX200804025.htm
      [45] 郭春清, 沈忠民, 张林, 等, 2003. 砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述. 地质地球化学, 31(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200303010.htm
      [46] 侯元立, 邵磊, 乔培军, 等, 2020. 珠江口盆地白云凹陷始新世-中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002003.htm
      [47] 蒋恕, 蔡东升, 朱筱敏, 等, 2007. 辽河坳陷辽中凹陷成岩作用与中深层孔隙演化. 石油与天然气地质, 28(3): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200703009.htm
      [48] 金凤鸣, 张凯逊, 王权, 等, 2018. 断陷盆地深层优质碎屑岩储集层发育机理: 以渤海湾盆地饶阳凹陷为例. 石油勘探与开发, 45(2): 247-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201802007.htm
      [49] 刘恩然, 辛仁臣, 李建平, 等, 2014. 辽东湾西北部A区沙一、二段钻井层序地层和沉积相分析. 沉积与特提斯, 34(2): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201402002.htm
      [50] 柳永军, 徐长贵, 吴奎, 等, 2015. 辽东湾坳陷走滑断裂差异性与大中型油气藏的形成. 石油实验地质, 37(5): 555-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201505006.htm
      [51] 吕成福, 陈国俊, 张功成, 等, 2011. 珠江口盆地白云凹陷珠海组碎屑岩储层特征及成因机制. 中南大学学报(自然科学版), 42(9): 2763-2773. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109037.htm
      [52] 马明, 陈国俊, 李超, 等, 2017. 珠江口盆地白云凹陷恩平组储层成岩作用与孔隙演化定量表征. 天然气地球科学, 28(10): 1515-1526. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201710006.htm
      [53] 庞江, 罗静兰, 马永坤, 等, 2019. 白云凹陷第三系储层中铁白云石的成因机理及与CO2活动的关系. 地质学报, 93(3): 724-737. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903015.htm
      [54] 舒艳, 胡明毅, 蒋海军, 等, 2011. 西湖凹陷西部斜坡带储层成岩作用及孔隙演化. 海洋石油, 31(4): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201104015.htm
      [55] 苏奥, 陈红汉, 曹来圣, 等, 2014. 西湖凹陷砂岩储层异常高孔带分布及成因. 沉积学报, 32(5): 949-956. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405018.htm
      [56] 田立新, 张忠涛, 庞雄, 等, 2020. 白云凹陷中深层超压发育特征及油气勘探新启示. 中国海上油气, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006001.htm
      [57] 宛良伟, 官大勇, 李晓辉, 等, 2020. 辽东湾地区沙二段差异富砂类型及地震响应特征. 海洋地质前沿, 36(6): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202006005.htm
      [58] 王琪, 郝乐伟, 陈国俊, 等, 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004005.htm
      [59] 王冰洁, 王德英, 吴奎, 等, 2019. 辽东湾拗陷JZ20油田古近系超压发育特征及其对储层物性的影响. 成都理工大学学报(自然科学版), 46(5): 608-617. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201905011.htm
      [60] 王代富, 罗静兰, 陈淑慧, 等, 2017. 珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨. 地质学报, 91(9): 2079-2090. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201709011.htm
      [61] 王岭, 王修平, 余学兵, 2015. 西湖凹陷深层储层特征及控制因素研究. 海洋石油, 35(3): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201503006.htm
      [62] 王清斌, 李建平, 臧春艳, 等, 2012. 辽中凹陷A21构造沙四段储层自生绿泥石产状、富集因素及对储层物性的影响. 中国海上油气, 24(5): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201205004.htm
      [63] 肖晓光, 秦兰芝, 张武, 等, 2021. 西湖凹陷平湖组碳酸盐胶结物形成机制及其对储层的影响. 地质科学, 56(4): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104005.htm
      [64] 谢晓军, 蔡露露, 熊连桥, 等, 2021. 中国近海深层碎屑岩储层综合预测技术探讨. 中国海上油气, 33(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202104001.htm
      [65] 徐昉昊, 徐国盛, 刘勇, 等, 2020. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素. 石油勘探与开发, 47(1): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001010.htm
      [66] 徐长贵, 赖维成, 2005. 渤海古近系中深层储层预测技术及其应用. 中国海上油气, 17(4): 231-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200504003.htm
      [67] 姚光庆, 姜平, 2021. 储层"源-径-汇-岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
      [68] 远光辉, 操应长, 杨田, 等, 2013. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力. 地学前缘, 20(5): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305022.htm
      [69] 张功成, 张厚和, 赵钊, 等, 2016. "源热共控"中国近海盆地石油富集规律. 中国石油勘探, 21(4): 38-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201604006.htm
      [70] 张武, 侯国伟, 肖晓光, 等, 2019. 西湖凹陷低渗储层成因及优质储层主控因素. 中国海上油气, 31(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903005.htm
      [71] 邹明亮, 黄思静, 胡作维, 等, 2008. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响. 岩性油气藏, 10(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX200801011.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  22
    • HTML全文浏览量:  11
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-30
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回