• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录

    任建业 罗盼 高圆圆 王后金 雷超 巢鹏

    任建业, 罗盼, 高圆圆, 王后金, 雷超, 巢鹏, 2022. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录. 地球科学, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
    引用本文: 任建业, 罗盼, 高圆圆, 王后金, 雷超, 巢鹏, 2022. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录. 地球科学, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
    Ren Jianye, Luo Pan, Gao Yuanyuan, Wang Houjin, Lei Chao, Chao Peng, 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
    Citation: Ren Jianye, Luo Pan, Gao Yuanyuan, Wang Houjin, Lei Chao, Chao Peng, 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135

    南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录

    doi: 10.3799/dqkx.2022.135
    基金项目: 

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0208

    国家自然科学基金项目 41830537

    详细信息
      作者简介:

      任建业(1963-), 男, 教授, 博士生导师, 主要从事海洋地质学和沉积盆地动力学分析方面的教学和科研.ORCID: 0000-0003-0780-651X.E-mail: jyren@cug.edu.cn

    • 中图分类号: P736

    Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea

    • 摘要: 基于跨南海西南次海盆V型尖端区共轭被动大陆边缘的1 000 km长的深反射地震剖面的解释和分析,深入研究南海临界破裂区地壳结构、盆地构造地层格架和岩浆作用特征,阐明地壳岩石圈的伸展破裂过程.结果表明,在南海西南次海盆共轭陆缘可以识别出3条一级界面,即海底、基底(Tg/Tb)和Moho面,根据这些界面可将共轭边缘划分为箱型域、细颈域、楔型域和薄箱型域等多个地壳基底结构构造特征显著不同的构造单元;在西南次海盆V型尖端陆缘盆地充填序列中识别出岩石圈裂解分离的响应界面,即裂后不整合界面T50/Tm,该界面与基底面Tg/Tb限定了陆缘盆地的同裂陷沉积充填序列,其内发育了T70、T60两条重要的幕式构造响应界面,控制了早期高角度正断层控制的断陷盆地系(Tg-T70)、中期拆离断层控制的拆离盆地系(T70-T60)和晚期断坳转换作用控制的坳陷盆地(T60-T50);西南次海盆V型尖端薄箱型域属于原洋洋壳域,为岩浆型地壳,代表了岩石圈临近裂解分离、但支撑稳定态海底扩张的地幔对流系统还未完全建立起来之前的“临界破裂”状态,发育于23.5~15.5 Ma(T60-Tm)期间.综合考虑地壳初始厚度、断裂活动性和不同时期的盆地原型等,运用平衡剖面技术重建了西南次海盆V型尖端共轭边缘的发育演化过程,建立了南海西南次海盆临界破裂区构造-地层-岩浆相互作用模式,揭示了南海陆缘岩石圈伸展破裂机制.本研究具有重要的理论意义,并对南海的深水油气勘探具有重大的实际应用价值.

       

    • 图  1  研究区和测线Line A的位置

      Fig.  1.  The research area and the location of Line A

      图  2  Line A测线剖面构造地层解释图和深度剖面图(测线位置见图 1)

      a.地震剖面; b.解释的时间剖面; c.转换的深度剖面(带解释)

      Fig.  2.  The structural stratigraphic interpretation and depth section of Line A (location see Fig. 1)

      图  3  V型尖端重力异常和构造单元划分(位置见图 1

      Fig.  3.  The gravity anomaly and division of structural domains in the V-shaped tip (location see Fig. 1)

      图  4  Line A测线共轭陆缘线描图(a、b);地壳基底和陆缘盆地构造地层解释图(c、d)(位置见图 2

      Fig.  4.  Line drawing of part of Line A (a, b); the interpretation of interfaces and structures and nature of basement and sedimentary sections(c, d)(location see Fig. 2)

      图  5  Line A测线构造演化史重建

      Fig.  5.  The back striping structural evolution of Line A

    • [1] Arfai, J., Franke, D., Gaedicke, C., et al., 2011. Geological Evolution of the West Luzon Basin (South China Sea, Philippines). Marine Geophysical Research, 32(3): 349-362. https://doi.org/10.1007/s11001-010-9113-x
      [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92JB02280
      [3] Bronner, A., Sauter, D., Manatschal, G., et al., 2011. Magmatic Breakup as an Explanation for Magnetic Anomalies at Magma-Poor Rifted Margins. Nature Geoscience, 4(8): 549-553. https://doi.org/10.1038/ngeo1201
      [4] Cameselle, A. L., Ranero, C. R., Barckhausen, U., 2020. Understanding the 3D Formation of a Wide Rift: The Central South China Sea Rift System. Tectonics, 39(12): e2019TC006040. https://doi.org/10.1029/2019TC006040
      [5] Chang, C.P., Angelier, J., Huang, C.Y., 2009. Evolution of Subductions Indicated by Mélanges in Taiwan. In: Lallemand, S., Funiciello, F., eds., Subduction Zone Geodynamics. Springer, Berlin. https://doi.org/10.1007/978-3-540-87974-9_11
      [6] Chao, P., Manatschal, G., Chenin, P., et al., 2021. The Tectono-Stratigraphic and Magmatic Evolution of Conjugate Rifted Margins: Insights from the NW South China Sea. Journal of Geodynamics, 148: 101877. https://doi.org/10.1016/j.jog.2021.101877
      [7] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      [8] Cullen, A., Reemst, P., Henstra, G., et al., 2010. Rifting of the South China Sea: New Perspectives. Petroleum Geoscience, 16(3): 273-282. https://doi.org/10.1144/1354-079309-908
      [9] Funck, T., Hopper, J. R., Larsen, H. C., et al., 2003. Crustal Structure of the Ocean-Continent Transition at Flemish Cap: Seismic Refraction Results. Journal of Geophysical Research: Solid Earth, 108(B11): 2531. https://doi.org/10.1029/2003JB002434
      [10] Gillard, M., Manatschal, G., Autin, J., 2016a. How can Asymmetric Detachment Faults Generate Symmetric Ocean Continent Transitions? Terra Nova, 28(1): 27-34. https://doi.org/10.1111/ter.12183
      [11] Gillard, M., Autin, J., Manatschal, G., 2016b. Fault Systems at Hyper-Extended Rifted Margins and Embryonic Oceanic Crust: Structural Style, Evolution and Relation to Magma. Marine and Petroleum Geology, 76: 51-67. https://doi.org/10.1016/j.marpetgeo.2016.05.013
      [12] Hall, R., 2009. Hydrocarbon Basins in SE Asia: Understanding Why They are There. Petroleum Geoscience, 15(2): 131-146. https://doi.org/10.1144/1354-079309-830
      [13] Keenan, T. E., Encarnación, J., Buchwaldt, R., et al., 2016. Rapid Conversion of an Oceanic Spreading Center to a Subduction Zone Inferred from High-Precision Geochronology. PNAS, 113(47): E7359-E7366. https://doi.org/10.1073/pnas.1609999113
      [14] Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      [15] Lei, C., Ren, J. Y., 2016. Hyper-Extended Rift Systems in the Xisha Trough, Northwestern South China Sea: Implications for Extreme Crustal Thinning Ahead of a Propagating Ocean. Marine and Petroleum Geology, 77: 846-864. https://doi.org/10.1016/j.marpetgeo.2016.07.022
      [16] Lei, Z. L., Zeng, G., Liu, J. Q., et al., 2021. Melt-Lithosphere Interaction Controlled Compositional Variations in Mafic Dikes from Fujian Province, Southeastern China. Journal of Earth Science, 32(6): 1445-1453. https://doi.org/10.1007/s12583-020-1358-y
      [17] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014GC005567
      [18] Li, J.B., 2011. Dynamics of the Continental Margins of South China Sea: Scientific Experiments and Research Progresses. Chinese Journal of Geophysics, 54(12): 2993-3003 (in Chinese with English abstract).
      [19] Lin, J., Li, J.B., Xu, Y.G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Haiyang Xuebao, 41(10): 125-140 (in Chinese with English abstract).
      [20] Morley, C. K., 2012. Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia. Earth-Science Reviews, 115(1-2): 37-75. https://doi.org/10.1016/j.earscirev.2012.08.002
      [21] Morley, C. K., 2016. Major Unconformities/Termination of Extension Events and Associated Surfaces in the South China Seas: Review and Implications for Tectonic Development. Journal of Asian Earth Sciences, 120: 62-86. https://doi.org/10.1016/j.jseaes.2016.01.013
      [22] Nirrengarten, M., Mohn, G., Schito, A., et al., 2020. The Thermal Imprint of Continental Breakup during the Formation of the South China Sea. Earth and Planetary Science Letters, 531: 115972. https://doi.org/10.1016/j.epsl.2019.115972
      [23] Pang, X., Zheng, J.Y., Mei, L.F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080 (in Chinese with English abstract).
      [24] Parsons, T., 1995. The Basin and Range Province. In: Olsen, K., ed., Continental Rifts: Evolution, Structure and Tectonics. Elsevier, Amsterdam.
      [25] Penrose, C. P., 1972. Penrose Field Conference on Ophiolites. Geotimes, 17: 24-25.
      [26] Peron-Pinvidic, G., Manatschal, G., "IMAGinING RIFTING" Workshop Participants, 2019. Rifted Margins: State of the Art and Future Challenges. Frontiers in Earth Science, 7: 1-8. https://doi.org/10.3389/feart.2019.00218
      [27] Pichot, T., Delescluse, M., Chamot-Rooke, N., et al., 2014. Deep Crustal Structure of the Conjugate Margins of the SW South China Sea from Wide-Angle Refraction Seismic Data. Marine and Petroleum Geology, 58: 627-643. https://doi.org/10.1016/j.marpetgeo.2013.10.008
      [28] Qiu, X. L., Zhao, M. H., Ao, W., et al., 2011. OBS Survey and Crustal Structure of the SW Sub-Basin and Nansha Block, South China Sea. Chinese Journal of Geophysics, 54(6): 1009-1021. https://doi.org/10.1002/cjg2.1680
      [29] Ren, J.Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 54(12): 3303-3314 (in Chinese with English abstract).
      [30] Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      [31] Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      [32] Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      [33] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [34] Sutra, E., Manatschal, G., Mohn, G., et al., 2013. Quantification and Restoration of Extensional Deformation along the Western Iberia and Newfoundl and Rifted Margins. Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597. https://doi.org/10.1002/ggge.20135
      [35] Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union Washington, D. C. . https://doi.org/10.1029/gm027p0023
      [36] Vu, A. T., Wessel Fyhn, M. B., Xuan, C. T., et al., 2017. Cenozoic Tectonic and Stratigraphic Development of the Central Vietnamese Continental Margin. Marine and Petroleum Geology, 86: 386-401. https://doi.org/10.1016/j.marpetgeo.2017.06.001
      [37] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      [38] Warner, M. R., 1987. Seismic Reflections from the Moho-The Effect of Isostasy. Geophysical Journal International, 88(2): 425-435. https://doi.org/10.1111/j.1365-246x.1987.tb06651.x
      [39] Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670-4741. https://doi.org/10.1002/2016JB012923
      [40] Xie, X. N., Ren, J. Y., Pang, X., et al., 2019. Stratigraphic Architectures and Associated Unconformities of Pearl River Mouth Basin during Rifting and Lithospheric Breakup of the South China Sea. Marine Geophysical Research, 40(2): 129-144. https://doi.org/10.1007/s11001-019-09378-6
      [41] Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3). https://doi.org/10.1029/2019TC005845
      [42] Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      [43] 李家彪, 2011. 南海大陆边缘动力学: 科学实验与研究进展. 地球物理学报, 54(12): 2993-3003. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112004.htm
      [44] 林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201910008.htm
      [45] 庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm
      [46] 任建业, 雷超, 2011. 莺歌海-琼东南盆地构造-地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112030.htm
      [47] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      [48] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  534
    • HTML全文浏览量:  421
    • PDF下载量:  198
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-20
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回