Geochronology and Geochemistry of Mesozoic Igneous Rocks in the Hanjiayuanzi⁃Fulin Area of the Erguna Massif: Constraints on the Tectonic Evolution of the Mongol⁃Okhotsk Ocean
-
摘要: 额尔古纳地块东缘韩家园子‒富林地区紧邻蒙古‒鄂霍茨克缝合带,其广泛出露的早侏罗世‒早白垩世火成岩对于完善蒙古‒鄂霍茨克洋俯冲‒闭合历史具有重要意义.本文对韩家园子‒富林地区的中生代火成岩进行岩相学、锆石U-Pb年代学、全岩主‒微量元素地球化学研究.LA-ICP-MS锆石U-Pb结果显示韩家园子钾长花岗岩锆石U-Pb年龄为196±2 Ma,代表其侵位时代为早侏罗世;富林地区光华组粗安岩锆石U-Pb年龄为122±2 Ma,暗示其结晶时代为早白垩世.早侏罗世钾长花岗岩为准铝质的Ⅰ型花岗岩,Mg#值较低(36),Nb/Ta比值(16.55~17.05)接近于原始地幔,暗示岩浆应来源于新生下地壳的部分熔融.同时,钾长花岗岩富集大离子亲石元素Rb、Ba、K,亏损高场强元素Nb、Ta、Ti,与典型弧型火成岩的地球化学特征相一致,结合区域上发育同时代准铝质或弱过铝质Ⅰ型花岗岩的事实,表明其可能与蒙古‒鄂霍茨克洋南向俯冲至额尔古纳地块有关.相比较下,早白垩世粗安岩具有较低的SiO2含量(59.67%~59.93%)和较高的Mg#值(42~43),同时富集大离子亲石元素Rb、Ba、K,亏损高场强元素Nb、Ta、Ti,富集Sr,亏损Th,暗示其可能是富集岩石圈地幔重熔的产物.鉴于区域上其他来源于富集岩石圈地幔的早白垩世钙碱性火山岩呈面状分布的特征,以及早白垩世A型花岗岩和变质核杂岩的存在,暗示粗安岩为蒙古‒鄂霍茨克洋闭合后伸展环境下的产物.结合区域最新火成岩和沉积岩资料,认为蒙古‒鄂霍茨克洋在早侏罗世‒早白垩世发生俯冲‒碰撞‒后碰撞作用,其在大兴安岭北部闭合时间应介于晚侏罗世末期和早白垩世早期(约150~140 Ma).Abstract: The Hanjiayuanzi-Fulin area in the eastern Erguna Massif, located adjacent to the Mongol-Okhotsk suture zone, is characterized by numerous Early Jurassic to Early Cretaceous igneous rocks, which is important to reconstruct the subduction and closure history of the Mongol-Okhotsk Ocean. In this study, we present new petrology, LA-ICP-MS zircon U-Pb ages and whole-rock geochemical data for the Mesozoic igneous rocks from the Hanjiayuanzi-Fulin area. Zircon U-Pb ages of Hanjiayuanzi K-feldspar granite and Fulin trachyandesite are 196±2 Ma and 122±2 Ma, corresponding to the Early Jurassic and Early Cretaceous, respectively. The K-feldspar granite belongs to metaluminous Ⅰ-type granite, with low Mg# value (36) and Nb/Ta ratios (16.55-17.05) close to the primitive mantle, which could be derived from partial melting of the juvenile lower crust. It is enriched in large ion lithophile elements (LILEs, e.g., Rb, Ba, K), and depleted in high field strength elements (HFSEs, e.g., Nb, Ta, Ti), showing the geochemical characteristics of typical arc igneous rocks. Combined with the spatial distribution of contemporary metaluminous-weakly peraluminous Ⅰ-type granites, we propose that the Early Jurassic Hanjiayuanzi K-feldspar granite may be related to the southward subduction of the Mongol-Okhotsk Ocean beneath the Erguna massif. By contrast, the trachyandesite has lower SiO2 contents (59.67%-59.93%), higher Mg# values (42-43), and is also enriched in LILEs and depleted in HFSEs. Besides, it has an enrichment of Sr and depletion of Th, suggesting an origin from the enriched lithospheric mantle. Based on the regional distribution of Early Cretaceous calc-alkaline volcanic rocks, A-type granites and metamorphic core complexes, we suggest that the Early Cretaceous trachyandesite was formed in an extensional environment after the closure of the Mongol-Okhotsk Ocean. Combined with published data from igneous and sedimentary rocks, the closure time of the Mongol-Okhotsk Ocean in the northern Great Xing'an Range is suggested to be between latest Late Jurassic and earliest Early Cretaceous (~150-140 Ma).
-
Key words:
- Mongol-Okhotsk Ocean /
- Erguna massif /
- Early Jurassic /
- Early Cretaceous /
- igneous rocks /
- geochemistry
-
图 1 中亚造山带构造地质单元划分简图(a)、东北地区构造单元简图(b)和韩家园子‒富林地区地质图(c)
a. 据Liu et al.(2017)修改;b. 据Wu et al.(2007)修改;c. 修改自黑龙江省地质矿产局,1961,1:20万《兴隆沟幅》区域地质调查报告;黑龙江地质调查研究总院,2008,1:25万《兴隆幅》区域地质调查报告
Fig. 1. Simplified tectonic map of the Central Asian Orogenic Belt (a), simplified geological map of major tectonic units in the NE China(b), and geological map of the Hanjiayuanzi-Fulin area (c)
图 5 大兴安岭韩家园子‒富林地区火成岩主量元素图解
a. 火成岩硅‒全碱TAS图解,据Le Bas et al.(1986),碱性和亚碱性边界据Irvine and Baragar(1971);b. SiO2⁃K2O图解,据Peccerillo and Taylor(1976);c. 粗安岩的Zr/TiO2⁃SiO2关系,据Winchester and Floyd(1977);d. 钾长花岗岩的A/CNK⁃A/NK图解
Fig. 5. Major element diagrams of igneous rocks in the Hanjiayuanzi⁃Fulin area, Great Xing'an Range
图 6 大兴安岭韩家园子‒富林地区火成岩稀土元素球粒陨石标准化图(a,c)和微量元素原始地幔标准化图(b,d)
球粒陨石和原始地幔数值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a, c) and primitive-mantle normalized spidergrams (b, d) of igneous rocks from the Hanjiayuanzi-Fulin area, Great Xing'an Range
图 7 大兴安岭韩家园子地区早侏罗世钾长花岗岩岩石成因类型判别图
Fig. 7. 10 000×Ga/Al‒Na2O+K2O (a), 10 000×Ga/Al‒Nb (b), and Zr+Nb+Ce+Y‒(Na2O+K2O)/CaO (c) diagrams of the Early Jurassic K-feldspar granite of Hanjiayuanzi area, Great Xing'an Range
图 10 蒙古‒鄂霍茨克洋早侏罗世‒早白垩世构造演化模式
Fig. 10. Tectonic model of the Mongol-Okhotsk Ocean during the Early Jurassic to Early Cretaceous
表 1 韩家园子钾长花岗岩和富林粗安岩锆石LA⁃ICP⁃MS同位素分析结果
Table 1. LA⁃ICP⁃MS Zircon U⁃Pb analytical data of the Hanjiayuanzi K⁃feldspar granite and the Fulin trachyandesite
样品 Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 谐和度(%) 含量(10‒6) 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ *18XL-54-01 63 232 0.27 0.087 2 0.008 0 0.405 8 0.046 0 0.031 7 0.000 7 1 365 179 346 33 201 3 46 18XL-54-02 122 228 0.54 0.050 1 0.001 9 0.216 0 0.008 9 0.031 3 0.000 4 198 89 199 7 199 3 99 18XL-54-03 311 446 0.70 0.051 5 0.001 3 0.214 3 0.005 7 0.030 2 0.000 4 265 57 197 5 191 2 97 18XL-54-04 95 108 0.88 0.050 0 0.002 7 0.207 3 0.011 3 0.030 1 0.000 5 195 126 191 9 191 3 99 18XL-54-05 58 81 0.71 0.050 2 0.003 5 0.208 9 0.013 3 0.030 8 0.000 5 211 166 193 11 195 3 98 18XL-54-06 82 117 0.70 0.050 9 0.002 0 0.214 2 0.008 6 0.030 6 0.000 4 235 93 197 7 194 2 98 *18XL-54-07 256 631 0.41 0.064 1 0.004 1 0.290 0 0.018 4 0.032 9 0.000 4 743 131 259 14 209 3 78 18XL-54-08 211 179 1.18 0.049 9 0.002 4 0.208 6 0.010 3 0.030 5 0.000 5 187 111 192 9 194 3 99 18XL-54-09 196 296 0.66 0.049 9 0.001 7 0.210 9 0.007 5 0.030 7 0.000 4 191 114 194 6 195 2 99 18XL-54-10 242 452 0.54 0.048 4 0.001 4 0.212 6 0.006 9 0.031 8 0.000 5 117 66 196 6 202 2 96 18XL-54-11 62 88 0.71 0.048 5 0.002 7 0.207 3 0.011 0 0.031 1 0.000 5 124 126 191 9 197 3 96 18XL-54-12 360 298 1.21 0.049 2 0.002 0 0.213 9 0.008 7 0.031 8 0.000 4 167 96 197 7 202 3 97 18XL-54-13 122 141 0.87 0.049 2 0.001 9 0.213 3 0.007 4 0.031 8 0.000 5 167 89 196 6 202 3 97 18XL-54-14 127 182 0.7 0.049 9 0.002 2 0.211 6 0.010 9 0.030 6 0.000 5 187 102 195 9 194 3 99 18XL-54-15 141 207 0.68 0.050 9 0.001 9 0.212 3 0.009 0 0.030 3 0.000 5 235 87 195 8 192 2 98 18XL-54-16 106 115 0.92 0.049 1 0.002 7 0.209 9 0.011 1 0.031 4 0.000 5 154 130 193 9 199 3 97 18XL-54-17 56 107 0.52 0.049 8 0.002 5 0.207 6 0.010 7 0.030 3 0.000 6 183 117 192 9 193 3 99 18XL-54-18 105 255 0.41 0.050 6 0.001 7 0.222 1 0.008 3 0.031 7 0.000 5 233 76 204 7 201 3 98 18XL-54-19 73 96 0.76 0.052 5 0.003 1 0.210 5 0.012 1 0.029 5 0.000 5 309 137 194 10 187 3 96 18XL-54-20 124 130 0.96 0.050 7 0.004 1 0.207 2 0.019 3 0.030 8 0.000 8 233 186 191 16 195 4 97 18XL-54-21 102 122 0.84 0.050 0 0.002 8 0.209 8 0.012 0 0.030 3 0.000 5 198 131 193 10 193 3 99 *18XL-54-22 101 115 0.88 0.055 2 0.003 8 0.214 6 0.013 2 0.028 4 0.000 5 420 154 197 11 181 3 91 18XL-54-23 143 148 0.96 0.049 0 0.002 4 0.212 4 0.010 7 0.031 5 0.000 6 150 113 196 9 200 3 97 *18XL-54-24 104 133 0.78 0.052 6 0.004 1 0.210 5 0.019 9 0.028 8 0.000 5 322 178 194 17 183 3 94 *18XL-54-25 43 55 0.77 0.054 8 0.004 9 0.207 5 0.017 6 0.027 8 0.000 5 467 204 191 15 177 3 91 *18XL-83-01 349 175 1.99 0.045 7 0.002 8 0.120 4 0.007 3 0.019 1 0.000 5 -17 81 115 7 122 3 94 18XL-83-02 289 235 1.23 0.050 0 0.004 9 0.137 3 0.013 3 0.019 9 0.000 6 193 159 131 12 127 4 96 *18XL-83-03 100 184 0.54 0.055 5 0.001 6 0.519 2 0.016 0 0.067 9 0.001 7 430 32 425 11 424 10 99 18XL-83-04 249 187 1.33 0.048 6 0.003 5 0.127 9 0.009 1 0.019 1 0.000 5 126 108 122 8 122 3 99 *18XL-83-05 423 331 1.28 0.052 4 0.003 6 0.130 6 0.008 8 0.018 1 0.000 5 302 103 125 8 116 3 92 18XL-83-06 425 374 1.12 0.050 1 0.002 2 0.126 7 0.005 8 0.018 3 0.000 5 199 60 121 5 117 3 96 *18XL-83-07 226 205 1.10 0.051 6 0.002 6 0.130 2 0.006 5 0.018 3 0.000 5 268 68 124 6 117 3 94 18XL-83-08 85 110 0.77 0.047 5 0.004 3 0.124 9 0.011 3 0.019 1 0.000 6 76 142 119 10 122 4 97 18XL-83-09 79 103 0.77 0.048 7 0.003 0 0.128 5 0.007 8 0.019 1 0.000 5 134 89 123 7 122 3 99 18XL-83-10 925 570 1.62 0.049 9 0.002 1 0.127 9 0.005 5 0.018 6 0.000 5 191 55 122 5 119 3 97 *18XL-83-11 130 120 1.08 0.075 9 0.012 9 0.184 0 0.030 4 0.017 6 0.000 7 1 093 368 171 26 112 4 -12 *18XL-83-12 67 81 0.83 0.053 4 0.010 8 0.138 1 0.027 5 0.018 7 0.000 7 348 392 131 24 120 4 -32 18XL-83-13 1 002 665 1.51 0.050 9 0.001 6 0.138 4 0.004 6 0.019 7 0.000 5 234 37 132 4 126 3 95 *18XL-83-14 92 117 0.78 0.051 2 0.006 0 0.138 0 0.015 7 0.019 5 0.000 6 250 264 131 14 125 4 84 *18XL-83-15 111 131 0.85 0.051 4 0.002 9 0.140 2 0.008 0 0.019 8 0.000 5 261 82 133 7 126 3 94 *18XL-83-16 259 261 0.99 0.051 7 0.002 5 0.138 7 0.006 7 0.019 4 0.000 5 274 64 132 6 124 3 93 *18XL-83-17 282 234 1.21 0.054 8 0.001 7 0.508 6 0.016 7 0.067 3 0.001 7 403 34 418 11 420 10 99 *18XL-83-18 59 81 0.72 0.100 7 0.027 6 0.213 6 0.055 8 0.015 4 0.001 4 1 636 376 197 47 98 9 -1 18XL-83-19 156 159 0.98 0.049 7 0.003 0 0.128 4 0.007 6 0.018 8 0.000 5 179 88 123 7 120 3 97 18XL-83-20 72 88 0.81 0.047 1 0.004 1 0.131 3 0.011 4 0.020 2 0.000 6 53 134 125 10 129 4 96 *18XL-83-21 305 177 1.72 0.064 9 0.003 5 0.180 1 0.009 8 0.020 1 0.000 6 770 69 168 8 129 3 69 18XL-83-22 284 229 1.24 0.049 1 0.002 8 0.125 6 0.007 2 0.018 6 0.000 5 150 82 120 6 119 3 99 18XL-83-23 86 109 0.79 0.048 5 0.004 2 0.128 1 0.011 1 0.019 2 0.000 6 124 136 122 10 122 4 99 18XL-83-24 955 632 1.51 0.049 1 0.001 9 0.125 0 0.005 1 0.018 5 0.000 5 151 51 120 5 118 3 98 18XL-83-25 52 80 0.65 0.046 4 0.003 7 0.124 4 0.009 9 0.019 5 0.000 6 17 119 119 9 124 4 95 注:*点号不参与206Pb/238U年龄加权平均值计算. 表 2 韩家园子钾长花岗岩和富林粗安岩主量元素(%)和微量元素(10-6)测试结果
Table 2. Major (%) and trace (10-6) elemental data of the Hanjiayuanzi K-feldspar granite and the Fulin trachyandesite
样品号 18XL-55 18XL-56 18XL-84 18XL-85 岩性 钾长花岗岩 钾长花岗岩 粗安岩 粗安岩 SiO2 69.96 70.01 57.66 57.46 TiO2 0.41 0.40 0.81 0.82 Al2O3 15.04 15.22 17.19 17.27 Fe2O3T 2.62 2.57 5.82 5.86 MgO 0.72 0.72 2.09 2.20 MnO 0.07 0.07 0.11 0.11 CaO 1.86 1.89 3.78 3.56 Na2O 4.27 4.40 4.75 4.96 K2O 4.49 4.37 3.64 3.71 P2O5 0.12 0.11 0.34 0.34 LOI 0.48 0.51 3.35 3.07 Total 100.04 100.27 99.56 99.36 Mg# 36 36 42 43 Sc 6 5 11 12 V 28 27 75 109 Co 4 3 10 11 Ni 5.7 4.0 5.0 4.3 Ga 20.2 19.9 16.3 16.2 Rb 153.8 147.8 70.2 93.5 Ba 1 122 1 001 1 018 1 101 Th 20.2 14.7 4.6 5.0 U 2.9 2.2 1.2 1.2 Nb 16.7 16.4 7.5 7.7 Ta 1.0 1.0 0.5 0.5 Sr 263.7 257.5 748.7 822.8 Y 23.0 22.8 17.4 18.9 Zr 271.5 266.1 154.3 157.6 Hf 5.7 5.7 3.9 4.0 Cs 2.2 2.1 5.3 5.0 La 43.6 36.8 25.2 28.1 Ce 91.1 76.0 52.9 58.5 Pr 8.01 7.25 6.54 7.12 Nd 27.67 25.60 26.80 29.00 Sm 4.68 4.48 5.25 5.68 Eu 1.25 1.20 1.55 1.66 Gd 4.47 4.15 4.56 4.85 Tb 0.60 0.58 0.64 0.68 Dy 3.38 3.32 3.46 3.67 Ho 0.66 0.65 0.68 0.71 Er 2.05 2.01 1.95 2.07 Tm 0.29 0.29 0.26 0.28 Yb 2.03 1.98 1.76 1.81 Lu 0.29 0.30 0.27 0.28 (La/Sm)N 6.02 5.29 3.10 3.20 (La/Yb)N 15.43 13.30 10.29 11.11 A/CNK 0.98 0.99 0.92 0.92 A/NK 1.26 1.27 1.46 1.42 δEu 0.82 0.84 0.94 0.94 ∑REE 190.04 164.49 131.84 144.35 -
[1] Chai, M. C., Wang, Q., Zhao, G. Y., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of Late Mesozoic Volcanic Rocks from Shibazhan-Hanjiayanzi Area of Da Hinggan Mountains and Their Tectonic Significance. Geological Bulletin of China, 37(10): 1866-1881 (in Chinese with English abstract). [2] Chen, C., Lü, X. B., Li, J., et al., 2020. Petrogenesis and Tectonic Setting of Intermediate-Felsic Volcanics in Ta'erqi Area, Central Great Xing'an Range. Earth Science, 45(12): 4446-4462 (in Chinese with English abstract). [3] Chen, L., Liang, C. Y., Neubauer, F., et al., 2022. Sedimentary Processes and Deformation Styles of the Mesozoic Sedimentary Succession in the Northern Margin of the Mohe Basin, NE China: Constraints on the Final Closure of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 232: 105052. https://doi.org/10.1016/j.jseaes.2021.105052 [4] Chen, Z. G., Zhang, L. C., Wan, B., et al., 2011. Geochronology and Geochemistry of the Wunugetushan Porphyry Cu-Mo Deposit in NE China, and Their Geological Significance. Ore Geology Reviews, 43(1): 92-105. https://doi.org/10.1016/j.oregeorev.2011.08.007 [5] Daoudene, Y., Gapais, D., Ruffet, G., et al., 2012. Syn-Thinning Pluton Emplacement during Mesozoic Extension in Eastern Mongolia. Tectonics, 31(3): TC3001. https://doi.org/10.1029/2011TC002926 [6] Deng, C. Z., Sun, D. Y., Ping, X. Q., et al., 2019. Geochemistry of Early Cretaceous Volcanic Rocks in the Northeastern Great Xing'an Range, Northeast China and Implication for Geodynamic Setting. International Geology Review, 61(13): 1594-1612. https://doi.org/10.1080/00206814.2018.1528481 [7] Ewart, A., Milner, S. C., Armstrong, R. A., et al., 1998. Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part Ⅰ: Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Paraná-Etendeka CFB. Journal of Petrology, 39(2): 191-225. https://doi.org/10.1093/petrology/39.2.191 [8] Fan, W. M., Guo, F., Wang, Y. J., et al., 2003. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. https://doi.org/10.1016/S0377-0273(02)00415-8 [9] Feng, Z. Q., Zhang, Q. H., Liu, Y. J., et al., 2022. Reconstruction of Rodinia Supercontinent: Evidence from the Erguna Block (NE China) and Adjacent Units in the Eastern Central Asian Orogenic Belt. Precambrian Research, 368: 106467. https://doi.org/10.1016/j.precamres.2021.106467 [10] Fitton, J. G., James, D., Kempton, P. D., et al., 1988. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. Journal of Petrology, (Special Lithosphere Issue): 331-349. https://doi.org/10.1093/petrology/Special_Volume.1.331 [11] Guo, Z. X., Yang, Y. T., Zyabrev, S., et al., 2017. Tectonostratigraphic Evolution of the Mohe-Upper Amur Basin Reflects the Final Closure of the Mongol-Okhotsk Ocean in the Latest Jurassic-Earliest Cretaceous. Journal of Asian Earth Sciences, 145: 494-511. https://doi.org/10.1016/j.jseaes.2017.06.020 [12] Halim, N., Kravchinsky, V., Gilder, S., et al., 1998. A Palaeomagnetic Study from the Mongol-Okhotsk Region: Rotated Early Cretaceous Volcanics and Remagnetized Mesozoic Sediments. Earth and Planetary Science Letters, 159(3-4): 133-145. https://doi.org/10.1016/S0012-821X(98)00072-7 [13] He, G. Q., Liu, C., Deng, J. F., et al., 2020. Records of the Late Jurassic Magmatic Arc in Heihe Area, Heilongjiang Province: Discussion on the Relationship with Mongolia-Okhotsk Ocean. Earth Science, 45(7): 2524-2537 (in Chinese with English abstract). [14] Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005JB004066 [15] Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 [16] Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4 [17] Lassiter, J. C., DePaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: Mahoney, J., ed., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington D. C.. https://doi.org/10.1029/GM100p0335. [18] Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745 [19] Li, J. Y., Qian, Y., Tekoumc, L., et al., 2021. Petrogenesis of Jurassic Granitoids on Liaodong Peninsula, Northeast China: Constraints on the Evolution of the Mongol-Okhotsk and Pacific Tectonic Regimes. Journal of Earth Science, 32(1): 127-143. https://doi.org/10.1007/s12583-020-1372-0 [20] Li, Y., Ding, L. L., Xu, W. L., et al., 2015. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, 31(1): 56-66 (in Chinese with English abstract). [21] Liu, B., Chen, J. F., Han, B. F., et al., 2021. Geochronological and Geochemical Evidence for a Late Ordovician to Silurian Arc-Back-Arc System in the Northern Great Xing'an Range, NE China. Geoscience Frontiers, 12(1): 131-145. https://doi.org/10.1016/j.gsf.2020.07.002 [22] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [23] Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808 [24] Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley. [25] Metelkin, D. V., Vernikovsky, V. A., Kazansky, A. Y., et al., 2010. Late Mesozoic Tectonics of Central Asia Based on Paleomagnetic Evidence. Gondwana Research, 18(2-3): 400-419. https://doi.org/10.1016/j.gr.2009.12.008 [26] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 [27] Qiao, M. D., Sun, J. P., Li, Y. H., et al., 2018. Chronology, Geochemistry and Geological Implication of the Mesozoic Rhyolites in Xinlin Area, Daxinganling Mountains. Geology and Resources, 27(4): 324-336 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2018.04.003 [28] Ringwood, A. E., 1990. Slab-Mantle Interactions: 3. Petrogenesis of Intraplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82: 187-207. https://doi.org/10.1016/0009-2541(90)90081-H [29] Sorokin, A. A., Kudryashov, N. M., Kotov, A. B., 2007. Age and Geochemistry of the Early Mesozoic Granitoid Massifs of the Southern Bureya Terrane of the Russian far East. Russian Journal of Pacific Geology, 1(5): 454-463. https://doi.org/10.1134/s1819714007050053 [30] Sui, Z. M., Ge, W. C., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract). [31] Sun, L. X., Ren, B. F., Zhao, F. Q., et al., 2013. Late Paleoproterozoic Magmatic Records in the Eerguna Massif: Evidences from the Zircon U-Pb Dating of Granitic Gneisses. Geological Bulletin of China, 32(S1): 341-352 (in Chinese with English abstract). [32] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [33] Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31: 218-240. https://doi.org/10.1016/j.gr.2014.12.010 [34] Tomurtogoo, O., Windley, B. F., Kröner, A., et al., 2005. Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia: Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen. Journal of the Geological Society, 162(1): 125-134. https://doi.org/10.1144/0016-764903-146 [35] Wang, T., Guo, L., Zhang, L., et al., 2015. Timing and Evolution of Jurassic-Cretaceous Granitoid Magmatisms in the Mongol-Okhotsk Belt and Adjacent Areas, NE Asia: Implications for Transition from Contractional Crustal Thickening to Extensional Thinning and Geodynamic Settings. Journal of Asian Earth Sciences, 97: 365-392. https://doi.org/10.1016/j.jseaes.2014.10.005 [36] Wang, T., Tong, Y., Xiao, W. J., et al., 2021. Rollback, Scissor-Like Closure of the Mongol-Okhotsk Ocean and Formation of an Orocline: Magmatic Migration Based on a Large Archive of Age Data. National Science Review, 9(5): nwab210. https://doi.org/10.1093/nsr/nwab210 [37] Wang, W. D., Yang, H. B., Liu, T., et al., 2018. Chronology, Geochemistry and Tectonic Implications of Early Cretaceous Igneous Rocks in Xinlin Zhanbeicun Area, Northern Great Hinggan Mountain. Global Geology, 37(1): 21-36 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2018.01.003 [38] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [39] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [40] Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. https://doi.org/10.1016/j.jseaes.2007.01.003 [41] Wu, Y. H., Liu, B., Han, B. F., et al., 2019. Zircon U-Pb Geochronology and Geochemistry of Cambrian Plutons in Xinglong Area of Northern Da-Hinggan Mountains: Implications for Tectonic Evolution. Earth Science, 44(10): 3346-3360 (in Chinese with English abstract). [42] Xu, L. M., Wang, D. K., Liu, Y., et al., 2018. Age and Geochemistry of the Early Cretaceous Intrusive Rocks in Southern Tahe, Northern Great Xing'an Range. Geoscience, 32(6): 1212-1226 (in Chinese with English abstract). [43] Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392-402. https://doi.org/10.1016/j.jseaes.2008.07.001 [44] Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167-193. https://doi.org/10.1016/j.jseaes.2013.04.003 [45] Xu, W. L., Wang, F., Pei, F. P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract). [46] Yang, Y. T., Guo, Z. X., Song, C. C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096-1116. https://doi.org/10.1016/j.gr.2014.09.010 [47] Yin, Z. G., Gong, Z. M., Zhang, Y. L., et al., 2018. Geochronology, Geochemistry and Geological Significance of the Early Cretaceous Alkali Feldspar Granites in the Yilehuli Mountain, Da Hinggan, Mountain. Geological Bulletin of China, 37(6): 1061-1074 (in Chinese with English abstract). [48] Yin, Z. G., Li, M., Li, W. L., et al., 2019. The Origin and Tectonic Environment of the Early Jurassic Adakitic Granodiorite in the Dajinshan Area of the Central and Northern Da Hinggan Range. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 69-79 (in Chinese with English abstract). [49] Yu, H. C., He, Z. H., Sui, Z. M., et al., 2020. Determination and Geological Implication of the Middle Jurassic Post-Collisional Granitoids in Taerqi Area, Central Great Xing'an Range. Acta Petrologica Sinica, 36(12): 3721-3740 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.10 [50] Zhang, Y. T., Zhang, L. C., Ying, J. F., et al., 2007. Geochemistry and Source Characteristics of Early Cretaceous Volcanic Rocks in Tahe, North Da Hinggan Mountain. Acta Petrologica Sinica, 23(11): 2811-2822 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.11.012 [51] Zonenshain, L. P., Kuzmin, M. L., Natapov, L. N., 1990. Geology of the USSR: A Plate Tectonic Synthesis. In: Page, B. M., ed., Geodynamics Series 21. American Geophysical Union, Washington, D. C.. https://doi.org/10.1029/GD021. [52] 柴明春, 王泉, 赵国英, 等, 2018. 大兴安岭十八站‒韩家园地区晚中生代火山岩年龄、地球化学特征及其构造意义. 地质通报, 37(10): 1866-1881. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201810012.htm [53] 陈超, 吕新彪, 李杰, 等, 2020. 大兴安岭中段塔尔气地区中酸性火山岩成因及构造背景. 地球科学, 45(12): 4446-4462. doi: 10.3799/dqkx.2020.317 [54] 贺国奇, 刘翠, 邓晋福, 等, 2020. 黑龙江黑河地区晚侏罗世岩浆弧的火成岩记录: 与蒙古‒鄂霍茨克洋关系探讨. 地球科学, 45(7): 2524-2537. doi: 10.3799/dqkx.2020.050 [55] 李宇, 丁磊磊, 许文良, 等, 2015. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古‒鄂霍茨克洋闭合时间的限定. 岩石学报, 31(1): 56-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501004.htm [56] 乔牡冬, 孙加鹏, 李宇菡, 等, 2018. 大兴安岭新林区中生代流纹岩年代学、地球化学特征及其地质意义. 地质与资源, 27(4): 324-336. doi: 10.3969/j.issn.1671-1947.2018.04.003 [57] 隋振民, 葛文春, 吴福元, 等, 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm [58] 孙立新, 任邦方, 赵凤清, 等, 2013. 内蒙古额尔古纳地块古元古代末期的岩浆记录: 来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(S1): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1012.htm [59] 王文东, 杨华本, 刘涛, 等, 2018. 大兴安岭北段新林战备村地区早白垩世火成岩年代学、地球化学及大地构造意义. 世界地质, 37(1): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201801003.htm [60] 吴宜翰, 刘博, 韩宝福, 等, 2019. 大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义. 地球科学, 44(10): 3346-3360. doi: 10.3799/dqkx.2019.209 [61] 徐立明, 王大可, 刘玉, 等, 2018. 大兴安岭北段塔河南部早白垩世侵入岩年代学和地球化学. 现代地质, 32(6): 1212-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806010.htm [62] 许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm [63] 尹志刚, 宫兆民, 张跃龙, 等, 2018. 大兴安岭伊勒呼里山早白垩世碱长花岗岩年龄、地球化学特征及其地质意义. 地质通报, 37(6): 1061-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201806010.htm [64] 尹志刚, 李敏, 李文龙, 等, 2019. 大兴安岭中北段大金山地区早侏罗世埃达克质花岗闪长岩的成因及构造环境. 矿物岩石地球化学通报, 38(1): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201901008.htm [65] 于泓超, 和钟铧, 隋振民, 等, 2020. 大兴安岭中部塔尔气中侏罗世碰撞后花岗质岩石的确定及地质意义. 岩石学报, 36(12): 3721-3740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202012010.htm [66] 张玉涛, 张连昌, 英基丰, 等, 2007. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征. 岩石学报, 23(11): 2811-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711013.htm