How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea
-
摘要:
地球演化、地下水系统、岩体工程和地质灾害涉及不同尺度的岩体结构,由于地下岩体结构数据匮乏,实现区域岩体结构精细化分析是科学难题.本文基于岩体结构跨尺度调查研究进展,归纳岩体结构精细化分析存在的问题,提出应用地球系统科学理论解决问题的设想和技术方案.岩体结构与演化历程、温压环境(PTt)密切相关,需要从系统科学角度探究不同尺度结构面的协同演化机理和跨尺度岩体结构精细分析理论;将地球系统科学与岩体结构现代探测、测试和模拟技术相结合,提出了区域岩体结构跨尺度研究的技术方案、分析理论和实现算法,以期突破区域岩体结构精细化分析的瓶颈问题.
Abstract:Earth evolution, groundwater system, rock engineering and geohazards are related to rock mass structures of different scales. Due to the data deficiency on the structure of underground rock mass, it is a significant challenge to realize the regional elaborated analysis of rock mass structure. Based on the summary of research progress of multiscale rock mass structure investigation, in this study it lists the problems in the elaborated multiscale analysis of rock mass structure. Applying the theory of earth system science, the ideas and technical solutions for these problems are proposed. Rock mass structure is closely related to the evolution process and surrounding environment (pressure-temperature-time, PTt). It is necessary to explore the co-evolution mechanism of discontinuities on different scales and the elaborated analysis theory of multiscale rock mass structure from the perspective of system science. This study combines earth system science with modern survey, experiment, and simulation of rock mass, and proposes a multiscale research approach of rock mass structure combining "PTt -mechanical model-menergy dissipation-discontinuities". The approach is expected to realize the regional elaborated analysis of rock mass structure.
-
图 4 不同尺度下构造的指示作用
据Dutta and Mukherjee(2019)修改;a.常见指示韧性和脆性剪切的构造;b.具有相似几何形状的指示不同韧性剪切方向的构造;c.识别剪切方向时可能存在的错误
Fig. 4. Structural features at different scales
表 1 结构面绝对规模分类
Table 1. Scale classification of structural planes
分级 规模 地质类型 力学性质 水工环地质评价 Ⅰ级 一般延伸约数公里至数十公里以上,破碎带宽约数米至数十米乃至几百米以上,属宏观结构面 通常为大断层或区域性断层 属于软弱结构面,通常处理为计算模型的边界 往往控制地貌和水文地质单元;沿断裂带地下水露头、地质灾害呈线状分布;活动性断裂可成为发震断裂,影响区域稳定性;部分深部断裂是热、流、气的传导通道,地热资源、地球化学异常区 Ⅱ级 一般延伸约数百米至数千米,破碎带宽数十厘米至数米,属宏观结构面 多为较大的断层、层间错动、不整合面及原生软弱夹层等 属于软弱结构面,一般为岩体破坏的主要界面,充当分离面或滑动面 常影响局部地貌格局,控制微地貌;地下水渗流的主要通道或构成局部阻隔单元;影响自然斜坡或工程岩体稳定性,构成滑动岩体边界 Ⅲ级 延伸长度数十米至数百米,破碎带宽度为数厘米至1 m左右,属宏观结构面 断层、节理、发育好的层面及层间错动带或软弱夹层等 多数属于软弱结构面或较坚硬结构面 常构成斜坡壁面,控制冲沟、河谷展布的优势方向;构成地下水渗流或局部阻隔的界面;影响岩体稳定性,构成滑动岩体边界 Ⅳ级 延伸长度为数十厘米至20~30 m,宽度为几厘米不等,属显现结构面 节理、层面、次生裂隙、小断层及较发育的片理、劈理面等 多数为坚硬结构面;其力学性质与岩性和密集程度有关 结构面数量多,分布随机,控制地表局部形貌;结构面密度和张开度影响地下水流动和赋存;影响岩体的完整性和力学性质,常构成落石和块体滑动的分离面;是区域岩体结构精细化分析的主要对象 Ⅴ级 规模小,连续性差,常包含在岩块内,属微隐结构面 隐节理、微层面、微裂隙及不发育的片理、劈理等 多数为硬结构面,构成岩石块体内部的软弱界面 主要影响或控制岩块的物理力学性质 注:据黄润秋等(2004)、刘佑荣和唐辉明(2009), 有修改. 表 2 JRC强度估算公式汇总
Table 2. Summary of JRC strength estimation formulas
公式 说明 参考文献 $ {\tau }_{p}={\sigma }_{n}· \mathrm{t}\mathrm{a}\mathrm{n}\left[JRC· \mathrm{l}\mathrm{o}{\mathrm{g}}_{10}\left(\frac{JCS}{{\sigma }_{n}}\right)+{\varphi }_{b}\right] $ Barton(1973) $ {\tau }_{p}={\sigma }_{n}· \mathrm{t}\mathrm{a}\mathrm{n}\left[JRC· JMC· \mathrm{l}\mathrm{o}{\mathrm{g}}_{10}\left(\frac{JCS}{{\sigma }_{n}}\right)+{\varphi }_{b}\right] $ $ JMC $为节理吻合系数 Zhao(1997) $ {\tau }_{p}={\sigma }_{n}· \mathrm{t}\mathrm{a}\mathrm{n}\left[JRC· \mathrm{l}\mathrm{o}{\mathrm{g}}_{10}\left(\frac{JCS}{{\sigma }_{n}}\right)+{\varphi }_{b}\right]+\frac{\pi }{2}· \mathrm{t}\mathrm{a}\mathrm{n}i $ $ i $为起伏角 彭卫和蒋云昕(2006) $ {\tau }_{p}={\sigma }_{n}· \mathrm{t}\mathrm{a}\mathrm{n}\left[f\left(D\right)· \mathrm{l}\mathrm{o}{\mathrm{g}}_{10}\left(\frac{JCS}{{\sigma }_{n}}\right)+{\varphi }_{b}\right] $ 分形维数$ D $的函数$ f\left(D\right) $,$ f\left(D\right)=6.12D-13.53 $ 尹红梅等(2011) $ {\tau }_{p}={\sigma }_{n}· \mathrm{t}\mathrm{a}\mathrm{n}\left[\alpha · JRC· \mathrm{l}\mathrm{o}{\mathrm{g}}_{10}\left(\frac{JCS}{2{\sigma }_{n}}+\frac{JCS-C}{C-{\sigma }_{n}}\right)+{\varphi }_{b}\right] $ $ \alpha $为拟合参数;$ C $为材料强度修正基准值 邢文政等(2021) 注:基本参数$ {\tau }_{p} $为峰值剪切强度,$ {\sigma }_{n} $为作用在接触面上的法向应力;$ {\varphi }_{b} $为节理面基本摩擦角;$ JCS $结构面表面抗压强度. 表 3 岩体结构分类和岩质斜坡结构分类方案汇总
Table 3. Summary of rock mass structure classification and rock slope structure classification
岩体结构和岩质斜坡结构分类 参考文献 整体块状结构(Ⅰ)、层状结构(Ⅱ)、碎裂结构(Ⅲ)、散体结构(Ⅳ).Ⅰ包含整体结构和块状结构;Ⅱ包括层状结构和薄层状结构;Ⅲ包括镶嵌结构、层状碎裂结构和碎裂结构 谷德振(1979) Ⅰ级岩体结构(块裂结构、板裂结构), Ⅱ级岩体结构(碎裂结构、断续结构、完整结构)和过渡型岩体结构(散体结构).由结构面类型、切割程度及结构体类型划分岩体结构,将地质体抽象为水平层状岩体、缓倾层状岩体、陡倾层状岩体、陡立层状岩体、褶曲岩体、完整块状岩体、碎裂块状岩体、盐溶化块状岩体8种地质模型 孙广忠(1993) 5类典型边坡工程地质模型:金川模型、葛洲坝模型、盐池河模型、白灰厂模型和塘岩光模型 孙玉科(2003) 5类边坡结构类型:顺层边坡、平缓软硬岩层互层边坡、滑崩堆积体边坡、溶塌角砾岩边坡、层状碎裂岩体 殷跃平(2005) 平缓层状岩体、缓倾顺向层状岩体、中倾顺向层状岩体、变角倾顺向层状岩体、陡倾顺向层状岩体、陡立-逆向层状岩体、逆向层状岩体、平缓上硬下软层状岩体、逆向上硬下软层状岩体、两组(或以上)裂隙面控制的岩体、岩层面和裂隙面组合岩体 李铁锋等(2002) 软弱结构面类(堆积层顺层、堆积层切层、堆积层斜层、半成岩顺层、粘土水平层、基岩切层、基岩水平层、基岩顺岩、基岩断层面切层、基岩断层面顺层)和软弱夹层类(膨胀土顺层、膨胀土水平层、基岩顺层、基岩水平层) 乔建平(2002) 将岩质高陡边坡,划分为层状介质边坡和非层状介质边坡,前者根据边坡介质类型、控制性地质结构面倾角、控制性地质结构面与边坡主临空面的倾向夹角进一步细分,后者进一步分为块状结构坡、碎裂结构坡、散体结构坡 伍法权(2004) 表 4 不同尺度调查和实测内容及方法
Table 4. Field investigation methods at different scales
调查尺度 调查内容 调查方法 调查成果 区域 区域地质构造、典型构造单元间过渡、宏观地形地貌 区域基础调查成果核查、遥感解译 区域构造纲要、地貌单元及其组合关系和遥感解译图 构造单元 主构造线形迹,各类动力地质现象 无人机和面上调查 构造单元的构造线和格架 局部岩体或掌子面 结构面分布、丰枯两季岩壁温度 三维激光扫描、搭载RTK和热红外的无人机测量 掌子面或路堑边坡宏观结构面分布图、岩溶、日间(早中晚)温度分布等 小构造带或露头 结构面形态参数 拉线法或分组测量法实测结构面几何和含水参数测量 构造带素描图、结构面统计结果、湿度 岩石或手标本 岩石矿物及其变形构造,定点定向取样 肉眼、放大镜、回弹锤、激光扫描仪等;取样 标本素描图、岩石标本 表 5 不同尺度岩体结构演化机理数值模拟方案
Table 5. Numerical simulation program of rock mass structure evolution mechanism at different scales
空间尺度 时间尺度 模拟目的 推荐方法 单元划分依据 初始及边界条件 区域尺度 演化历史各期次构造活动 各期构造活动区域应力和变形规律,仅模拟相对量 有限元或有限差分法 岩组为分区单元,根据温压环境和地质作用确定地质模型 原岩沉积为D1期构造活动初始条件,D1期模拟结果为D2期初始条件,依次类推;挤压、拉伸施加应力边界;构造抬升、侵位施加位移边界 构造单元 主构造及其叠加构造活动 岩石综合体为分区单元,据地质模型求局部模型 据主构造期前地应力确定初始条件;以区域尺度主构造期和叠加构造的应力和变形施加边界条件 局部岩体 主构造期内 构造单元内岩体变形和破裂 有限元、有限差分或离散元 工程地质岩组和主要结构面 根据构造单元模拟结果确定初始和边界条件 岩石 主构造期内 岩石变形与破坏 岩石矿物类型、排布、微裂隙 局部岩体模拟结果确定初始和边界条件 -
[1] Agliardi, F., Riva, F., Barbarano, M., et al., 2019. Effects of Tectonic Structures and Long-Term Seismicity on Paraglacial Giant Slope Deformations: Piz Dora (Switzerland). Engineering Geology, 263: 105353. https://doi.org/10.1016/j.enggeo.2019.105353 [2] Assali, P., Grussenmeyer, P., Villemin, T., et al., 2014. Surveying and Modeling of Rock Discontinuities by Terrestrial Laser Scanning and Photogrammetry: Semi-Automatic Approaches for Linear Outcrop Inspection. Journal of Structural Geology, 66: 102-114. https://doi.org/10.1016/j.jsg.2014.05.014 [3] Barton, N., 1973. Review of a New Shear-Strength Criterion for Rock Joints. Engineering Geology, 7(4): 287-332. https://doi.org/10.1016/0013-7952(73)90013-6 [4] Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008 [5] Bons, P. D., Elburg, M. A., Gomez-Rivas, E., 2012. A Review of the Formation of Tectonic Veins and Their Microstructures. Journal of Structural Geology, 43: 33-62. https://doi.org/10.1016/j.jsg.2012.07.005 [6] Boyd, D. L., Walton, G., Trainor-Guitton, W., 2019. Quantifying Spatial Uncertainty in Rock through Geostatistical Integration of Borehole Data and a Geologist's Cross-Section. Engineering Geology, 260: 105246. https://doi.org/10.1016/j.enggeo.2019.105246 [7] Buyer, A., Aichinger, S., Schubert, W., 2020. Applying Photogrammetry and Semi-Automated Joint Mapping for Rock Mass Characterization. Engineering Geology, 264: 105332. https://doi.org/10.1016/j.enggeo.2019.105332 [8] Celestino, M. A. L., de Miranda, T. S., Mariano, G., et al., 2020. Fault Damage Zones Width: Implications for the Tectonic Evolution of the Northern Border of the Araripe Basin, Brazil, NE Brazil. Journal of Structural Geology, 138: 104116. https://doi.org/10.1016/j.jsg.2020.104116 [9] Chai, B., Tao, Y. Y., Du, J., et al., 2020. Energetics Parameter Estimation of Jointed Rock Mass Based on Hoek-Brown Failure Criterion. Bulletin of Geological Science and Technology, 39(1): 78-85(in Chinese with English abstract). [10] Chang, X., Zhao, H. B., Cheng, L., 2020. Fracture Propagation and Coalescence at Bedding Plane in Layered Rocks. Journal of Structural Geology, 141: 104213. https://doi.org/10.1016/j.jsg.2020.104213 [11] Chen, N., Cai, X. M., Xia, J. W., et al., 2021. Intelligent Interpretation of Rock Mass Discontinuity Based on Three-Dimensional Laser Point Cloud. Earth Science, 46(7): 2351-2361(in Chinese with English abstract). [12] Dong, Y. H., Song, F., Zhou, P. P., et al., 2018. Development of the Granite Microcracks in Bayannuoergong, Alxa, Inner Mongolia. Journal of Engineering Geology, 26(3): 572-582(in Chinese with English abstract). [13] Dutta, D., Mukherjee, S., 2019. Opposite Shear Senses: Geneses, Global Occurrences, Numerical Simulations and a Case Study from the Indian Western Himalaya. Journal of Structural Geology, 126: 357-392. https://doi.org/10.1016/j.jsg.2019.05.008 [14] Evans, M. A., Fischer, M. P., 2012. On the Distribution of Fluids in Folds: A Review of Controlling Factors and Processes. Journal of Structural Geology, 44: 2-24. https://doi.org/10.1016/j.jsg.2012.08.003 [15] Feng, J. W., Shi, S., Zhou, Z. H., et al., 2019. Characterizing the Influence of Interlayers on the Development and Distribution of Fractures in Deep Tight Sandstones Using Finite Element Method. Journal of Structural Geology, 123: 81-95. https://doi.org/10.1016/j.jsg.2019.03.009 [16] Filippi, M., Bruthans, J., Řihošek, J., et al., 2018. Arcades: Products of Stress-Controlled and Discontinuity-Related Weathering. Earth-Science Reviews, 180: 159-184. https://doi.org/10.1016/j.earscirev.2018.03.012 [17] Furuki, H., Chigira, M., 2019. Structural Features and the Evolutionary Mechanisms of the Basal Shear Zone of a Rockslide. Engineering Geology, 260: 105214. doi: 10.1016/j.enggeo.2019.105214 [18] Ge, Y. F., Tang, H. M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592(in Chinese with English abstract). [19] Goudie, A. S., 2016. Quantification of Rock Control in Geomorphology. Earth-Science Reviews, 159: 374-387. https://doi.org/10.1016/j.earscirev.2016.06.012 [20] Gu, D. Z., 1979. Rock Mass Engineering Geomechanics Foundation. Science Press, Beijing, 230-243(in Chinese). [21] Guo, C. B., Du, Y. B., Zhang, Y. S., et al., 2015. Geohazard Effects of the Xianshuihe Fault and Characteristics of Typical Landslides in Western Sichuan. Geological Bulletin of China, 34(1): 121-134 (in Chinese with English abstract). [22] Han, S., Li, M. C., Wang, G., 2020. Copula-Based Simulating and Analyzing Methods of Rock Mass Fractures. Computers and Geotechnics, 127: 103779. https://doi.org/10.1016/j.compgeo.2020.103779 [23] Hoek, E., Brown, E. T., 2019. The Hoek-Brown Failure Criterion and GSI - 2018 Edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3): 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001 [24] Huang, L. C., Baud, P., Cordonnier, B., et al., 2019. Synchrotron X-Ray Imaging in 4D: Multiscale Failure and Compaction Localization in Triaxially Compressed Porous Limestone. Earth and Planetary Science Letters, 528: 115831. https://doi.org/10.1016/j.epsl.2019.115831 [25] Huang, R. Q., Qi, S. W., 2017. Engineering Geology: Review and Prospect of Past Ten Years in China. Journal of Engineering Geology, 25(2): 257-276(in Chinese with English abstract). [26] Huang, R. Q., Xu, M., Chen, J. P., et al., 2004. Fine Description of Complex Rock Mass Structure and Its Engineering Application. Science Press, Beijing, 66-83 (in Chinese). [27] Hudleston, P. J., Treagus, S. H., 2010. Information from Folds: A Review. Journal of Structural Geology, 32(12): 2042-2071. https://doi.org/10.1016/j.jsg.2010.08.011 [28] Huo, L., Wang, G. B., Yang, C. H., et al., 2019. Geometric Characteristics of Multi-Scale Discontinuities of Shazaoyuan Granite Masses in Beishan. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1848-1859(in Chinese with English abstract). [29] Jaboyedoff, M., Penna, I., Pedrazzini, A., et al., 2013. An Introductory Review on Gravitational-Deformation Induced Structures, Fabrics and Modeling. Tectonophysics, 605: 1-12. https://doi.org/10.1016/j.tecto.2013.06.027 [30] Ju, Y., Ren, Z. Y., Zheng, J. T., et al., 2020. Quantitative Visualization Methods for Continuous Evolution of Three-Dimensional Discontinuous Structures and Stress Field in Subsurface Rock Mass Induced by Excavation and Construction——An Overview. Engineering Geology, 265: 105443. https://doi.org/10.1016/j.enggeo.2019.105443 [31] Kruhl, J. H., 2013. Fractal-Geometry Techniques in the Quantification of Complex Rock Structures: A Special View on Scaling Regimes, Inhomogeneity and Anisotropy. Journal of Structural Geology, 46: 2-21. https://doi.org/10.1016/j.jsg.2012.10.002 [32] Lan, H. X., Zhang, Y. X., Wu, Y. M., 2019. Effect of Rock Mass Structure on the Dynamics of Long Runout Landslide. Journal of Engineering Geology, 27(1): 108-122(in Chinese with English abstract). [33] Le, Q. L., Wang, H. D., Gao, Y. L., et al., 2015. An Analysis of Disaster-Pregnant Geological Environment Conditions of the Wangxia Unstable Rock Mass in the Three Gorges Reservoir. Acta Geoscientica Sinica, 36(2): 204-212(in Chinese with English abstract). [34] Lei, G. W., Yang, C. H., Wang, G. B., et al., 2016. The Development Law and Mechanical Causes of Fault Influenced Zone. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241(in Chinese with English abstract). [35] Lempp, C., Menezes, F. F., Schöner, A., 2020. Evolution of Shear Bands and Cracks in Multi-Stage Triaxial Tests with Water-Saturated Sandstone: A Study of Micro-Tectonics with a Fractal Perspective. Journal of Structural Geology, 138: 104092. https://doi.org/10.1016/j.jsg.2020.104092 [36] Li, H., Lin, C. Y., Ren, L. H., et al., 2020. An Integrated Quantitative Modeling Approach for Fault-Related Fractures in Tight Sandstone Reservoirs. Journal of Petroleum Science and Engineering, 194: 107552. https://doi.org/10.1016/j.petrol.2020.107552 [37] Li, M. C., Zhang, Y., Zhou, S. B., 2018. Stability Analysis of Stochastic Rock Blocks Based on Three-Dimensional Fracture Network Rock Mass Structure Model. Journal of Tianjin University (Science and Technology), 51(4): 331-338(in Chinese with English abstract). [38] Li, S. C., Liu, B., Xu, X. J., et al., 2017. An Overview of ahead Geological Prospecting in Tunneling. Tunnelling and Underground Space Technology, 63: 69-94. https://doi.org/10.1016/j.tust.2016.12.011 [39] Li, T. F., Pan, M., Liu, R. X., 2002. Analysis of the Modes of Rock Mass Structure on Slope Stability. Acta Scicentiarum Naturalum Universitis Pekinesis, 38(2): 239-244(in Chinese with English abstract). [40] Li, X. J., Chen, Z. Y., Chen, J. Q., et al., 2019. Automatic Characterization of Rock Mass Discontinuities Using 3D Point Clouds. Engineering Geology, 259: 105131. https://doi.org/10.1016/j.enggeo.2019.05.008 [41] Liang, J., Cui, S. H., Pei, X. J., et al., 2021. Initiation Mechanism of Earthquake-Induced Large Landslides Considering Structural Damage. Chinese Journal of Geotechnical Engineering, 43(6): 1039-1049(in Chinese with English abstract). [42] Liang, K., Xie, L. Z., He, B., et al., 2021. Effects of Grain Size Distributions on the Macro-Mechanical Behavior of Rock Salt Using Micro-Based Multiscale Methods. International Journal of Rock Mechanics and Mining Sciences, 138: 104592. https://doi.org/10.1016/j.ijrmms.2020.104592 [43] Lisjak, A., Grasselli, G., 2014. A Review of Discrete Modeling Techniques for Fracturing Processes in Discontinuous Rock Masses. Journal of Rock Mechanics and Geotechnical Engineering, 6(4): 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007 [44] Liu, X. L., Han, G. F., Wang, E. Z., et al., 2018. Multiscale Hierarchical Analysis of Rock Mass and Prediction of Its Mechanical and Hydraulic Properties. Journal of Rock Mechanics and Geotechnical Engineering, 10(4): 694-702. https://doi.org/10.1016/j.jrmge.2018.04.003 [45] Liu, Y. R., Tang, H. M., 2009. Rock Mass Mechanics. Chemical Industry Press, Beijing, 14-15 (in Chinese). [46] Matsuura, Y., Hayano, A., Itakura, K., et al., 2019. Estimation of Planes of a Rock Mass in a Gallery Wall from Point Cloud Data Based on MD PSO. Applied Soft Computing, 84: 105737. https://doi.org/10.1016/j.asoc.2019.105737 [47] Morley, C. K., von Hagke, C., Hansberry, R., et al., 2018. Review of Major Shale-Dominated Detachment and Thrust Characteristics in the Diagenetic Zone: Part II, Rock Mechanics and Microscopic Scale. Earth-Science Reviews, 176: 19-50. https://doi.org/10.1016/j.earscirev.2017.09.015 [48] Nevitt, J. M., Warren, J. M., Kumamoto, K. M., et al., 2019. Using Geologic Structures to Constrain Constitutive Laws not Accessible in the Laboratory. Journal of Structural Geology, 125: 55-63. https://doi.org/10.1016/j.jsg.2018.06.006 [49] Pan, J. Z., 1980. Sliding Stability and Landslide Analysis of Buildings. China Water Power Press, Beijing (in Chinese). [50] Pedrazzini, A., Jaboyedoff, M., Loye, A., et al., 2013. From Deep Seated Slope Deformation to Rock Avalanche: Destabilization and Transportation Models of the Sierre Landslide (Switzerland). Tectonophysics, 605: 149-168. https://doi.org/10.1016/j.tecto.2013.04.016 [51] Peng, J. B., Ma, R. Y., Shao, T. Q., 2004. Basic Relation between Structural Geology and Engineering Geology. Earth Science Frontiers, 11(4): 535-549(in Chinese with English abstract). [52] Peng, W., Jiang, Y. X., 2006. Mechanical Properties of Barton's Empirical Method for Shear Strength of Rock Mass Structural Discontinuities. In: Sun, Y. F., ed., Collection of Academic Papers on China Communications Civil Engineering. Xi'an Jiaotong University Press, Xi'an, 903-906(in Chinese). [53] Qiao, J. P., 2002. Structure and Shape of Landslide. Chinese Journal of Rock Mechanics and Engineering, 21(9): 1355-1358(in Chinese with English abstract). [54] Riebe, C. S., Hahm, W. J., Brantley, S. L., 2017. Controls on Deep Critical Zone Architecture: A Historical Review and Four Testable Hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. https://doi.org/10.1002/esp.4052 [55] Shang, J., West, L. J., Hencher, S. R., et al., 2018. Geological Discontinuity Persistence: Implications and Quantification. Engineering Geology, 241: 41-54. https://doi.org/10.1016/j.enggeo.2018.05.010 [56] Shang, Y. J., Chen, M. X., Wang, K. Y., et al., 2013. Application Comparison of Engineering Geological Rock Group and Rock Mass Classification in Rock Engineering. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3205-3214 (in Chinese with English abstract). [57] Shirole, D., Walton, G., Hedayat, A., 2020. Experimental Investigation of Multi-Scale Strain-Field Heterogeneity in Rocks. International Journal of Rock Mechanics and Mining Sciences, 127: 104212. https://doi.org/10.1016/j.ijrmms.2020.104212 [58] Stead, D., Wolter, A., 2015. A Critical Review of Rock Slope Failure Mechanisms: The Importance of Structural Geology. Journal of Structural Geology, 74: 1-23. https://doi.org/10.1016/j.jsg.2015.02.002 [59] Sun, G. Z., 1993. On the Theory of Structure-Controlled Rockmass. Journal of Engineering Geology, 1(1): 14-18(in Chinese with English abstract). [60] Sun, Y. K., 2003. Discussion on the Development and Innovation of Engineering Geology (Ⅵ): Preliminary Discussion on Engineering Geology Model. Geological Exploration for Non-Ferrous Metals, (2): 27-28, 34(in Chinese). [61] Wang, C. S., Wang, L. Q., Karakus, M., 2019. A New Spectral Analysis Method for Determining the Joint Roughness Coefficient of Rock Joints. International Journal of Rock Mechanics and Mining Sciences, 113: 72-82. https://doi.org/10.1016/j.ijrmms.2018.11.009 [62] Weidinger, J. T., 2006. Predesign, Failure and Displacement Mechanisms of Large Rockslides in the Annapurna Himalayas, Nepal. Engineering Geology, 83(1-3): 201-216. https://doi.org/10.1016/j.enggeo.2005.06.032 [63] West, N., Kirby, E., Nyblade, A. A., et al., 2019. Climate Preconditions the Critical Zone: Elucidating the Role of Subsurface Fractures in the Evolution of Asymmetric Topography. Earth and Planetary Science Letters, 513: 197-205. doi: 10.1016/j.epsl.2019.01.039 [64] Wu, A. Q., Fan, L., Zhong, Z. W., et al., 2020. Development of an In-Situ Hydro-Mechanical Coupling True Triaxial Test System for Fractured Rock Mass and Its Application. Chinese Journal of Rock Mechanics and Engineering, 39(11): 2161-2171(in Chinese with English abstract). [65] Wu, F. Q., 2004. Engineering Geology Assessment Procedure for Deformation and Stability of High Steep Rock Slopes. Journal of Engineering Geology, (Suppl. 1): 199-211 (in Chinese with English abstract). [66] Wu, F. Q., Qi, S. W., 2017. Summary of the 10th Congress of Engineering Geology of China. Journal of Engineering Geology, 25(1): 246-256 (in Chinese with English abstract). [67] Wu, F. Q., Wu, J., Bao, H., et al., 2021. Advances in Statistical Mechanics of Rock Masses and Its Engineering Applications. Journal of Rock Mechanics and Geotechnical Engineering, 13(1): 22-45. https://doi.org/10.1016/j.jrmge.2020.11.003 [68] Xia, L., Xie, J., Yu, Q. C., 2019. Influence of Statistical Distribution Dispersion in the Fracture Size on Blockiness REV of Fractured Rock Masses. Hydrogeology & Engineering Geology, 46(4): 112-118 (in Chinese with English abstract). [69] Xia, Y. J., Zhang, C. Q., Zhou, H., et al., 2020. Mechanical Behavior of Structurally Reconstructed Irregular Columnar Jointed Rock Mass Using 3D Printing. Engineering Geology, 268: 105509. https://doi.org/10.1016/j.enggeo.2020.105509 [70] Xing, W. Z., Wang, S., Fan, P. X., et al., 2021. Experimental Study on Direct Shear Behavior of Split Rock Joints. Journal of Central South University (Science and Technology), 52(8): 2933-2944(in Chinese with English abstract). [71] Xu, L., Chen, N. C., Chen, Z. Q., et al., 2021. Spatiotemporal Forecasting in Earth System Science: Methods, Uncertainties, Predictability and Future Directions. Earth-Science Reviews, 222: 103828. https://doi.org/10.1016/j.earscirev.2021.103828 [72] Yin, H. M., Zhang, Y. H., Kong, X. H., 2011. Estimation of Joint Shear Strength Based on Fractal Method. Hydrogeology & Engineering Geology, 38(4): 58-62(in Chinese with English abstract). [73] Yin, Y. P., 2005. Human-Cutting Slope Structure and Failure Pattern at the Three Gorges Reservoir. Journal of Engineering Geology, 13(2): 145-154 (in Chinese with English abstract). [74] Yu, W. J., Gao, Q., Jin, X. Q., et al., 2013. Field Investigation and Mechanics Characteristics Analysis of Deep Rock Mass Affected by Fault Structure. Progress in Geophysics, 28(1): 488-497(in Chinese with English abstract). [75] Zhang, K., Wu, F. Q., Sha, P., et al., 2019. Geological Cataloging Method with Oblique Photography of Uav for Open-Pit Slope and Its Application. Journal of Engineering Geology, 27(6): 1448-1455 (in Chinese with English abstract). [76] Zhang, Y., Wong, L. N. Y., 2018. A Review of Numerical Techniques Approaching Microstructures of Crystalline Rocks. Computers and Geosciences, 115: 167-187. https://doi.org/10.1016/j.cageo.2018.03.012 [77] Zhang, Y. S., Ba, R. J., Ren, S. S., et al., 2020. An Analysis of Geo-Mechanism of the Baige Landslide in Jinsha River, Tibet. Geology in China, 47(6): 1637-1645(in Chinese with English abstract). [78] Zhao, J., 1997. Joint Surface Matching and Shear Strength Part B: JRC-JMC Shear Strength Criterion. International Journal of Rock Mechanics and Mining Sciences, 34(2): 179-185. https://doi.org/10.1016/s0148-9062(96)00063-0 [79] 柴波, 陶阳阳, 杜娟, 等, 2020. 基于Hoek-Brown准则的节理岩体能量参数估算. 地质科技通报, 39(1): 78-85. [80] 陈娜, 蔡小明, 夏金梧, 等, 2021. 基于三维激光点云技术的岩体结构面智能解译. 地球科学, 46(7): 2351-2361. doi: 10.3799/dqkx.2020.282 [81] 董艳辉, 宋凡, 周鹏鹏, 等, 2018. 巴彦诺日公地段花岗岩微裂隙发育特征研究. 工程地质学报, 26(3): 572-582. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803002.htm [82] 葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117 [83] 谷德振, 1979. 岩体工程地质力学基础. 北京: 科学出版社. 230-243. [84] 郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理. 地质通报, 34(1): 121-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201501010.htm [85] 黄润秋, 祁生文, 2017. 工程地质: 十年回顾与展望. 工程地质学报, 25(2): 257-276. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702001.htm [86] 黄润秋, 许模, 陈剑平, 等, 2004. 复杂岩体结构精细描述及其工程应用. 北京: 科学出版社, 66-83. [87] 霍亮, 王贵宾, 杨春和, 等, 2019. 北山沙枣园花岗岩岩体不同尺度结构面几何特征研究. 岩石力学与工程学报, 38(9): 1848-1859. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909013.htm [88] 兰恒星, 仉义星, 伍宇明, 2019. 岩体结构效应与长远程滑坡动力学. 工程地质学报, 27(1): 108-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901012.htm [89] 乐琪浪, 王洪德, 高幼龙, 等, 2015. 三峡库区望霞危岩体孕灾地质环境条件分析. 地球学报, 36(2): 204-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502010.htm [90] 雷光伟, 杨春和, 王贵宾, 等, 2016. 断层影响带的发育规律及其力学成因. 岩石力学与工程学报, 35(2): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602004.htm [91] 李明超, 张野, 周四宝, 2018. 基于岩体三维裂隙网络模型的随机块体稳定分析. 天津大学学报(自然科学与工程技术版), 51(4): 331-338. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201804001.htm [92] 李铁锋, 潘懋, 刘瑞珣, 2002. 基岩斜坡变形与破坏的岩体结构模式分析. 北京大学学报(自然科学版), 38(2): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200202019.htm [93] 梁靖, 崔圣华, 裴向军, 等, 2021. 考虑岩体构造损伤的强震大型滑坡启动成因. 岩土工程学报, 43(6): 1039-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106011.htm [94] 刘佑荣, 唐辉明, 2009. 岩体力学. 北京: 化学工业出版社, 14-15. https://cdmd.cnki.com.cn/Article/CDMD-11415-1015391330.htm [95] 潘家铮, 1980. 建筑物的抗滑稳定和滑坡分析. 北京: 水利出版社. [96] 彭建兵, 马润勇, 邵铁全, 2004. 构造地质与工程地质的基本关系. 地学前缘, 11(4): 535-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404029.htm [97] 彭卫, 蒋云昕, 2006. 岩体结构面抗剪强度Barton经验估算方法的力学特性. 见: 孙永福编, 中国交通土建工程学术论文集. 西安: 西安交通大学出版社, 903-906. [98] 乔建平, 2002. 滑坡体结构与坡形. 岩石力学与工程学报, 21(9): 1355-1358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200209016.htm [99] 尚彦军, 陈明星, 王开洋, 等, 2013. 工程地质岩组与岩体质量分级在岩石工程中应用对比. 岩石力学与工程学报, 32(增刊2): 3205-3214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2029.htm [100] 孙广忠, 1993. 论"岩体结构控制论". 工程地质学报, 1(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ199301003.htm [101] 孙玉科, 2003. 工程地质学发展与创新思路探讨之六: 《工程地质模型》初论. 岩土工程界, (2): 27-28, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200302030.htm [102] 邬爱清, 范雷, 钟作武, 等, 2020. 现场裂隙岩体水力耦合真三轴试验系统研制与应用. 岩石力学与工程学报, 39(11): 2161-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011001.htm [103] 伍法权, 2004. 岩质高陡边坡变形与稳定性评价工程地质工作方法. 工程地质学报, (增刊1): 199-211. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200400001041.htm [104] 伍法权, 祁生文, 2017. 第10届全国工程地质大会学术总结. 工程地质学报, 25(1): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701032.htm [105] 夏露, 谢娟, 于青春, 2019. 裂隙延展性统计分布离散性对岩体块体化程度REV的影响. 水文地质工程地质, 46(4): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904016.htm [106] 邢文政, 王硕, 范鹏贤, 等, 2021. 劈裂岩体结构面直接剪切试验研究. 中南大学学报(自然科学版), 52(8): 2933-2944 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202108037.htm [107] 尹红梅, 张宜虎, 孔祥辉, 2011. 结构面剪切强度参数三维分形估算. 水文地质工程地质, 38(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201104012.htm [108] 殷跃平, 2005. 三峡库区边坡结构及失稳模式研究. 工程地质学报, 13(2): 145-154. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200502000.htm [109] 余伟健, 高谦, 靳学奇, 等, 2013. 受断层构造影响的深部岩体现场调查及力学特征分析. 地球物理学进展, 28(1): 488-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201301055.htm [110] 张恺, 伍法权, 沙鹏, 等, 2019. 基于无人机倾斜摄影的矿山边坡岩体结构编录方法与工程应用. 工程地质学报, 27(6): 1448-1455. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906027.htm [111] 张永双, 巴仁基, 任三绍, 等, 2020. 中国西藏金沙江白格滑坡的地质成因分析. 中国地质, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm