• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    辽宁及其邻区高精度航磁数据分析:对区域性断裂带与岩石圈热结构约束

    高维 舒晴 郭志宏 孟庆奎 张凯淞 陈丽梅

    高维, 舒晴, 郭志宏, 孟庆奎, 张凯淞, 陈丽梅, 2022. 辽宁及其邻区高精度航磁数据分析:对区域性断裂带与岩石圈热结构约束. 地球科学, 47(9): 3401-3416. doi: 10.3799/dqkx.2022.131
    引用本文: 高维, 舒晴, 郭志宏, 孟庆奎, 张凯淞, 陈丽梅, 2022. 辽宁及其邻区高精度航磁数据分析:对区域性断裂带与岩石圈热结构约束. 地球科学, 47(9): 3401-3416. doi: 10.3799/dqkx.2022.131
    Gao Wei, Shu Qing, Guo Zhihong, Meng Qingkui, Zhang Kaisong, Chen Limei, 2022. Analysis of High Precision Aeromagnetic Data in Liaoning and Its Adjacent Areas: Constraints on Regional Fault Zones and Lithospheric Thermal Structure. Earth Science, 47(9): 3401-3416. doi: 10.3799/dqkx.2022.131
    Citation: Gao Wei, Shu Qing, Guo Zhihong, Meng Qingkui, Zhang Kaisong, Chen Limei, 2022. Analysis of High Precision Aeromagnetic Data in Liaoning and Its Adjacent Areas: Constraints on Regional Fault Zones and Lithospheric Thermal Structure. Earth Science, 47(9): 3401-3416. doi: 10.3799/dqkx.2022.131

    辽宁及其邻区高精度航磁数据分析:对区域性断裂带与岩石圈热结构约束

    doi: 10.3799/dqkx.2022.131
    基金项目: 

    自然资源部中国地质调查局二级项目 DD2189410

    自然资源部中国地质调查局二级项目 DD20190001

    自然资源部中国地质调查局二级项目 DD20190003

    自然资源部中国地质调查局二级项目 DD20190037

    详细信息
      作者简介:

      高维(1983—),女,高级工程师,硕士,主要从事航空物探综合研究. ORCID:0000-0003-4129-8619. E-mail:gw551121@163.com

    • 中图分类号: P313

    Analysis of High Precision Aeromagnetic Data in Liaoning and Its Adjacent Areas: Constraints on Regional Fault Zones and Lithospheric Thermal Structure

    • 摘要: 高精度航磁数据分析与挖掘是揭示区域性断裂带空间展布与岩石圈热结构的重要手段之一.为了揭示辽宁及其邻区航磁异常与区域性断裂带关系,估算其居里面深度与岩石圈厚度,本文在对航磁数据进行化极的基础上,利用功率谱法反演了研究区居里面深度;采用一维稳态热传导方程,计算了辽东‒渤海湾地区岩石圈厚度.研究表明:(1)辽东、辽西与渤海湾地区存在多条北东向/北北东向航磁异常带,它们是晚中生代以来太平洋板片俯冲作用背景下,活动大陆边缘长期伸展与短暂挤压状态交替演变的产物;而辽北地区被北东向磁异常带错断的近东西/北西西向航磁异常带,则是古亚洲洋闭合后碰撞造山晚期伸展抬升至中地壳层次的构造形迹.(2)辽宁及其邻区居里面深度在16~40 km之间,平均深度为28 km,阜新与盘锦等居里面隆起区对应的大地热流值相对偏高;而沈阳与辽源居里面坳陷区对应的大地热流值偏低.(3)辽宁及其邻区岩石圈厚度具有空间非均匀性,变化范围为70~150 km,平均值为100 km;郯庐断裂带附近的营口‒鞍山地区下方岩石圈厚度最薄,为60~80 km;辽东与渤海湾地区岩石圈厚度空间非均匀性可能是晚中生代以来太平洋板片俯冲诱导的上升流与克拉通岩石圈内部先存的构造薄弱带共同作用的结果.

       

    • 图  1  辽宁及其邻区地质简图

      据辽宁省地质矿产局(1989)修改

      Fig.  1.  Geological sketch map showing the distribution of the main lithological associations in Liaoning Province and its adjacent areas

      图  2  辽宁及其邻区航磁总场异常

      Fig.  2.  Total field aeromagnetic anomaly map of Liaoning and its adjacent areas

      图  3  辽宁及其邻区大地热流值(Qs)和居里面深度(Zb)的关系

      Fig.  3.  The correlation between terrestrial heat flow (Qs) and Curie-point depths (Zb) of Liaoning and its adjacent areas

      图  4  辽宁及其邻区航磁化极异常与区域性断裂带分布简图

      Fig.  4.  The distribution of reduction-to-pole of aeromagnetic anomalies and regional fault zones in Liaoning and its adjacent areas

      图  5  辽宁及其邻区居里面深度和大地热流值

      大地热流值据Jiang et al.(2019

      Fig.  5.  The distribution of estimated Curie-point depths and terrestrial heat flow in Liaoning and its adjacent areas

      图  6  辽东半岛与渤海湾岩石圈厚度

      Fig.  6.  The distribution of estimated thermal lithosphere thicknesses in Liaodong Penisula and Bohai Bay

    • [1] Bansal, A. R., Gabriel, G., Dimri, V. P., et al., 2011. Estimation of Depth to the Bottom of Magnetic Sources by a Modified Centroid Method for Fractal Distribution of Sources: An application to Aeromagnetic Data in Germany. Geophysics, 76(3): L11-L22. https://doi.org/10.1190/1.3560017
      [2] Baranov, V., 1957. A New Method for Interpretation of Aeromagnetic Maps: Pseudo⁃Gravimetric Anomalies. Geophysics, 22(2): 359-382. https://doi.org/10.1190/1.1438369
      [3] Blakely, R. J., 1988. Curie Temperature Isotherm Analysis and Tectonic Implications of Aeromagnetic Data from Nevada. Journal of Geophysical Research: Solid Earth, 93(B10): 11817-11832. https://doi.org/10.1029/JB093iB10p11817
      [4] Bouligand, C., Glen, J. M. G., Blakely, R. J., 2009. Mapping Curie Temperature Depth in the Western United States with a Fractal Model for Crustal Magnetization. Journal of Geophysical Research: Solid Earth, 114(B11): B11104. https://doi.org/10.1029/2009JB006494
      [5] Bureau of Geology and Mineral Resources of Liaoning Province, 1989. Regional Geology of Liaoning Province. Geological Publishing House, Beijing (in Chinese).
      [6] Chen, L., Cheng, C., Wei, Z. G., 2009. Seismic Evidence for Significant Lateral Variations in Lithospheric Thickness Beneath the Central and Western North China Craton. Earth and Planetary Science Letters, 286(1-2): 171-183. https://doi.org/10.1016/j.epsl.2009.06.022
      [7] Chen, L., Jiang, M. M., Yang, J. H., et al., 2014. Presence of an Intralithospheric Discontinuity in the Central and Western North China Craton: Implications for Destruction of the Craton. Geology, 42(3): 223-226. https://doi.org/10.1130/G35010.1
      [8] Chen, L., Zheng, T. Y., Xu, W. W., 2006. A Thinned Lithospheric Image of the Tanlu Fault Zone, Eastern China: Constructed from Wave Equation Based Receiver Function Migration. Journal of Geophysical Research: Solid Earth, 111(B9): B09312. https://doi.org/10.1029/2005JB003974
      [9] Chi, J. S., Lu, F. X., 1996. Kimberlite and Paleozoic lithospheric Mantle Characteristics of the North China Platform. Science Press, Beijing (in Chinese).
      [10] Connard, G., Couch, R., Gemperle, M., 1983. Analysis of Aeromagnetic Measurements from the Cascade Range in Central Oregon. Geophysics, 48(3): 376-390. https://doi.org/10.1190/1.1441476
      [11] Dolmaz, M. N., Ustaömer, T., Hisarli, Z. M., et al., 2005. Curie Point Depth Variations to Infer Thermal Structure of the Crust at the African⁃Eurasian Convergence Zone, SW Turkey. Earth, Planets and Space, 57(5): 373-383. https://doi.org/10.1186/bf03351821
      [12] Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41: 385-410. https://doi.org/10.1146/annurev.earth.031208.100051
      [13] Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re⁃Os Evidence for Replacement of Ancient Mantle Lithosphere Beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307-322. https://doi.org/10.1016/S0012⁃821X(02)00489⁃2
      [14] Gao, W., Guo, Z. H., Zhou, J. X., et al., 2020. High Precision Aeromagnetic Characteristics and Curie Depth Analysis of the Hainan Island. Acta Geologica Sinica, 94(11): 3249-3262 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.11.006
      [15] Gu, C. C., Zhu, G., Li, Y. J., et al., 2018. Timing of Deformation and Location of the Eastern Liaoyuan Terrane, NE China: Constraints on the Final Closure Time of the Paleo⁃Asian Ocean. Gondwana Research, 60: 194-212. https://doi.org/10.1016/j.gr.2018.04.012
      [16] Gu, C. C., Zhu, G., Zhai, M. J., et al., 2016. Features and Origin Time of Mesozoic Strike⁃Slip Structures in the Yilan⁃Yitong Fault Zone. Science China Earth Sciences, 59(12): 2389-2410. https://doi.org/10.1007/s11430⁃016⁃5334⁃4
      [17] Guo, Z. H., Yu, C. C., Zhou, J. X., 2003. The Tangent Technique of ΔT Profile Magnetic Anomaly in the Low Magnetic Latitude Area. Geophysical and Geochemical Exploration, 27(5): 391-394 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8918.2003.05.016
      [18] He, L. J., Hu, S. B., Wang, J. Y., 2001. Thermal Structure Characteristics of Lithosphere in Eastern Continental China. Progress in Natural Science, 11(9): 966-969 (in Chinese). doi: 10.3321/j.issn:1002-008X.2001.09.013
      [19] Hou, C. C., Li, B. G., 1985. Power Spectrum Methods for Direct Estimating the Depth to the Bottom of Magnetic Source. Computing Techniques for Geophysical and Geochemical Exploration, 7(3): 179-187 (in Chinese with English abstract).
      [20] Hsiao, L. Y., Graham, S. A., Tilander, N., 2004. Seismic Reflection Imaging of a Major Strike⁃Slip Fault Zone in a Rift System: Paleogene Structure and Evolution of the Tan⁃Lu Fault System, Liaodong Bay, Bohai, Offshore China. AAPG Bulletin, 88(1): 71-97. https://doi.org/10.1306/09090302019
      [21] Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 142-157 (in Chinese with English abstract).
      [22] Huang, F., He, L. J., Wu, Q. J., 2015. Lithospheric Thermal Structure of the Ordos Basin and Its Implications to Destruction of the North China Craton. Chinese Journal of Geophysics, 58(10): 3671-3686 (in Chinese with English abstract). doi: 10.6038/cjg20151020
      [23] Huang, Z. X., Li, H. Y., Zheng, Y. J., et al., 2009. The Lithosphere of North China Craton from Surface Wave Tomography. Earth and Planetary Science Letters, 288 (1-2): 164-173. https://doi.org/10.1016/j.epsl.2009.09.019
      [24] Idárraga⁃García, J., Vargas, C. A., 2018. Depth to the Bottom of Magnetic Layer in South America and Its Relationship to Curie Isotherm, Moho Depth and Seismicity Behavior. Geodesy and Geodynamics, 9(1): 93-107. https://doi.org/10.1016/j.geog.2017.09.006
      [25] Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
      [26] Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006
      [27] Jiang, W. W., Guan, Z. N., Hao, T. Y., et al., 2002. Characters of Geophysical Fields and Forecasting of Metal Mine at the North Edge of Huabei Platform. Chinese Journal of Geophysics, 45(2): 233-245 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2002.02.010
      [28] Lachenbruch, A. H., 1978. Heat Flow in the Basin and Range Province and Thermal Effects of Tectonic Extension. Pure and Applied Geophysics, 117(1-2): 34-50. https://doi.org/10.1007/BF00879732
      [29] Lee, C. T. A., Luffi, P., Chin, E. J., 2011. Building and Destroying Continental Mantle. Annual Review of Earth and Planetary Sciences, 39: 59-90. https://doi.org/10.1146/annurev⁃earth⁃040610⁃133505
      [30] Li, C. F., Lu, Y., Wang, J., 2017. A Global Reference Model of Curie⁃Point Depths Based on EMAG2. Scientific Reports, 7: 45129. https://doi.org/10.1038/srep45129
      [31] Li, C. F., Shi, X. B., Zhou, Z. Y., et al., 2010. Depths to the Magnetic Layer Bottom in the South China Sea Area and Their Tectonic Implications. Geophysical Journal International, 182(3): 1229-1247. https://doi.org/10.1111/j.1365⁃246X.2010.04702.x
      [32] Li, C. F., Wang, J. L., Zhou, Z. Y., et al., 2012. 3D Geophysical Characterization of the Sulu⁃Dabie Orogen and Its Environs. Physics of the Earth and Planetary Interiors, 192-193: 35-53. https://doi.org/10.1016/j.pepi.2012.01.003
      [33] Li, C. F., Wang, J., Lin, J., et al., 2013. Thermal Evolution of the North Atlantic Lithosphere: New Constraints from Magnetic Anomaly Inversion with a Fractal Magnetization Model. Geochemistry, Geophysics, Geosystems, 14(12): 5078-5105. https://doi.org/10.1002/2013GC004896
      [34] Li, S. L., Miao, Q., Wang, X., 2011. Low Velocity Layers of the Crust in North China. Journal of Geodesy and Geodynamics, 31(5): 35-38, 60 (in Chinese with English abstract).
      [35] Li, S. Z., Zhao, G. C., 2007. SHRIMP U⁃Pb Zircon Geochronology of the Liaoji Granitoids: Constraints on the Evolution of the Paleoproterozoic Jiao⁃Liao⁃Ji Belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16. https://doi.org/10.1016/j.precamres.2007.04.001
      [36] Li, S. Z., Zhao, G. C., Sun, M., et al., 2005. Deformation History of the Paleoproterozoic Liaohe Assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24(5): 659-674. https://doi.org/10.1016/j.jseaes.2003.11.008
      [37] Lin, J. Y., Sibuet, J. C., Hsu, S. K., 2005. Distribution of the East China Sea Continental Shelf Basins and Depths of Magnetic Sources. Earth, Planets and Space, 57(11): 1063-1072. https://doi.org/10.1186/bf03351885
      [38] Lin, W., Zeng, J. P., Meng, L. T., et al., 2021. Extensional Tectonics and North China Craton Destruction: Insights from the Magnetic Susceptibility Anisotropy (AMS) of Granite and Metamorphic Core Complex. Science China Earth Sciences, 64(9): 1557-1589. https://doi.org/10.1007/s11430⁃020⁃9754⁃1
      [39] Liu, C., Zhu, G., Xie, C. L., et al., 2019a. Location and Sinistral Displacement of the Eastern Liaoyuan Accretionary Belt along the Tan⁃Lu Fault Zone, NE China. Journal of Asian Earth Sciences, 172: 409-422. https://doi.org/10.1016/j.jseaes.2018.10.002
      [40] Liu, C., Zhu, G., Zhang, S., et al., 2018. Mesozoic Strike⁃Slip Movement of the Dunhua⁃Mishan Fault Zone in NE China: A Response to Oceanic Plate Subduction. Tectonophysics, 723: 201-222. https://doi.org/10.1016/j.tecto.2017.12.024
      [41] Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino⁃Korean Craton. Geology, 20(4): 339. https://doi.org/10.1130/0091⁃7613(1992)0200339: romcit>2.3.co;2 doi: 10.1130/0091⁃7613(1992)0200339:romcit>2.3.co;2
      [42] Liu, G. X., Zhang, X., He, W. M., et al., 1996. Research on Curie Iso⁃Geothermal Surface in Bohai Sea and Its Adjacent Region. Seismology and Geology, 18(4): 398-402 (in Chinese with English abstract).
      [43] Liu, P. H., Liu, F. L., Tian, Z. H., et al., 2019b. Petrological and Geochronological Evidence for Paleoproterozoic Granulite⁃Facies Metamorphism of the South Liaohe Group in the Jiao⁃Liao⁃Ji Belt, North China Craton. Precambrian Research, 327: 121-143. https://doi.org/10.1016/j.precamres.2019.03.002
      [44] Liu, P. H., Tian, Z. H., Wen, F., et al., 2020. Multiple High⁃Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U⁃Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216 (in Chinese with English abstract).
      [45] Liu, Z., Wang, F. Y., Zhang, X. K., et al., 2015. Seismic Structure of the Lithosphere beneath Eastern North China Craton: Results from Long Distance Deep Seismic Sounding. Chinese Journal of Geophysics, 58(4): 1145-1157 (in Chinese with English abstract).
      [46] Lu, Z. X., Xia, H. K., 1993. Geoscience Transect from Dong Ujimqinqi, Nei Mongol, to Donggou, Liaoning, China. Chinese Journal of Geophysics, 36(6): 765-772(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1993.06.008
      [47] Meng, X. J., Liu, Z., Zhang, S., et al., 2016. Petrophysical Properties of Rocks Surrounding the Liaodong Bay. Marine Geology Frontiers, 32(5): 1-7 (in Chinese with English abstract).
      [48] Okubo, Y., Graf, R. J., Hansen, R. O., et al., 1985. Curie Point Depths of the Island of Kyushu and Surrounding Areas, Japan. Geophysics, 50(3): 481-494. https://doi.org/10.1190/1.1441926
      [49] Pollack, H. N., Hurter, S. J., Johnson, J. R., 1993. Heat Flow from the Earth's Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31(3): 267-280. https://doi.org/10.1029/93RG01249
      [50] Ravat, D., Pignatelli, A., Nicolosi, I., et al., 2007. A Study of Spectral Methods of Estimating the Depth to the Bottom of Magnetic Sources from Near⁃Surface Magnetic Anomaly Data. Geophysical Journal International, 169(2): 421-434. https://doi.org/10.1111/j.1365⁃246X.2007.03305.x
      [51] Shuey, R. T., Schellinger, D. K., Tripp, A. C., et al., 1977. Curie Depth Determination from Aeromagnetic Spectra. Geophysical Journal of the Royal Astronomical Society, 50(1): 75-101. https://doi.org/10.1111/ j.1365⁃246X.1977.tb01325.x doi: 10.1111/j.1365⁃246X.1977.tb01325.x
      [52] Spector, A., Grant, F. S., 1970. Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35(2): 293-302. https://doi.org/10.1190/1.1440092
      [53] Tanaka, A., Okubo, Y., Matsubayashi, O., 1999. Curie Point Depth Based on Spectrum Analysis of the Magnetic Anomaly Data in East and Southeast Asia. Tectonophysics, 306(3-4): 461-470. https://doi.org/10.1016/S0040⁃1951(99)00072⁃4
      [54] Thébault, E., Finlay, C. C., Beggan, C. D., et al., 2015. International Geomagnetic Reference Field: The 12th Generation. Earth, Planets and Space, 67(1): 79. https://doi.org/10.1186/s40623⁃015⁃0228⁃9
      [55] Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge, 73-104.
      [56] Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31 (in Chinese with English abstract).
      [57] Wang, J. Y., Huang, S. P., 1990. Compilation of Heat Flow Data in the China Continental Area (2nd Edition). Seismology and Geology, 12(4): 351-363, 366 (in Chinese with English abstract).
      [58] Wang, J., Li, C. F., 2015. Crustal Magmatism and Lithospheric Geothermal State of Western North America and Their Implications for a Magnetic Mantle. Tectonophysics, 638: 112-125. https://doi.org/10.1016/j.tecto.2014.11.002
      [59] Wang, J., Li, C. F., 2018. Curie Point Depths in Northeast China and Their Geothermal Implications for the Songliao Basin. Journal of Asian Earth Sciences, 163: 177-193. https://doi.org/10.1016/j.jseaes.2018.05.026
      [60] Wang, L., Liu, J. L., Teng, C., et al., 2021. Deformation and Regional Tectonic Significance of Faku Ductile Shear Zone in Northern Liaoning Province. Geological Review, 67(1): 251-264 (in Chinese with English abstract).
      [61] Wang, S. J., Wang, F. Y., Zhang, J. S., et al., 2014. The P⁃Wave Velocity Structure of the Lithosphere of the North China Craton: Results from the Wendeng⁃Alxa Left Banner Deep Seismic Sounding Profile. Science in China (Series D), 44(12): 2697-2708 (in Chinese).
      [62] Wang, W., Liu, S. W., Santosh, M., et al., 2015. Neoarchean Intra⁃Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth⁃Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002
      [63] Wu, F. Y., Xu, Y. G., Zhu, R. X., et al., 2014. Thinning and Destruction of the Cratonic Lithosphere: A Global Perspective. Science China Earth Sciences, 57(12): 2878-2890. https://doi.org/10.1007/s11430⁃014⁃4995⁃0
      [64] Wu, F. Y., Yang, J. H., Liu, X. M., 2005. Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, 11(3): 305-317 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2005.03.003
      [65] Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173-195. https://doi.org/10.1146/annurev⁃earth⁃053018⁃060342
      [66] Xu, X. B., Zhao, L., Wang, K., et al., 2018. Indication from Finite⁃Frequency Tomography Beneath the North China Craton: The Heterogeneity of Craton Destruction. Science China Earth Sciences, 61(9): 1238-1260. https://doi.org/10.1007/s11430⁃017⁃9201⁃y
      [67] Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 24(1): 275-297. https://doi.org/10.1016/j.gr.2013.02.007
      [68] Zhai, M. G., Santosh, M., Zhang, L. C., 2011. Precambrian Geology and Tectonic Evolution of the North China Craton. Gondwana Research, 20(1): 1-5. https://doi.org/10.1016/j.gr.2011.04.004
      [69] Zhang, S., Zhu, G., Liu, C., et al., 2018. Strike⁃Slip Motion within the Yalu River Fault Zone, NE Asia: The Development of a Shear Continental Margin. Tectonics, 37(6): 1771-1796. https://doi.org/10.1029/2018TC004968
      [70] Zhang, Y. J., Liu, P. H., Zhou, W. P., et al., 2022. Detrital Zircon U⁃Pb Dating of Arkose⁃Quartzite in the Lugezhuang Formation in the Jingqishan Area, Jiaobei Terrane, and Its Geological Significance. Earth Science, 47(9): 3431-3446 (in Chinese with English abstract).
      [71] Zhao, C. Q., Zhang, Z. B., Shi, Y., et al., 2021. The Deformation and Metamorphic Features of Faku Metamorphic Complex the Composition and Tectonic Affinity in the Northern Liaoning Province. Acta Petrologica Sinica, 37(7): 1983-2006 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.03
      [72] Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      [73] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002
      [74] Zheng, J. P., Xia, B., Ping, X. Q., et al., 2021. Rock Probes and Seismic Methods to Constrain the Structure, Composition and Evolution of the Deep Crust beneath North China Block. Chinese Science Bulletin, 66(23): 3018-3031. https://doi.org/10.1360/tb⁃2020⁃1204
      [75] Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430⁃017⁃9160⁃3
      [76] Zhou, L. H., Li, S. Z., Zhao, G. C., et al., 2004. Gravity and Magnetic Features of Crystalline Basement in the Central and Eastern North China Craton. Progress in Geophysics, 19(1): 91-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2004.01.013
      [77] Zhu, G., Liu, C., Gu, C. C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint from Late Mesozoic Evolution of the Tan⁃Lu Fault Zone. Science China Earth Sciences, 61(4): 386-405. https://doi.org/10.1007/s11430⁃017⁃9136⁃4
      [78] Zhu, R. X., Sun, W. D., 2021. The Big Mantle Wedge and Decratonic Gold Deposits. Science China Earth Sciences, 64(9): 1451-1462. https://doi.org/10.1007/s11430⁃020⁃9733⁃1
      [79] Zhu, R. X., Xu, Y. G., 2019. The Subduction of the West Pacific Plate and the Destruction of the North China Craton. Science China Earth Sciences, 62(9): 1340-1350. https://doi.org/10.1007/s11430⁃018⁃9356⁃y
      [80] 辽宁省地质矿产局, 1989. 辽宁省区域地质志. 北京: 地质出版社.
      [81] 池际尚, 路凤香, 1996. 华北地台金伯利岩及古生代岩石圈地幔特征. 北京: 科学出版社.
      [82] 高维, 郭志宏, 周坚鑫, 等, 2020. 海南岛高精度航磁特征与居里等温面深度分析. 地质学报, 94(11): 3249-3262. doi: 10.3969/j.issn.0001-5717.2020.11.006
      [83] 郭志宏, 于长春, 周坚鑫, 2003. 低磁纬度区ΔT剖面磁异常场源深度计算的切线法. 物探与化探, 27(5): 391-394. doi: 10.3969/j.issn.1000-8918.2003.05.016
      [84] 何丽娟, 胡圣标, 汪集旸, 2001. 中国东部大陆地区岩石圈热结构特征. 自然科学进展, 11(9): 966-969. doi: 10.3321/j.issn:1002-008X.2001.09.013
      [85] 侯重初, 李保国, 1985. 直接计算磁性下界面深度的功率谱法. 物化探计算技术, 7(3): 179-187. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT198503000.htm
      [86] 胡圣标, 何丽娟, 汪集旸, 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 142-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      [87] 黄方, 何丽娟, 吴庆举, 2015. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示. 地球物理学报, 58(10): 3671-3686. doi: 10.6038/cjg20151020
      [88] 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      [89] 江为为, 管志宁, 郝天珧, 等, 2002. 华北地台北缘地球物理场特征与金属矿床预测. 地球物理学报, 45(2): 233-245. doi: 10.3321/j.issn:0001-5733.2002.02.010
      [90] 李松林, 苗琪, 王旭, 2011. 华北地区的地壳低速层. 大地测量与地球动力学, 31(5): 35-38, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201105007.htm
      [91] 刘光夏, 张先, 贺为民, 等, 1996. 渤海及其邻区居里面的研究. 地震地质, 18(4): 398-402.
      [92] 刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U⁃Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228
      [93] 刘志, 王夫运, 张先康, 等, 2015. 华北克拉通东部地壳与地幔盖层结构: 长观测距深地震测深剖面结果. 地球物理学报, 58(4): 1145-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201504005.htm
      [94] 卢造勋, 夏怀宽, 1993. 内蒙古东乌珠穆沁旗——辽宁东沟地学断面. 地球物理学报, 36(6): 765-772. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199306009.htm
      [95] 孟祥君, 刘展, 张松, 等, 2016. 辽东湾沿岸岩石物性特征. 海洋地质前沿, 32(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201605001.htm
      [96] 汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
      [97] 汪集旸, 黄少鹏, 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4): 351-363, 366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ199004010.htm
      [98] 王雷, 刘俊来, 滕超, 等, 2021. 辽北法库韧性剪切带变形及其区域构造意义. 地质论评, 67(1): 251-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101026.htm
      [99] 王帅军, 王夫运, 张建狮, 等, 2014. 华北克拉通岩石圈二维P波速度结构特征: 文登‒阿拉善左旗深地震测深剖面结果. 中国科学(D辑), 44(12): 2697-2708. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412009.htm
      [100] 吴福元, 杨进辉, 柳小明, 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, 11(3): 305-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503003.htm
      [101] 张宇佳, 刘平华, 周万蓬, 等, 2022. 胶北旌旗山地区禄格庄岩组长石石英岩碎屑锆石U⁃Pb测年及其地质意义. 地球科学, 47(9): 3431-3446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202209021.htm
      [102] 赵春强, 张志斌, 时溢, 等, 2021. 辽北法库变质杂岩的组成、变形与变质特点及构造属性. 岩石学报, 37(7): 1983-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107003.htm
      [103] 周立宏, 李三忠, 赵国春, 等, 2004. 华北克拉通中东部基底构造单元的重磁特征. 地球物理学进展, 19(1): 91-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200401013.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  202
    • HTML全文浏览量:  54
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-11
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回