• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川藏铁路通麦‒鲁朗段浅层结构背景噪声成像

    花茜 裴顺平 郭震 蔡福龙 丁林 薛晓添 李磊 李佳蔚 刘翰林 刘巍

    花茜, 裴顺平, 郭震, 蔡福龙, 丁林, 薛晓添, 李磊, 李佳蔚, 刘翰林, 刘巍, 2022. 川藏铁路通麦‒鲁朗段浅层结构背景噪声成像. 地球科学, 47(9): 3447-3462. doi: 10.3799/dqkx.2022.111
    引用本文: 花茜, 裴顺平, 郭震, 蔡福龙, 丁林, 薛晓添, 李磊, 李佳蔚, 刘翰林, 刘巍, 2022. 川藏铁路通麦‒鲁朗段浅层结构背景噪声成像. 地球科学, 47(9): 3447-3462. doi: 10.3799/dqkx.2022.111
    Hua Qian, Pei Shunping, Guo Zhen, Cai Fulong, Ding Lin, Xue Xiaotian, Li Lei, Li Jiawei, Liu Hanlin, Liu Wei, 2022. Shallow Layer Tomography Study on Tongmai⁃Lulang Section of Sichuan⁃Tibet Railway. Earth Science, 47(9): 3447-3462. doi: 10.3799/dqkx.2022.111
    Citation: Hua Qian, Pei Shunping, Guo Zhen, Cai Fulong, Ding Lin, Xue Xiaotian, Li Lei, Li Jiawei, Liu Hanlin, Liu Wei, 2022. Shallow Layer Tomography Study on Tongmai⁃Lulang Section of Sichuan⁃Tibet Railway. Earth Science, 47(9): 3447-3462. doi: 10.3799/dqkx.2022.111

    川藏铁路通麦‒鲁朗段浅层结构背景噪声成像

    doi: 10.3799/dqkx.2022.111
    基金项目: 

    第二次青藏高原综合科学考察研究项目 2019QZKK0708

    国家自然科学基金项目 41941016

    国家自然科学基金项目 U2039203

    国家自然科学基金项目 42130306

    详细信息
      作者简介:

      花茜(1990-),女,博士研究生,主要从事地球内部结构成像研究. ORCID:0000-0003-3823-2846. E-mail:huaqian20@itpcas.ac.cn

      通讯作者:

      裴顺平,ORCID: 0000-0002-4924-1089. E-mail: peisp@itpcas.ac.cn

    • 中图分类号: P315

    Shallow Layer Tomography Study on Tongmai⁃Lulang Section of Sichuan⁃Tibet Railway

    • 摘要: 为探明川藏铁路通麦‒鲁朗段浅层地质结构特征,有效评估铁路沿线地质灾害风险,保障铁路设施安全运转,基于短周期密集台阵波形数据利用背景噪声层析成像技术获得了浅地表高分辨率的S波精细速度结构,并结合地质调查结果,精确判断沿线断层几何形态及活动特征.S波速度结构和地质调查结果显示沿线低速区和断层分布有很好的对应关系,断裂F1~F6较好地控制了下方低速区的几何形态.结合地质及地震资料可推断:(1)米林Ms6.9地震发震构造可能属于一条由一系列叠瓦状和背冲式断裂组成的断裂体系,该断裂体系的地震活动存在不断向北西端发育的趋势,地震危险性较高.在断裂体系北西端的拉月隧道,未来可能有较强的地震活动性.(2)嘉黎断裂南支西兴拉断裂在剖面处属于隐伏断裂,F5和F6可能都属于贡日嘎布曲分支,呈高角度W倾,强烈的壳内破碎带特征,可能与嘉黎断裂不断地高角度右旋逆冲剪切运动有关.(3)研究区密集的断裂控制着地下热流循环,高温流体的溶蚀作用加剧了构造作用中岩体的破碎程度,降低了岩体稳定性,易引发多种类型的地质灾害;因此,川藏铁路通麦‒鲁朗段应配备能有效应对地质灾害的监测预警系统及应急机制,保障隧道及铁路设施的正常运转.

       

    • 图  1  研究区区域构造背景及台站分布

      图a中蓝色曲线为台站布设线路,蓝色虚线是利用余震精定位获取的3条米林地震发震断裂(叶进等,2020)及西兴拉断裂(Ding et al.,2001),蓝色五角星为米林Ms6.9地震震中,地质底图据自然资源部地质调查局,2019,川藏铁路交通廊带雅安‒林芝段地质图;图b中红色曲线为通麦‒鲁朗线性台站布设线路,黑色直线为最终成像剖面,紫色曲线为拉月隧道,蓝色实线表示断层F1~F6(研究组地质调查获取的跨研究剖面地表出露的断层位置),红色五角星表示台阵沿线出露的温泉群,蓝色五角星为米林Ms6.9地震震中,黄色虚线是3条米林地震发震断裂,绿色虚线为西兴拉断裂(如图a)

      Fig.  1.  The tectonic background of the study area and seismic station array

      图  2  不同频段经验格林函数波形

      a. 高频段(1~3 s)SNR大于5的部分经验格林函数波形;b. 低频段(3~5 s)SNR大于5的部分经验格林函数波形;其中,红色实线为面波信号振幅最大值的连线,表示面波走时窗的大致位置,实线的斜率表示面波传播速度

      Fig.  2.  Cross-correlation functions in high frequency and low frequency section

      图  3  面波相速度和群速度频散曲线分布

      a. 灰色曲线为随机挑选的部分面波相速度频散曲线,红点表示各周期相速度频散曲线数量,黑色曲线表示面波平均相速度值随周期的变化;b. 面波群速度图注释同上

      Fig.  3.  The distribution of dispersion measurements

      图  4  参数λ的L-curve计算曲线

      曲线拐点位置对应的λ值即为反演的最佳权重,本研究中λ=1.39

      Fig.  4.  L-curve analysis method used for parameter calculation in inversion

      图  5  初始模型及迭代过程中的平均速度模型

      红色实线为反演输入的初始模型;不同颜色的虚线表示反演中每一次迭代计算获得的输出模型,同时作为下一次迭代计算的输入模型;蓝色实线为反演的最终平均模型

      Fig.  5.  Initial model and average velocity models in iterative process

      图  6  面波速度敏感核测试

      a. 相速度敏感核分布,敏感深度可到9 km,敏感性最好(> 0.2)的频段为0.8~2.2 Hz;b. 群速度敏感核分布,敏感深度可到10 km,敏感性最好的频段为0.8~2.0 Hz

      Fig.  6.  Sensitivity test of group-velocity and phase velocity of surface-wave

      图  7  不同深度的平面检测板测试

      a. 输入的检测板模型;b~d. 分别在1.4 km、2.6 km、4.0 km深度的输出模型;网格大小为0.048°×0.048°;黄色三角形为台站;黑直线为成像剖面

      Fig.  7.  Checkerboard resolution test results at different depths

      图  8  剖面检测板测试

      a. 输入的检测板模型,在剖面浅层和深层分别设置了400 m和500 m厚度的高速体;b. 输出模型,较好地恢复了异常体的形态和速度值

      Fig.  8.  Checkerboard resolution test of the section

      图  9  反演前后面波走时残差分布

      白色,平均值μ=‒1.58 s,标准差σ=2.06 s;红色,平均值μ=‒0.61 s,标准差σ=1.73 s

      Fig.  9.  Distribution of surface wave traveltime residuals before and after inversion

      图  10  背景噪声成像和近震面波成像结果对比

      a. 研究剖面地质图,红色箭头表示玛多Ms7.4地震地震波的传播方向,紫色三角形为地震台站,黑直线为成像剖面;b. 利用背景噪声互相关提取的相速度频散曲线反演结果(地质图中黑线路径);c. 利用近震面波双台法提取的相速度频散曲线反演结果

      Fig.  10.  Ambient noise tomography results compared with surface-wave tomography results for near-earthquake

      图  11  反演后的S波速度剖面成像

      a. 三维区域地质图及拉月隧道工程概况,红色虚线为拉月隧道,黑色曲线为成像剖面,紫色三角形为台阵,蓝色五角星为拉月隧道钻孔,红色实心圆为温泉位置;b. 地质图中黑线路径的剖面成像,蓝色细箭头为研究组地质调查获得的跨剖面出露断层F1~F6,黑色虚线为推测的F1-F6断层面倾向.黄色粗箭头为3条米林地震发震断裂,据叶进等(2020);绿色箭头为西兴拉断裂,据Ding et al.2001);红色五角星为三处温泉群位置;红色沙滩球为嘉黎断裂南侧30 km范围内地震震源机制解,据李鸿儒等(2021);黑色点线圈出的区域指示深部低速结构

      Fig.  11.  S-wave velocity profile result

    • [1] Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right⁃Lateral Strike⁃Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/jb094ib03p02787
      [2] Bai, L., Li, G. H., Song, B. W., 2017. The Source Parameters of the M6.9 Mainling, Tibet Earthquake and Its Tectonic Implications. Chinese Journal of Geophysics, 60(12): 4956-4963 (in Chinese with English abstract). doi: 10.6038/cjg20171234
      [3] Bai, L., Song, B. W., Li, G. H., et al., 2019. Seismic Activity in the Himalayan Orogenic Belt and Its Related Geohazards. Advances in Earth Science, 34(6): 629-639 (in Chinese with English abstract).
      [4] Bao, X. W., Song, X. D., Eaton, D. W., et al., 2020. Episodic Lithospheric Deformation in Eastern Tibet Inferred from Seismic Anisotropy. Geophysical Research Letters, 47(3): e2019GL085721. https://doi.org/10.1029/2019gl085721
      [5] Campillo, M., Roux, P., 2015. Crust and Lithospheric Structure⁃Seismic Imaging and Monitoring with Ambient Noise Correlations. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Amsterdam. https://doi.org/10.1016/b978⁃0⁃444⁃53802⁃4.00024⁃5
      [6] Chang, L. J., Wang, C. Y., Ding, Z. F., et al., 2015. Upper Mantle Anisotropy of the Eastern Himalayan Syntaxis and Surrounding Regions from Shear Wave Splitting Analysis. Science in China (Series D), 45(5): 577-588 (in Chinese).
      [7] Cheng, C., Bai, L., Ding, L., et al., 2017. Crustal Structure of Eastern Himalayan Syntaxis Revealed by Receiver Function Method. Chinese Journal of Geophysics, 60(8): 2969-2979 (in Chinese with English abstract).
      [8] Cui, Z. X., Pei, S. P., 2009. Study on Pn Velocity and Anisotropy in the Uppermost Mantle of the Eastern Himalayan Syntaxis and Surrounding Regions. Chinese Journal of Geophysics, 52(9): 2245-2254 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2009.09.008
      [9] Ding, L., Lai, Q. Z., 2003. New Geological Evidence of Crustal Thickening in the Gangdese Block Prior to the Indo⁃Asian Collision. Chinese Science Bulletin, 48(8): 836-842 (in Chinese). doi: 10.1360/csb2003-48-8-836
      [10] Ding, L., Zhong, D. L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423-438. https://doi.org/10.1016/S0012⁃821X(01)00463⁃0
      [11] Dong, H. W., Xu Z. Q., Cao, H., et al., 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951 (in Chinese with English abstract).
      [12] Dong, H., Wei, W. B., Jin, S., et al., 2016. Extensional Extrusion: Insights into South⁃Eastward Expansion of Tibetan Plateau from Magnetotelluric Array Data. Earth and Planetary Science Letters, 454: 78-85. https://doi.org/10.1016/j.epsl.2016.07.043
      [13] Fang, H. J., Yao, H. J., Zhang, H. J., et al., 2015. Direct Inversion of Surface Wave Dispersion for Three⁃Dimensional Shallow Crustal Structure Based on Ray Tracing: Methodology and Application. Geophysical Journal International, 201(3): 1251-1263. https://doi.org/10.1093/gji/ggv080
      [14] Fang, H. J., Zhang, H. J., Yao, H. J., et al., 2016. A New Algorithm for Three⁃Dimensional Joint Inversion of Body Wave and Surface Wave Data and Its Application to the Southern California Plate Boundary Region. Journal of Geophysical Research: Solid Earth, 121(5): 3557-3569. https://doi.org/10.1002/2015JB012702
      [15] Fu, Y. V., Li, A. B., Chen, Y. J., 2010. Crustal and Upper Mantle Structure of Southeast Tibet from Rayleigh Wave Tomography. Journal of Geophysical Research Atmospheres, 115(B12): B12323. https://doi.org/10.1029/2009jb007160
      [16] Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present⁃Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research Atmospheres, 112(B8): B08416. https://doi.org/10.1029/2005jb004120
      [17] Guo, C. B., Wu, R. A., Jiang, L. W., et al., 2021. Typical Geohazards and Engineering Geological Problems along the Ya'an⁃Linzhi Section of the Sichuan⁃Tibet Railway, China. Geoscience, 35(1): 1-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2021.01.001
      [18] Guo, C. B., Zhang, Y. S., Jiang, L. W., et al., 2017. Discussion on the Environmental and Engineering Geological Problems along the Sichuan⁃Tibet Railway and Its Adjacent Area. Geoscience, 31(5): 877-889 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.001
      [19] Han, J. D., Yang, J. S., Liu, S., et al., 2019. 2017 Mainling M6.9 Earthquake Sequences Monitored and Namche Barwa Seismicity Analysis. Chinese Journal of Geophysics, 62(6): 2059-2069 (in Chinese with English abstract).
      [20] He, L. P., Guo, Z., Chen, Y. J., et al., 2021. Seismic Imaging of a Magma Chamber and Melt Recharge of the Dormant Datong Volcanoes. Earth and Space Science, 8(12): e2021EA001931. https://doi.org/10.1029/2021EA001931
      [21] Hu, B., Li, B. Y., Zhang, M., et al., 2011. Deformation Characteristics and Evolution of Jiali Fault Belt in Menba Area, Tibet. Global Geology, 30(4): 585-592 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2011.04.012
      [22] Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
      [23] Knopoff, L., 1972. Observation and Inversion of Surface⁃Wave Dispersion. Tectonophysics, 13(1-4): 497-519. https://doi.org/10.1016/0040⁃1951(72)90035⁃2
      [24] Li, D. D., Wang, G. C., Lin, R. H., et al., 2019. The Shallow Crustal S⁃Velocity Structure of the Longmenshan Fault Zone Using Ambient Noise Tomography of a Seismic Dense Array. Earthquake Science, 32(5-6): 197-206. https://doi.org/10.29382/eqs⁃2019⁃0197⁃02
      [25] Li, H. R., Bai, L., Zhan, H. L., 2021. Research Progress of Jiali Fault Activity. Reviews of Geophysics and Planetary Physics, 52(2): 182-193 (in Chinese with English abstract).
      [26] Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 282(1-4): 201-211. https://doi.org/10.1016/j.epsl.2009.03.021
      [27] Li, L. L., Huang, X. L., Yao, H. J., et al., 2020. Shallow Shear Wave Velocity Structure from Ambient Noise Tomography in Hefei City and Its Implication for Urban Sedimentary Envoiroment. Chinese Journal of Geophysics, 63(9): 3307-3323 (in Chinese with English abstract).
      [28] Li, X., Qi, J. H., Yi, L., et al., 2021. Hydrochemical Characteristics and Evolution of Geothermal Waters in the Eastern Himalayan Syntaxis Geothermal Field, Southern Tibet. Geothermics, 97: 102233. https://doi.org/10.1016/j.geothermics.2021.102233
      [29] Liang, C. T., Langston, C. A., 2009. Three⁃Dimensional Crustal Structure of Eastern North America Extracted from Ambient Noise. Journal of Geophysical Research: Solid Earth, 114(B3): B03310. https://doi.org/10.1029/2008JB005919
      [30] Liu, M., Zhang, M., Zhu, W. Q., et al., 2020. Rapid Characterization of the July 2019 Ridgecrest, California, Earthquake Sequence from Raw Seismic Data Using Machine⁃Learning Phase Picker. Geophysical Research Letters, 47(4): e2019GL086189. https://doi.org/10.1029/2019GL086189
      [31] Liu, Y. H., Shan, X. J., Zhang, Y. F., et al., 2018. Use of Seismic Waveforms and Insar Data for Determination of the Seismotectonics of the Mainling Ms6.9 Earthquake on Nov. 18, 2017. Seismology and Geology, 40(6): 1254-1275 (in Chinese with English abstract).
      [32] Pan, L., Chen, X. F., Wang, J. N., et al., 2019. Sensitivity Analysis of Dispersion Curves of Rayleigh Waves with Fundamental and Higher Modes. Geophysical Journal International, 216(2): 1276-1303. https://doi.org/10.1093/gji/ggy479
      [33] Peng, C. Y., Yang, J. S., Wang, W. P., et al., 2018. The Namche Barwa Temporary Seismic Network (NBTSN) and Its Application in Monitoring the 18 November 2017 M6.9 Mainling, Tibet, China, Earthquake. Seismological Research Letters, 89(5): 1730-1740. https://doi.org/10.1785/0220180001
      [34] Peng, Q., 2020. Study on the Genesis Mechanism of Hot Spring and Numerical Simulation of Ground Temperature Field in Layue Tunnel (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [35] Qi, J. H., Xu, M., Jiang, L. W., et al., 2021. Characteristics of Geothermal Cycle and Tunnel Geothermal Disaster Controlled by Hydrogeological Structure in Ya'an to Linzhi Section of Sichuan⁃Tibet Traffic Corridor. Earth Science, 47(6): 2106-2119 (in Chinese with English abstract).
      [36] Rawlinson, N., Sambridge, M., 2004. Wave Front Evolution in Strongly Heterogeneous Layered Media Using the Fast Marching Method. Geophysical Journal International, 156(3): 631-647. https://doi.org/10.1111/j.1365⁃246X.2004.02153.x
      [37] Roux, P., Sabra, K. G., Gerstoft, P., et al., 2005. P⁃Waves from Cross⁃Correlation of Seismic Noise. Geophysical Research Letters, 32(19): L19303. https://doi.org/10.1029/2005GL023803
      [38] Seward, D., Burg, J. P., 2008. Growth of the Namche Barwa Syntaxis and Associated Evolution of the Tsangpo Gorge: Constraints from Structural and Thermochronological Data. Tectonophysics, 451(1-4): 282-289. https://doi.org/10.1016/j.tecto.2007.11.057
      [39] Tang, F. T., You, H. C., Liang, X. H., et al., 2019. A Discussion on Seismogenic Fault of the Milin MS6.9 Earthquake, Tibet, and Its Tectonic Attributes. Acta Geoscientica Sinica, 40(1): 213-218 (in Chinese with English abstract).
      [40] Tian, Y., Qu, C., Wang, W. T., et al., 2020. Characteristics of the Ambient Noise Distribution Recorded by the Dense Seismic Array in the Yanyuan Basin, Sichuan Province. Chinese Journal of Geophysics, 63(6): 2248-2261 (in Chinese with English abstract).
      [41] Wang, C. Y., Mooney, W. D., Zhu, L., et al., 2019a. Deep Structure of the Eastern Himalayan Collision Zone: Evidence for Underthrusting and Delamination in the Postcollisional Stage. Tectonics, 38(10): 3614-3628. https://doi.org/10.1029/2019TC005483
      [42] Wang, G. C., Tian, X. B., Guo, L. L., et al., 2018. High⁃Resolution Crustal Velocity Imaging Using Ambient Noise Recordings from a High⁃Density Seismic Array: An Example from the Shangrao Section of the Xinjiang Basin, China. Earthquake Science, 31(5-6): 242-251. https://doi.org/10.29382/eqs⁃2018⁃0242⁃4
      [43] Wang, L., Tian, Q. J., Li, W. Q., et al., 2019. Preliminary Investigation of the Seismogenic Structure of the 2017 MS6.9 Milin Earthquake in Tibet. Chinese Journal of Geophysics, 62(7): 2549-2566 (in Chinese with English abstract).
      [44] Wang, W. P., Yang, J. S., Wang, Y. B., 2020. Seismic Sequences of the 2017 Mainling Mw 6.5 Earthquake: Imaging the Seismogenic Fault by Aftershock Analysis. Pure and Applied Geophysics, 177(7): 3161-3174. https://doi.org/10.1007/s00024⁃020⁃02422⁃2
      [45] Wang, X. N., Tang, F. T., Shao, C. R., 2018. The Current Movement Characters of Main Faults Surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267-275 (in Chinese with English abstract).
      [46] Wang, Y. D., Allam, A., Lin, F. C., 2019b. Imaging the Fault Damage Zone of the San Jacinto Fault near Anza with Ambient Noise Tomography Using a Dense Nodal Array. Geophysical Research Letters, 46(22): 12938-12948. https://doi.org/10.1029/2019GL084835
      [47] Wei, W., Xie, C., Zhou, B. G., et al., 2018. Location of the Mainshock and Aftershock Sequences of the M6.9 Mainling Earthquake, Tibet. Chinese Science Bulletin, 63(15): 1493-1501 (in Chinese with English abstract). doi: 10.1360/N972017-01286
      [48] Xie, C., Zhou, B. G., Wang, P., et al., 2021. The Seismogenic Structure of the 2017 Mw 6.9 Milin, Tibet, Earthquake: A Possible Newly Active Fault at the Eastern Himalayan Syntaxis. Seismological Research Letters, 93(1): 68-75. https://doi.org/10.1785/0220210165
      [49] Xiong, W., Chen, W., Wen, Y. M., et al., 2019. Insight into the 2017 Mainling Mw 6.5 Earthquake: A Complicated Thrust Event Beneath the Namche Barwa Syntaxis. Earth, Planets and Space, 71: 71. https://doi.org/10.1186/s40623⁃019⁃1050⁃6
      [50] Xu, Z. Q., Cai, Z. H., Zhang, Z. M., et al., 2008. Tectonics and Fabric Kinematics of the Namche Barwa Terrane, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463-1476 (in Chinese with English abstract).
      [51] Xu, Z. Q., Li, H. B., Tang, Z. M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large⁃Scale Strike⁃Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract).
      [52] Xu, Z. X., Zhang, L. G., Jiang, L. W., et al., 2021. Engineering Geological Environment and Main Engineering Geological Problems of Ya'an⁃Linzhi Section of the Sichuan⁃Tibet Railway. Advanced Engineering Sciences, 53(3): 29-42 (in Chinese with English abstract).
      [53] Yang, J. Y., Bai, L., Li, G. H., et al., 2017. Seismicity in the Eastern Himalayan Syntaxis and Its Tectonic Implications. Recent Developments in World Seismology, 47(6): 12-18 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4975.2017.06.004
      [54] Yang, Y. H., Zhang, X. M., Hua, Q., et al., 2021. Segmentation Characteristics of the Longmenshan Fault: Constrained from Dense Focal Mechanism Data. Chinese Journal of Geophysics, 64(4): 1181-1205 (in Chinese with English abstract).
      [55] Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two⁃Station Analysis⁃II. Crustal and Upper⁃Mantle Structure. Geophysical Journal International, 173(1): 205-219. https://doi.org/10.1111/j.1365⁃246x.2007.03696.x
      [56] Yao, H. J., van der Hilst, R. D., de Hoop, M. V., 2006. Surface⁃Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two⁃Station Analysis⁃I. Phase Velocity Maps. Geophysical Journal International, 166(2): 732-744. https://doi.org/10.1111/j.1365⁃246x.2006.03028.x
      [57] Ye, J., Zhao, J. M., Liu, H. B., et al., 2020. Aftershocks Localization and Shallow Crustal Velocity Structure Following the Ms6.9 Mainling Earthquake in Tibet, China. Chinese Science Bulletin, 65(15): 1496-1505 (in Chinese with English abstract). doi: 10.1360/TB-2019-0545
      [58] Yi, G. X., Zhao, M., Long, F., et al., 2021. Characteristics of the Seismic Sequence and Seismogenic Environment of the MS6.0 Sichuan Luxian Earthquake on September 16, 2021. Chinese Journal of Geophysics, 64(12): 4449-4461 (in Chinese with English abstract). doi: 10.6038/cjg2021O0533
      [59] Yin, F. L., Han, L. B., Jiang, C. S., et al., 2018. Interaction between the 2017 M6.9 Mainling Earthquake and the 1950 M8.6 Zayu Earthquake and Their Impacts on Surrounding Major Active Faults. Chinese Journal of Geophysics, 61(8): 3185-3197 (in Chinese with English abstract).
      [60] Yin, X. Z., Zhou, B. G., Chen, J. H., et al., 2018. Spatial⁃Temporal Distribution Characteristics of Early Aftershocks Following the M6.9 Mainling Earthquake in Tibet, China. Chinese Journal of Geophysics, 61(6): 2322-2331 (in Chinese with English abstract).
      [61] Yu, G. P., Xu, T., Liu, J. T., et al., 2020. Late Mesozoic Extensional Structures and Gold Mineralization in Jiaodong Peninsula, Eastern North China Craton: An Inspiration from Ambient Noise Tomography on Data from a Dense Seismic Array. Chinese Journal of Geophysics, 63(5): 1878-1893 (in Chinese with English abstract).
      [62] Zhao, Y. F., Gong, W. B., Jiang, W., et al., 2021. Multi⁃Stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang⁃Tongmai Section, South Tibet. Geoscience, 35(1): 220-233 (in Chinese with English abstract).
      [63] 白玲, 李国辉, 宋博文, 2017. 2017年西藏米林6.9级地震震源参数及其构造意义. 地球物理学报, 60(12): 4956-4963. doi: 10.6038/cjg20171234
      [64] 白玲, 宋博文, 李国辉, 等, 2019. 喜马拉雅造山带地震活动及其相关地质灾害. 地球科学进展, 34(6): 629-639. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201906011.htm
      [65] 常利军, 王椿镛, 丁志峰, 等, 2015. 喜马拉雅东构造结及周边地区上地幔各向异性. 中国科学: 地球科学, 45(5): 577-588. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201505003.htm
      [66] 程成, 白玲, 丁林, 等, 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构. 地球物理学报, 60(8): 2969-2979. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201708006.htm
      [67] 崔仲雄, 裴顺平, 2009. 青藏高原东构造结及周边地区上地幔顶部Pn速度结构和各向异性研究. 地球物理学报, 52(9): 2245-2254. doi: 10.3969/j.issn.0001-5733.2009.09.008
      [68] 丁林, 来庆洲, 2003. 冈底斯地壳碰撞前增厚及隆升的地质证据: 岛弧拼贴对青藏高原隆升及扩展历史的制约. 科学通报, 48(8): 836-842. doi: 10.3321/j.issn:0023-074X.2003.08.018
      [69] 董汉文, 许志琴, 曹汇, 等, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701
      [70] 郭长宝, 吴瑞安, 蒋良文, 等, 2021. 川藏铁路雅安‒林芝段典型地质灾害与工程地质问题. 现代地质, 35(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101002.htm
      [71] 郭长宝, 张永双, 蒋良文, 等, 2017. 川藏铁路沿线及邻区环境工程地质问题概论. 现代地质, 31(5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001
      [72] 韩佳东, 杨建思, 刘莎, 等, 2019. 2017米林M6.9地震序列监测及南迦巴瓦地震活动性研究. 地球物理学报, 62(6): 2059-2069. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201906007.htm
      [73] 胡波, 李泊洋, 张明, 等, 2011. 西藏门巴地区嘉黎断裂带变形特征及演化. 世界地质, 30(4): 585-592. doi: 10.3969/j.issn.1004-5589.2011.04.012
      [74] 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm
      [75] 李鸿儒, 白玲, 詹慧丽, 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202102003.htm
      [76] 李玲利, 黄显良, 姚华建, 等, 2020. 合肥市地壳浅部三维速度结构及城市沉积环境初探. 地球物理学报, 63(9): 3307-3323. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202009008.htm
      [77] 刘云华, 单新建, 张迎峰, 等, 2018. 基于地震波及InSAR数据的2017年11月18日西藏米林MS6.9地震发震构造. 地震地质, 40(6): 1254-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201806005.htm
      [78] 彭琪, 2020. 拉月隧道温泉成因机制及地温场数值模拟研究(硕士学位论文). 成都: 成都理工大学.
      [79] 漆继红, 许模, 蒋良文, 等, 2021. 川藏交通廊道雅林段水文地质结构控制的水热循环及隧道热害特征. 地球科学, 47(6): 2106-2119. doi: 10.3799/dqkx.2021.201
      [80] 唐方头, 尤惠川, 梁小华, 等, 2019. 西藏米林6.9级地震发震断层判定及其构造属性讨论. 地球学报, 40(1): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901015.htm
      [81] 田原, 瞿辰, 王伟涛, 等, 2020. 四川盐源盆地短周期密集台阵背景噪声分布特征分析. 地球物理学报, 63(6): 2248-2261. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202006014.htm
      [82] 王林, 田勤俭, 李文巧, 等, 2019. 2017年西藏米林MS6.9地震发震构造初探. 地球物理学报, 62(7): 2549-2566. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201907015.htm
      [83] 王晓楠, 唐方头, 邵翠茹, 2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征. 震灾防御技术, 13(2): 267-275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201802024.htm
      [84] 韦伟, 谢超, 周本刚, 等, 2018. 西藏米林M6.9级地震及其余震序列地震定位. 科学通报, 63(15): 1493-1501. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201815011.htm
      [85] 许志琴, 蔡志慧, 张泽明, 等, 2008. 喜马拉雅东构造结: 南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807005.htm
      [86] 许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111001.htm
      [87] 徐正宣, 张利国, 蒋良文, 等, 2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题. 工程科学与技术, 53(3): 29-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103005.htm
      [88] 杨建亚, 白玲, 李国辉, 等, 2017. 东喜马拉雅构造结地区地震活动及其构造意义. 国际地震动态, 47(6): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GJZT201706004.htm
      [89] 杨宜海, 张雪梅, 花茜, 等, 2021. 龙门山断裂带的分段性特征: 来自密集震源机制解的约束. 地球物理学报, 64(4): 1181-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104005.htm
      [90] 叶进, 赵俊猛, 刘红兵, 等, 2020. 西藏米林Ms6.9级地震余震定位和地壳浅层速度结构. 科学通报, 65(15): 1496-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202015010.htm
      [91] 易桂喜, 赵敏, 龙锋, 等, 2021. 2021年9月16日四川泸县MS6.0地震序列特征及孕震构造环境. 地球物理学报, 64(12): 4449-4461. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202112017.htm
      [92] 尹凤玲, 韩立波, 蒋长胜, 等, 2018. 2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响. 地球物理学报, 61(8): 3185-3197. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201808008.htm
      [93] 尹昕忠, 周本刚, 陈九辉, 等, 2018. 西藏米林M6.9地震早期余震时空分布特征. 地球物理学报, 61(6): 2322-2331. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806014.htm
      [94] 俞贵平, 徐涛, 刘俊彤, 等, 2020. 胶东地区晚中生代伸展构造与金成矿: 短周期密集台阵背景噪声成像的启示. 地球物理学报, 63(5): 1878-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202005013.htm
      [95] 赵远方, 公王斌, 江万, 等, 2021. 藏南嘉黎断裂古乡‒通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220-233. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101025.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  343
    • HTML全文浏览量:  80
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-13
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回