Petrogenesis and Significance of the Xiaodongshan Volcanic Rocks in the Aqishan-Yamansu Belt, Eastern Tianshan, Xinjiang: Constraints from Geochronology, Element Geochemistry and Sr-Nd-Hf Isotopes
-
摘要: 阿奇山-雅满苏构造带是东天山造山带的重要组成部分,其大地构造属性至今仍存在争议.小东山火山岩出露于阿奇山-雅满苏构造带的西段,包括基性到酸性系列火山岩,是认识阿奇山-雅满苏构造带属性和演化的有效“岩石探针”.本次工作对其开展了系统的岩石学、锆石U-Pb年代学、元素和同位素地球化学研究.研究结果表明,小东山火山岩主要由花岗斑岩、英安斑岩、安山岩、玄武岩以及橄榄玄武岩组成,元素协变关系指示该套火山岩系列属于同源岩浆的演化产物.锆石LA-ICP-MS U-Pb测年结果显示,小东山火山岩年龄为318~308 Ma,形成于晚石炭世.该套火山岩SiO2含量变化范围较大(48.10%~76.82%),Al2O3含量整体较低且变化范围较小.从基性岩到酸性岩,稀土总量逐渐增加,Eu/Eu*值逐渐降低.中酸性火山岩大离子亲石元素Rb、K、Pb、Sr等相对富集,高场强元素Nb、Ta、Ti、P、Th等强烈亏损.而基性火山岩主要表现为Nb、Ta、Zr、Hf、Ti负异常,K、Pb、P正异常.所有火山岩均以低(87Sr/86Sr)i(0.704 50~0.707 14)、高εNd(t)(+3.16~+5.71)以及高εHf值(+5.45~+12.18)为特征.上述元素和同位素地球化学特征指示了小东山火山岩形成于岛弧构造环境,起源于交代地幔楔的部分熔融并经过了结晶分异作用.结合前人对区域构造-岩浆活动的认识,本文认为小东山火山岩所在的阿奇山-雅满苏岛弧带是在石炭纪古天山洋向南俯冲过程中形成.
-
关键词:
- 岛弧 /
- 元素和同位素地球化学 /
- 小东山火山岩 /
- 石炭纪 /
- 阿奇山-雅满苏构造带 /
- 东天山 /
- 岩石学
Abstract: The Aqishan-Yamansu tectonic belt is an important part of the eastern Tianshan Orogenic Belt, while the tectonic setting and evolution of this region have long been a matter of debate. The Xiaodongshan volcanic rocks located in the west of the Aqishan-Yamansu belt, consist of mafic-intermediate-felsic volcanic association, which present an appropriate "rock probe" to further understand the Aqishan-Yamansu belt. Geochronology, element geochemistry and Sr-Nd-Hf isotope studies on the Xiaodongshan volcanic rocks have been carried out in this paper. It is found that the Xiaodongshan volcanic rocks comprise dacite porphyry, granite porphyry, andesite, basalt and olivine basalt. The correlativity of major elements indicates that this volcanic association was resulted from the comagmatic evolution. LA-ICP-MS U-Pb dating on zircons of the volcanic rocks obtained the ages of 318-308 Ma, indicating the formation of Late Carboniferous. The SiO2 contents range from 48.10% to 76.82%, whereas the Al2O3 contents are relatively low and only have a little variation. From the mafic to felsic rocks, the abundances of rare earth elements (REE) gradually increase, and the Eu/Eu* values gradually decrease. The large ion lithophile elements (LILEs) of Rb, K, Pb, Sr are relatively enriched, whereas the high field strength elements (HFSEs) of Nb, Ta, Ti, P, Th are depleted for the intermediate-acid volcanic rocks. The mafic volcanic rocks mainly show negative anomalies of Nb, Ta, Zr, Hf and Ti and positive anomalies of K, Pb and P. All volcanic rocks are characterized by low (87Sr/86Sr)i (0.704 50-0.707 14), high εNd(t) (+3.16-+5.71) and εHf (+5.45-+12.18). The above evidence indicates that the Xiaodongshan volcanic rocks originated from partial melting of metasomatic mantle wedge and fractional crystallization. Based on our new data and previous studies on the regional tectonic-magmatic evolution, we propose that the Aqishan-Yamansu tectonic belt is an island arc formed during the southward subduction of the ancient Tianshan Ocean in the Late Carboniferous. -
图 1 东天山造山带构造简图(据Zhang et al., 2021修改)
Fig. 1. Geological map of the eastern Tianshan orogenic belt and distribution of deposits (after Zhang et al., 2021)
图 9 小东山火山岩的球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石和原始地幔值引自Sun and McDonough(1989)
Fig. 9. Chondrite-normalized REE diagram (a) and primitive mantle-normalized spider diagram (b) of the Xiaodongshan volcanic rocks
图 10 小东山火山岩εNd(t)-(87Sr/86Sr)i图解
图中各区域数据引自Rollinson and Pease(2021)
Fig. 10. εNd(t)-(87Sr/86Sr)i diagram for the Xiaodongshan volcanic rocks
-
[1] Anderson, D. L., 1983. Chemical Composition of the Mantle. Journal of Geophysical Research: Solid Earth, 88(S1): 41-52. https://doi.org/10.1029/jb088is01p00b4 [2] Ao, S. J., Xiao, W. J., Windley, B. F., et al., 2020. Ordovician to Early Permian Accretionary Tectonics of Eastern Tianshan: Insights from Kawabulak Ophiolitic Mélange, Granitoid, and Granitic Gneiss. Geological Journal, 55(1): 280-298. https://doi.org/10.1002/gj.3371 [3] Cao, R., Zari, M., Abdursul, N., et al., 2018. Geochemistry and Sr-Nd Isotope Composition of Carboniferous Volcanic Rocks of the Jueluotage Orogenic Belt: Implications for the Tectonic Evolution of Eastern Tianshan, China. International Geology Review, 60(1): 43-56. https://doi.org/10.1080/00206814.2017.1318309 [4] DePaolo, D. J., Wasserburg, G. J., 1979. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophysical Research Letters, 3(12): 743-746. https://10.1029/GL003i012p00743 doi: 10.1029/GL003i012p00743 [5] Du, L., Long, X. P., Yuan, C., et al., 2018. Mantle Contribution and Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Early Carboniferous to Early Permian Felsic Intrusions. Lithos, 304-307: 230-244. https://doi.org/10.1016/j.lithos.2018.02.010 [6] Feng, Y. M., Zhu, B. Q., Yang, J. L., et al., 2002. Tectonics and Evolution of the Eastern Tianshan Mountains: A Brief Introduction to Tectonic Map (1: 500 000) of the Eastern Tianshan Mountains of Xinjiang. Xinjiang Geology, 20(4): 309-314 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2002.04.003 [7] Gromet, L. P., Silver, L. T., 1983. Rare Earth Element Distributions among Minerals in a Granodiorite and Their Petrogenetic Implications. Geochimica et Cosmochimica Acta, 47(5): 925-939. https://doi.org/10.1016/0016-7037(83)90158-8 [8] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2010. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3-4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019 [9] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2014. Late Paleozoic Metallogenesis and Evolution of the East Tianshan Orogenic Belt (NW China, Central Asia Orogenic Belt). Geology of Ore Deposits, 56(6): 493-512. https://doi.org/10.1134/S1075701514060075 [10] Han, J. S., Chen, H. Y., Jiang, H. J., et al., 2019. Genesis of the Paleozoic Aqishan-Yamansu Arc-Basin System and Fe (-Cu) Mineralization in the Eastern Tianshan, NW China. Ore Geology Reviews, 105: 55-70. https://doi.org/10.1016/j.oregeorev.2018.12.012 [11] Hou, T., Zhang, Z. C., Santosh, M., et al., 2014. Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China: Constraints on the Metallogenesis. Ore Geology Reviews, 56: 487-502. https://doi. org/10.1016/j.oregeorev.2013.03.008 doi: 10.1016/j.oregeorev.2013.03.008 [12] Jacobsen, S. B., Wasserburg, G. J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821X(80)90125-9 [13] Jiang, H. J., Chen, H. Y., Lin, G., et al., 2021. Geochronology and Geochemistry of a Newly Identified Permian Hornblende Gabbro Suite in Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Implications on Petrogenesis and Tectonic Setting. Geological Journal, 56(11): 5506-5530. https://doi.org.10.1002/gj.4254 [14] Jiang, H. J., Han, J. S., Chen, H. Y., et al., 2017. Intra-Continental Back-Arc Basin Inversion and Late Carboniferous Magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi Magmatic Suite. Geoscience Frontiers, 8(6): 1447-1467. https://doi.org/10.1016/j.gsf.2017.01.008 [15] Jochum, K. P., Nohl, U., 2008. Reference Materials in Geochemistry and Environmental Research and the GeoReM Database. Chemical Geology, 253(1-2): 50-53. https://doi.org/10.1016/j.chemgeo.2008.04.002 [16] Li, J. Y., 2004. Late Neoproterozoic and Paleozoic Tectonic Framework and Evolutionof Eastern Xinjiang, NW China. Geological Review, 50(3): 304-322 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.03.015 [17] Li, Z., Chen, Y. L., Bao, C., et al., 2018. Volcanic Rocks and Tectonic Evolution in Carboniferous of Aqishan, Eastern Tianshan. Xinjiang Geology, 36(3): 291-298 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2018.03.002 [18] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [19] Long, X. P., Wu, B., Sun, M., et al., 2020. Geochronology and Geochemistry of Late Carboniferous Dykes in the Aqishan-Yamansu Belt, Eastern Tianshan: Evidence for a Post-Collisional Slab Breakoff. Geoscience Frontiers, 11(1): 347-362. https://doi.org/10.1016/j.gsf.2019.06.003 [20] Luo, T., Chen, J. P., Liao, Q. A., 2020. A Back-Arc Basin in Eastern Tianshan, Central Asia: Evidence from Geochronology and Geochemistry of Carboniferous Basalts. Earth Science, 45(1): 194-210 (in Chinese with English abstract). [21] Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021. Petrogenesis of Late Carboniferous-Early Permian Mafic-Ultramafic-Felsic Complexes in the Eastern Central Tianshan, NW China: The Result of Subduction-Related Transtension? Gondwana Research, 95: 72-87. https://doi.org/10.1016/j.gr.2021.03.007 [22] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274: 321-355. https://doi.org/10.2475/AJS.274.4.321 [23] Muhetaer, Z., Wu, Z. N., Wu, C. Z., et al., 2010. Relationship between Tectonic Evolution and Polymetallic Mineralization of the East Tianshan Plate Suture Zone. Earth Science, 35(2): 245-253. (in Chinese with English abstract). [24] Muhtar, M. N., Wu, C. Z., Santosh, M., et al., 2020. Late Paleozoic Tectonic Transition from Subduction to Post-Collisional Extension in Eastern Tianshan, Central Asian Orogenic Belt. GSA Bulletin, 132(7-8): 1756-1774. https://doi.org/10.1130/b35432.1 [25] Pan, G. T., Xiao, Q. H., Zhang, K. X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561 (in Chinese with English abstract). [26] Pirajno, F., 2012. Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist. Springer, New York. [27] Qin, K. Z., Fang, T. H., Wang, S. L., et al., 2002. Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, nw-China. Xinjiang Geology, 20(4): 302-308 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2002.04.002 [28] Rollinson, H., Pease, V., 2021. Using Geochemical Data: To understand Geological Processes. Cambridge University Press, Cambridge. [29] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [30] Sun, Z. Y., Long, L. L., Wang, Y. W., et al., 2019. Geochronology and Mineralogical Characteristics of Na-Rich Volcanic Rocks from Aqishan-Yamansu Belt in Eastern Tianshan. Acta Petrologica Sinica, 35(10): 3213-3232 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.15 [31] Wang, T., Wang, X. X., Guo, L., et al., 2017. Granitoid and Tectonics. Acta Petrologica Sinica, 33(5): 1459-1478 (in Chinese with English abstract). [32] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [33] Wu, C. W., Liao, Q. A., Li, Q. X., et al., 2008. The Late Carboniferous Volcanic Arc Rocks in Jueluotage Area, Eastern Tianshan, China. Geological Science and Technology Information, 27(6): 29-36 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2008.06.006 [34] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). [35] Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [36] Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370 [37] Xu, L. L., Chai, F. M., Li, Q., et al., 2014. Geochemistry and Zircon U-Pb Age of Volcanic Rocks from the Shaquanzi Fe-Cu Deposit in East Tianshan Mountains and Their Geological Significance. Geology in China, 41(6): 1771-1790 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2014.06.002 [38] Zhang, S. L., Chen, H. Y., Hollings, P., et al., 2021. Tectonic and Magmatic Evolution of the Aqishan-Yamansu Belt: A Paleozoic Arc-Related Basin in the Eastern Tianshan (NW China). GSA Bulletin, 133(5-6): 1320-1344. https://doi.org/10.1130/b35749.1 [39] Zhang, W. F., Chen, H. Y., Han, J. S., et al., 2016. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40-59. https://doi.org/10.1016/j.gr.2015.10.011 [40] Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1-2): 27-47. https://doi.org/10.1016/j.precamres.2006.09.002 [41] Zhao, L. D., Chen, H. Y., Hollings, P., et al., 2019. Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan: Constraints from the Geochronology and Geochemistry of Carboniferous and Triassic Igneous Rocks. Lithos, 344-345: 247-264. https://doi.org/10.1016/j.lithos.2019.06.023 [42] 冯益民, 朱宝清, 杨军录, 等, 2002. 东天山大地构造及演化: 1: 50万东天山大地构造图简要说明. 新疆地质, 20(4): 309-314. doi: 10.3969/j.issn.1000-8845.2002.04.003 [43] 李锦轶, 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015 [44] 李兆, 陈岳龙, 包创, 等, 2018. 东天山阿齐山地区石炭纪火山岩及构造演化. 新疆地质, 36(3): 291-298. doi: 10.3969/j.issn.1000-8845.2018.03.002 [45] 罗婷, 陈继平, 廖群安, 等, 2020. 东天山觉罗塔格构造带石炭纪弧后盆地: 来自基性火山岩的证据. 地球科学, 45(1): 194-210. doi: 10.3799/dqkx.2018.325 [46] 木合塔尔·扎日, 吴兆宁, 吴昌志, 等, 2010. 东天山板块缝合区(带)的构造演化与多金属矿床成矿的关系. 地球科学, 35(2): 245-253. doi: 10.3799/dqkx.2010.024 [47] 潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. doi: 10.3799/dqkx.2019.063 [48] 秦克章, 方同辉, 王书来, 等, 2002. 东天山板块构造分区、演化与成矿地质背景研究. 新疆地质, 20(4): 302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002 [49] 孙志远, 龙灵利, 王玉往, 等, 2019. 东天山阿奇山-雅满苏成矿带富钠火山岩年代学和矿物学特征. 岩石学报, 35(10): 3213-3232. doi: 10.18654/1000-0569/2019.10.15 [50] 王涛, 王晓霞, 郭磊, 等, 2017. 花岗岩与大地构造. 岩石学报, 33(5): 1459-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705006.htm [51] 吴春伟, 廖群安, 李奇祥, 等, 2008. 东天山觉罗塔格地区晚石炭世岛弧火山岩. 地质科技情报, 27(6): 29-36. doi: 10.3969/j.issn.1000-7849.2008.06.006 [52] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [53] 徐璐璐, 柴凤梅, 李强, 等, 2014. 东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义. 中国地质, 41(6): 1771-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201406002.htm