• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    昭通国家级示范区浅层页岩气立体开发探索:以海坝背斜南翼YS203H1平台为例

    余凯 鲜成钢 文恒 黄小青 何勇 王建君 申颍浩 晏晰 马圆宏 曹炜

    余凯, 鲜成钢, 文恒, 黄小青, 何勇, 王建君, 申颍浩, 晏晰, 马圆宏, 曹炜, 2023. 昭通国家级示范区浅层页岩气立体开发探索:以海坝背斜南翼YS203H1平台为例. 地球科学, 48(1): 252-266. doi: 10.3799/dqkx.2022.137
    引用本文: 余凯, 鲜成钢, 文恒, 黄小青, 何勇, 王建君, 申颍浩, 晏晰, 马圆宏, 曹炜, 2023. 昭通国家级示范区浅层页岩气立体开发探索:以海坝背斜南翼YS203H1平台为例. 地球科学, 48(1): 252-266. doi: 10.3799/dqkx.2022.137
    Yu Kai, Xian Chenggang, Wen Heng, Huang Xiaoqing, He Yong, Wang Jianjun, Shen Yinghao, Yan Xi, Ma Yuanhong, Cao Wei, 2023. Stereoscopic Development Exploration of Shallow Shale Gas in Zhaotong National Shale Gas Demonstration Area: Case Study of YS203H1 Pad of Haiba Anticline Southern Limb. Earth Science, 48(1): 252-266. doi: 10.3799/dqkx.2022.137
    Citation: Yu Kai, Xian Chenggang, Wen Heng, Huang Xiaoqing, He Yong, Wang Jianjun, Shen Yinghao, Yan Xi, Ma Yuanhong, Cao Wei, 2023. Stereoscopic Development Exploration of Shallow Shale Gas in Zhaotong National Shale Gas Demonstration Area: Case Study of YS203H1 Pad of Haiba Anticline Southern Limb. Earth Science, 48(1): 252-266. doi: 10.3799/dqkx.2022.137

    昭通国家级示范区浅层页岩气立体开发探索:以海坝背斜南翼YS203H1平台为例

    doi: 10.3799/dqkx.2022.137
    基金项目: 

    国家重大科技专项 2017ZX05063

    国家重点研发计划项目 2020YFA0710600

    详细信息
      作者简介:

      余凯(1995-),男,硕士研究生,主要从事非常规油气地质工程一体化相关研究.ORCID:0000-0002-4257-7161.E-mail:yukaixwbetter@163.com

      通讯作者:

      鲜成钢, E-mail:xianchenggang@cup.edu.cn

    • 中图分类号: P581

    Stereoscopic Development Exploration of Shallow Shale Gas in Zhaotong National Shale Gas Demonstration Area: Case Study of YS203H1 Pad of Haiba Anticline Southern Limb

    • 摘要: 昭通国家级示范区浅层页岩气分布面积广、地质储量大,具备较大开发潜力.为实现示范区中部海坝背斜浅层页岩气的高效建产和资源最大化动用,在总结示范区太阳背斜浅层页岩气立体开发经验基础上,遵循地质工程一体化理念和研究思路对海坝浅层页岩气立体开发可行性及井网部署方式进行探索.结果表明:单层井网开发仍以龙一11小层为最佳靶体,五峰组在当前工艺技术和经济指标下,暂不具备作为独立开发层系经济开发的条件,仍需进一步探索;龙一11小层+龙一13小层间Ⅰ+Ⅱ类优质储层厚度大,相比龙一11单层开发,采用龙一11小层+龙一13小层下部双层立体交错井网在相同井距及井数的立体开发方案下,井组EUR及IRR均有较大增加;在相同控制面积条件下,井距和井数之间存在最优化区间,在当前工艺技术和经济指标下,建议250 m为最佳井距;若建井及改造成本下降,有进一步缩小井距、提高井组整体EUR的潜力;大规模水力压裂不但会改变就地应力大小,还会改变水平主应力方向,从而改变近井地带应力状态,使其从走滑型向逆断层状态转变,易形成水平缝导致压裂改造效果变差;采用一次井网相较于加密井网部署方案,能有效降低井间应力负面干扰,提高井间储量动用程度.海坝浅层页岩气适宜采取适度小井距立体交错一次井网部署的开发方式,以助推示范区浅层页岩气的规模效益开发.

       

    • 图  1  海坝背斜北翼YS137(a)及南翼YS203(b)五峰‒龙马溪组地层真实厚度对比(以五峰组底部拉平)

      Fig.  1.  Comparison of the true thickness of the Wufeng-Longmaxi Formation in north limb YS137 (a) and south limb YS203 (b) of the Haiba anticline (flatten with the horizon of bottom of the Wufeng Formation)

      图  2  YS203五峰‒龙马溪组不同起裂层位对裂缝纵向发育的影响对比

      Fig.  2.  Comparison of the effect of different fracture initiation layers on the longitudinal development of fractures in the Wufeng- Longmaxi Formation of YS203

      图  3  YS203H1井组五峰‒龙马溪组各小层水平井生产20年累计产气量

      Fig.  3.  EUR of wells in each layer of the Wufeng-Longmaxi Formation of the YS203H1 pad in 20 years of production

      图  4  YS203H1井组设计方案平面/剖面分布(以250 m井距单层和立体开发为例)

      a、c.单层、立体开发井平面示意图;b、d.单层、立体开发井储量动用示意图

      Fig.  4.  YS203H1 pad design plan/section distribution (250 m well spacing single layer and stereoscopic development)

      图  5  YS203H1井组9种设计方案对应裂缝参数对比

      Fig.  5.  9 design options of YS203H1 corresponding to HF parameters comparison

      图  6  太阳‒大寨区块已投产水平井有效裂缝长度统计

      Fig.  6.  Effective fracture length statistics of production horizontal wells in the Taiyang-Dazhai block

      图  7  YS203H1井组生产20年后地层压力分布

      Fig.  7.  Formation pressure distribution in YS203H1 pad after 20 years of production

      图  8  YS203H1井组9种设计方案对应EUR及IRR对比

      Fig.  8.  Comparison of EUR and IRR corresponding to 9 design options of YS203H1 pad

      图  9  YS203H1井组一次布井与加密布井各方案(含水力裂缝)最小水平主应力示意图

      Fig.  9.  Schematic diagram of minimum horizontal principal stress of YS203H1 pad on one-time and infill well scenarios (with hydraulic fracture network)

      图  10  YS203H1井组一次布井与加密布井方案最小水平主应力方位变化示意图

      Fig.  10.  Minimum horizontal principal stress orientation change diagram of YS203H1 pad on one-time and infill well scenarios

      图  11  YS203H1井组一次布井与加密布井方案生产20年地层压降示意图

      Fig.  11.  Formation pressure distribution of YS203H1 pad on one-time and infill well scenarios

      图  12  YS203H1井组一次井网部署与加密布井方案生产20年EUR对比(归一化时间)

      Fig.  12.  20-year EUR comparison (normalized time) of YS203H1 pad on one-time and infill well scenarios

      表  1  不同埋深页岩储层地质‒工程参数对比(据何勇等,2021修改)

      Table  1.   Comparison of geology-engineering parameters of shale reservoirs with different burial depths (modified from He et al., 2021)

      区块 目的层埋深
      (m)
      最小水平主应力
      (MPa)
      上覆地层应力(MPa) 地层压
      力系数
      Ⅰ+Ⅱ类储层厚度
      (m)
      靶体厚度
      (m)
      靶体钻遇率(%) 加砂强度(t/m) 单井成本
      (104元)
      中深层HJB-108井区 2 509 56.5 61.0 2.00 50.5 7.3 94 1.6 > 5 000
      浅层TY-102井区 760 16.0 18.8 1.43 32.0 1.2 72 3.0 < 2 500
      浅层YS203井区 1 641 28.0 43.6 1.10~1.25 27.0 2~4 约75 3.0 约3 000
      下载: 导出CSV

      表  2  YS203井五峰‒龙马溪组页岩综合测井数据

      Table  2.   Comprehensive logging data of the Wufeng-Longmaxi Formation shale in Well YS203

      层位 顶、底深
      (m)
      层厚
      (m)
      最小水平主应力
      (MPa)
      水平主应力差
      (MPa)
      地层压力系数 含气量
      (m3/t)
      泊松比 杨氏模量
      (GPa)
      有效孔隙度
      (%)
      储层分类
      龙一14 1 515.7~1 629.9 14.2 35.7 25.6 1.04 0.7 0.267 43.3 0.8 三类
      龙一13 1 629.9~1 636.0 6.1 33.0 20.7 1.25 2.6 0.230 33.9 3.2 二类
      龙一12 1 636.0~1 642.1 6.1 30.2 23.7 1.11 3.0 0.200 38.0 3.0 二类
      龙一11 1 642.1~1 644.2 2.1 29.3 22.0 1.12 4.5 0.192 35.0 4.3 一类
      五峰组 1 644.2~1 657.1 12.9 31.9 21.6 1.16 2.8 0.222 35.2 3.4 二类
      下载: 导出CSV

      表  3  YS203H1井组水力压裂模拟“体积压裂2.0”工艺施工参数(据何勇等,2021修改)

      Table  3.   Hydraulic fracturing simulation "volume fracturing 2.0" parameters for YS203H1 pad (modified from He et al., 2021)

      压裂水平段长
      (m)
      单段长
      (m)
      段数 簇间距
      (m)
      单段簇数
      (簇)
      加砂强度
      (t/m)
      单段液量
      (m3
      加液强度
      (m3/m)
      施工排量
      (m3/min)
      1 000 80 12 15 6 3.0 2 400 30 16
      下载: 导出CSV
    • [1] Ajisafe, F., Solovyeva, I., Morales, A., et al., 2017. Understanding Impact of Well Spacing and Interference on Production Performance in Unconventional Reservoirs, Permian Basin. In: Unconventional Resources Technology Conference. Society of Exploration Geophysicists, American Association of Petroleum, Austin. https://doi.org/10.15530/urtec-2017-2690466
      [2] Bao, H. Y., Liang, B., Zheng, A. W., et al., 2022. Application of Geology and Engineering Integration in Stereoscopic Exploration and Development of Fuling Shale Gas Demonstration Area. China Petroleum Exploration, 27(1): 88-98 (in Chinese with English abstract).
      [3] Cai, X. Y., Zhao, P. R., Gao, B., et al., 2021. Sinopec's Shale Gas Development Achievements during the "Thirteenth Five-Year Plan" Period and Outlook for the Future. Oil & Gas Geology, 42(1): 16-27 (in Chinese with English abstract).
      [4] Cong, P., Yan, J. P., Jing, C., et al., 2021. Logging Evaluation and Distribution Characteristics of Fracturing Grade in Shale Gas Reservoir: A Case Study from Wufeng Formation and Longmaxi Formation in X Area, Southern Sichuan Basin. Lithologic Reservoirs, 33(3): 177-188 (in Chinese with English abstract).
      [5] Haustveit, K., Greenwood, H., 2018. Delineating Stacked Pay with Existing and Emerging Diagnostic Tools. In: The SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers, The Woodlands. https://doi.org/10.2118/189835-MS
      [6] He, Y., Huang, X. Q., Wang, J. J., et al., 2021. Stereoscopic Development of Shallow Shale Gas in the Taiyang Block of Zhaotong National Shale Gas Demonstration Area. Natural Gas Industry, 41(S1): 138-144 (in Chinese with English abstract).
      [7] Hu, W. R., 2017. Geology-Engineering Integration—A Necessary Way to Realize Profitable Exploration and Development of Complex Reservoirs. China Petroleum Exploration, 22(1): 1-5 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.01.001
      [8] Huang, X. Q., Wang, J. J., Du, Y., et al., 2019. Discussion on Development Mode of Smaller Well Spacing and Tridimensional Development in the YS108 Block, Zhaotong National Shale Gas Demonstration Area. Natural Gas Geoscience, 30(4): 557-565 (in Chinese with English abstract).
      [9] Jiao, F. Z., 2019. Theoretical Insights, Core Technologies and Practices Concerning "Volume Development" of Shale Gas in China. Natural Gas Industry, 39(5): 1-14 (in Chinese with English abstract).
      [10] King, G. E., Rainbolt, M. F., Swanson, C., 2017. Frac Hit Induced Production Losses: Evaluating Root Causes, Damage Location, Possible Prevention Methods and Success of Remedial Treatments. In: The SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, San Antonio. https://doi.org/10.2118/187192-MS
      [11] Li, G. X., Qin, J. H., Xian, C. G., et al., 2020. Theoretical Understandings, Key Technologies and Practices of Tight Conglomerate Oilfield Efficient Development: A Case Study of the Mahu Oilfield, Junggar Basin, NW China. Petroleum Exploration and Development, 47(6): 1185-1197 (in Chinese with English abstract).
      [12] Liang, X., Guan, B., Li, J. L., et al., 2021a. Key Technologies of Shallow Shale Gas Reservoir in Mountainous Area: Taking Taiyang Gas Field in Zhaotong National Shale Gas Demonstration Area as an Example. Natural Gas Industry, 41(S1): 124-132 (in Chinese with English abstract).
      [13] Liang, X., Zhang, J. H., Zhang, H. B., et al., 2021b. Major Discovery and High-Efficiency Development Strategy of Shallow Shale Gas: A Case Study of Taiyang Shale Gas Field. China Petroleum Exploration, 26(6): 21-37 (in Chinese with English abstract).
      [14] Liang, X., Wang, G. C., Zhang, J. H., et al., 2017. High-Efficiency Integrated Shale Gas Development Model of Zhaotong National Demonstration Zone and Its Practical Enlightenment. China Petroleum Exploration, 22(1): 29-37 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.01.005
      [15] Liang, X., Xu, Z. Y., Zhang, J. H., et al., 2020a. Key Efficient Exploration and Development Technoloiges of Shallow Shale Gas: A Case Study of Taiyang Anticline Area of Zhaotong National Shale Gas Demonstration Zone. Acta Petrolei Sinica, 41(9): 1033-1048 (in Chinese with English abstract).
      [16] Liang, X., Xu, Z. Y., Zhang, Z., et al., 2020b. Breakthrough of Shallow Shale Gas Exploration in Taiyang Anticline Area and Its Significance for Resource Development in Zhaotong, Yunnan Province, China. Petroleum Exploration and Development, 47(1): 11-28 (in Chinese with English abstract).
      [17] Liang, X., Zhang, T. S., Shu, H. L., et al., 2020c. Evaluation of Shale Gas Resource Potential of Longmaxi Formation in Zhaotong National Shale Gas Demonstration Area in the Northern Yunnan-Guizhou. Geology in China, 47(1): 72-87 (in Chinese with English abstract).
      [18] Liang, X., Zhang, C., Zhang, P. W., et al., 2019. Research and Application of Geomechanics of Shale Gas in Deep Mountain of Yichang, Hubei. Reservoir Evaluation and Development, 9(5): 20-31 (in Chinese with English abstract). doi: 10.3969/j.issn.2095-1426.2019.05.003
      [19] Lindsay, G., Miller, G., Xu, T., et al., 2018. Production Performance of Infill Horizontal Wells vs. Pre-Existing Wells in the Major US Unconventional Basins. In: The SPE Hydraulic Fracturing Technology Conference and Exhibition. Society of Petroleum Engineers, The Woodlands. https://doi.org/10.2118/189875-MS
      [20] Liu, Y., Kalinin, D., Jiao, Y., et al., 2019. Understanding the Complexity of Fracturing in the Sichuan Shale GasReservoir in China. In: Asia Pacific Unconventional Resources Technology Conference. Society of Exploration Geophysicists, Brisbane. https://doi.org/10.15530/AP-URTEC-2019-198248
      [21] Marongiu-porcu, M., Lee, D., Shan, D., et al., 2016. Advanced Modeling of Interwell-Fracturing Interference: An Eagle Ford Shale-Oil Study. SPE Journal, 21(5): 1567-1582. https://doi.org/10.2118/174902-PA
      [22] Pankaj, P., Shukla, P., Kavousi, P., et al., 2018. Determining Optimal Well Spacing in the Marcellus Shale: A Case Study Using an Integrated Workflow. In: The SPE Argentina Exploration and Production of Unconventional Resources Symposium. Society of Petroleum Engineers, Neuquen. https://doi.org/10.2118/191862-MS
      [23] Portis, D. H., Bello, H., Murray, M., et al., 2013. Searching for the Optimal Well Spacing in the Eagle Ford Shale: A Practical Tool-Kit. In: Unconventional Resources Technology Conference. Society of Exploration Geophysicists, Denver. https://doi.org/10.1190/urtec2013-027
      [24] Shu, H. L., Qiu, K. B., Li, Q. F., et al., 2021. A Method for Evaluating the Geomechanical Characteristics of Shale Gas: The Geomechanical Characteristics of the Mountain Shale in the Intensively Reworked Marine Area of South China. Natural Gas Industry, 41(S1): 1-13 (in Chinese with English abstract).
      [25] Sun, H. Q., Zhou, D. H., Cai, X. Y., et al., 2020. Progress and Prospect of Shale Gas Development of Sinopec. China Petroleum Exploration, 25(2): 14-26 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.02.002
      [26] Wang, Y. F., Zhai, G. Y., Liu, G. H., et al., 2021. Geological Characteristics of Shale Gas in Different Strata of Marine Facies in South China. Journal of Earth Science, 32(4): 725-741. https://doi.org/10.1007/s12583-020-1104-5
      [27] Wei, Y. S., Wang, J. L., Qi, Y. D., et al., 2018. Optimization of Shale Gas Well Pattern and Spacing. Natural Gas Industry, 38(4): 129-137 (in Chinese with English abstract).
      [28] Wu, J., Chen, X. Z., Liu, W. P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531 (in Chinese with English abstract).
      [29] Wu, Q., Liang, X., Xian, C. G., et al., 2015. Geoscience- to-Production Integration Ensures Effective and Efficient South China Marine Shale Gas Development. China Petroleum Exploration, 20(4): 1-23 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2015.04.001
      [30] Xian, C. G., Zhang, J. H., Chen, X., et al., 2017. Application of Geomechanics in Geology-Engineering Integration. China Petroleum Exploration, 22(1): 75-88 (in Chinese with English abstract).
      [31] Xie, J., 2018. Practices and Achievements of the Changning-Weiyuan Shale Gas National Demonstration Project Construction. Natural Gas Industry, 38(2): 1-7 (in Chinese with English abstract).
      [32] Xie, J., Xian, C. G., Wu, J. F., et al., 2019. Optimal Key Elements of Geoengineering Integration in Changning National Shale Gas Demonstration Zone. China Petroleum Exploration, 24(2): 174-185 (in Chinese with English abstract).
      [33] Xie, J., Zhang, H. M., She, C. Y., et al., 2017. Practice of Geology-Engineering Integration in Changning State Shale Gas Demonstration Area. China Petroleum Exploration, 22(1): 21-28 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.01.004
      [34] Xu, Z. Y., Liang, X., Lu, H. L., et al., 2019. Structural Deformation Characteristics and Shale Gas Preservation Conditions in the Zhaotong National Shale Gas Demonstration Area along the Southern Margin of the Sichuan Basin. Natural Gas Industry, 39(10): 22-31 (in Chinese with English abstract).
      [35] Yong, R., Chang, C., Zhang, D. L., et al., 2020. Optimization of Shale-Gas Horizontal Well Spacing Based on Geology-Engineering-Economy Integration: A Case Study of Well Block Ning 209 in the National Shale Gas Development Demonstration Area. Natural Gas Industry, 40(7): 42-48 (in Chinese with English abstract).
      [36] Zhu, H. Y., Song, Y. J., Xu, Y., et al., 2021. Four-Dimensional In-Situ Stress Evolution of Shale Gas Reservoirs and Its Impact on Infill Well Complex Fractures Propagation. Acta Petrolei Sinica, 42(9): 1224-1236 (in Chinese with English abstract).
      [37] Zhu, J., Forrest, J., Xiong, H., et al., 2017. Cluster Spacing and Well Spacing Optimization Using Multi-Well Simulation for the Lower Spraberry Shale in Midland Basin. In: The SPE Liquids-Rich Basins Conference. Society of Petroleum Engineers, Midland. https://doi.org/10.2118/187485-MS
      [38] 包汉勇, 梁榜, 郑爱维, 等, 2022. 地质工程一体化在涪陵页岩气示范区立体勘探开发中的应用. 中国石油勘探, 27(1): 88-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202201008.htm
      [39] 蔡勋育, 赵培荣, 高波, 等, 2021. 中国石化页岩气"十三五"发展成果与展望. 石油与天然气地质, 42(1): 16-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htm
      [40] 丛平, 闫建平, 井翠, 等, 2021. 页岩气储层可压裂性级别测井评价及展布特征: 以川南X地区五峰组—龙马溪组为例. 岩性油气藏, 33(3): 177-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202103019.htm
      [41] 何勇, 黄小青, 王建君, 等, 2021. 昭通国家级页岩气示范区太阳区块浅层页岩气的立体开发. 天然气工业, 41(S1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1021.htm
      [42] 胡文瑞, 2017. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路. 中国石油勘探, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701001.htm
      [43] 黄小青, 王建君, 杜悦, 等, 2019. 昭通国家级页岩气示范区YS108区块小井距错层开发模式探讨. 天然气地球科学, 30(4): 557-565. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904013.htm
      [44] 焦方正, 2019. 页岩气"体积开发"理论认识、核心技术与实践. 天然气工业, 39(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905001.htm
      [45] 李国欣, 覃建华, 鲜成钢, 等, 2020. 致密砾岩油田高效开发理论认识、关键技术与实践——以准噶尔盆地玛湖油田为例. 石油勘探与开发, 47(6): 1185-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006013.htm
      [46] 梁兴, 管彬, 李军龙, 等, 2021a. 山地浅层页岩气地质工程一体化高效压裂试气技术——以昭通国家级页岩气示范区太阳气田为例. 天然气工业, 41(S1): 124-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1019.htm
      [47] 梁兴, 张介辉, 张涵冰, 等, 2021b. 浅层页岩气勘探重大发现与高效开发对策研究: 以太阳浅层页岩气田为例. 中国石油勘探, 26(6): 21-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202106002.htm
      [48] 梁兴, 王高成, 张介辉, 等, 2017. 昭通国家级示范区页岩气一体化高效开发模式及实践启示. 中国石油勘探, 22(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701005.htm
      [49] 梁兴, 徐政语, 张介辉, 等, 2020a. 浅层页岩气高效勘探开发关键技术——以昭通国家级页岩气示范区太阳背斜区为例. 石油学报, 41(9): 1033-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202009003.htm
      [50] 梁兴, 徐政语, 张朝, 等, 2020b. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义. 石油勘探与开发, 47(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001003.htm
      [51] 梁兴, 张廷山, 舒红林, 等, 2020c. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价. 中国地质, 47(1): 72-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001007.htm
      [52] 梁兴, 张朝, 张鹏伟, 等, 2019. 湖北宜昌深层山地页岩气地质力学研究及应用. 油气藏评价与开发, 9(5): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905003.htm
      [53] 舒红林, 仇凯斌, 李庆飞, 等, 2021. 页岩气地质力学特征评价方法——中国南方海相强改造区山地页岩地质力学特征. 天然气工业, 41(S1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2021S1002.htm
      [54] 孙焕泉, 周德华, 蔡勋育, 等, 2020. 中国石化页岩气发展现状与趋势. 中国石油勘探, 25(2): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002002.htm
      [55] 位云生, 王军磊, 齐亚东, 等, 2018. 页岩气井网井距优化. 天然气工业, 38(4): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804022.htm
      [56] 吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组—龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      [57] 吴奇, 梁兴, 鲜成钢, 等, 2015. 地质—工程一体化高效开发中国南方海相页岩气. 中国石油勘探, 20(4): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201504001.htm
      [58] 鲜成钢, 张介辉, 陈欣, 等, 2017. 地质力学在地质工程一体化中的应用. 中国石油勘探, 22(1): 75-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701010.htm
      [59] 谢军, 2018. 长宁-威远国家级页岩气示范区建设实践与成效. 天然气工业, 38(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201802001.htm
      [60] 谢军, 鲜成钢, 吴建发, 等, 2019. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识. 中国石油勘探, 24(2): 174-185. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902005.htm
      [61] 谢军, 张浩淼, 佘朝毅, 等, 2017. 地质工程一体化在长宁国家级页岩气示范区中的实践. 中国石油勘探, 22(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701004.htm
      [62] 徐政语, 梁兴, 鲁慧丽, 等, 2019. 四川盆地南缘昭通页岩气示范区构造变形特征及页岩气保存条件. 天然气工业, 39(10): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910003.htm
      [63] 雍锐, 常程, 张德良, 等, 2020. 地质—工程—经济一体化页岩气水平井井距优化——以国家级页岩气开发示范区宁209井区为例. 天然气工业, 40(7): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202007007.htm
      [64] 朱海燕, 宋宇家, 胥云, 等, 2021. 页岩气储层四维地应力演化及加密井复杂裂缝扩展规律. 石油学报, 42(9): 1224-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202109010.htm
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  72
    • HTML全文浏览量:  36
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-30
    • 网络出版日期:  2023-02-01
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回