Formation Mechanism and Development Potential of Geothermal Resources along the Sichuan-Tibet Railway
-
摘要:
川藏铁路从西至东依次穿越了拉萨-喜马拉雅活动带、昌都-川西造山带与四川盆地3个大地构造单元,其沿线地热资源成因机制的研究对于陆-陆碰撞型地热域不同类型地热田展布规律的认识及其开发利用有着重要的理论与现实意义.本文在系统总结前人成果的基础上,根据区域构造演化、构造变形对地热田成因要素的影响,对比了川藏铁路沿线地热田在热源、热储构造与水运移模式方面的差异性.川藏铁路沿线的地热域依照变形强度分别以怒江断裂带、龙门山断裂带为界,从西至东划分为板缘碰撞造山型、板内逆冲推覆型、盆内稳定坳陷型3个地热带,分别发育高温岩浆岩型、中-低温断裂深循环型、低温坳陷盆地型3类地热田,其大地热流值从西至东逐步减少(即从138.2 mW/m2→71 mW/m2→51 mW/m2); 热储的构造模型可归纳为伸展地堑型、冲起构造型、花状构造型与隐伏背斜型,热储的层位亦逐渐变老、埋藏变深(即从Q+J-T3→T2-3→T1-2).尽管各类地热田有着相同的水源(主要来自大气降水),基本相似的水化学类型(以Cl-Na型、HCO3-Na型为主)与矿化度(2 500~3 500 mg /L),但有着完全不同的地热水运移模式,尤其在水循环深度、壳源流体的贡献、垂向/水平径流路径等方面.依据不同类型地热田资源禀赋的差异,分别建议川藏铁路沿线地热开发的主要方式为: 林芝-拉萨段的高温发电、供暖与制冷; 雅安-林芝段的中低温发电、供暖与制冷; 以及成都-雅安段的低温供暖、温泉洗浴等.
Abstract:The Sichuan-Tibet Railway from west to east passes through three geotectonic units including the Lhasa-Himalayan activity zone, Qamdo-Sanjiang orogeny and Sichuan basin. The study of the genetic mechanism of geothermal resources along the Sichuan-Tibet Railway is of great theoretical and practical significance for the understanding of its distribution and the development of geothermal fields among the land-land collision geothermal domain. On the basis of previous results, the differences between the heat source, reservoir structure and water transport mode of the geothermal fields along the Sichuan-Tibet Railway are discussed considering of the influence of regional structural evolution and structural deformation on the causes of them. According to the extrusion deformation strength, the geothermal domain along the Sichuan-Tibet Railway is divided into three geothermal belts by the Nujiang fault and the Longmenshan fault from west to east. The three geothermal belts are the collision-orogeny type of plate edge, the thrust type of interpolate and the stable depression type of inter basin, and develop 3 types of geothermal fields respectively, namely, the magma-rock type of high temperature, the fracture deep-cycle type of medium-low temperature, and the depression-basin type of low temperature. The terrestrial heat flow values of the three geothermal belts is gradually reduced from west to east (i.e. from 138.2 mW/m2 to 71 mW/m2, then to 51 mW/m2); their structural models of reservoir are respectively the extended grabens, the pup-up structures, the flower structures and the hidden anticlines, and the layer of thermal reservoir is gradually older and deeper (i.e. from Q+J-T3 toT2-3 then to T1-2). Although all kinds of geothermal fields have the same source of water (mainly from atmospheric precipitation), basically similar hydrochemical types (mainly Cl-Na type, HCO3-Na type) and mineralization degree (2 500- 3 500 mg/L), they have completely different geothermal water transport modes, especially in water circulation depth, contribution of shell source fluid, vertical/horizontal runoff path, etc. In terms of the differences in the resource endowment of different types of geothermal fields, it is suggested that the main ways of geothermal development along the Sichuan-Tibet Railway are high-temperature power generation, heating and cooling in Nyingchi-Lhasa section, medium-and low-temperature power generation, heating and cooling in Ya'an-Nyingchi section, and low-temperature heating and hot-spring-bath in Chengdu-Ya' an section.
-
图 1 川藏铁路沿线及邻区地热田分布(据刘峰等, 2020修改)
Fig. 1. Distribution diagram of geothermal fields along Sichuan-Tibet Railway and its adjacent areas (modified by Liu et al., 2020)
图 2 川藏铁路沿线及邻区大地热流分布
据胡圣标等(2001)、姜光政等(2016)、Zhang et al.(2017)、徐明等(2011)编制
Fig. 2. Terrestrial heat flow distribution diagram along Sichuan-Tibet Railway and its adjacent areas
图 3 川藏铁路沿线及邻区区域地质简图
1.第四系; 2.白垩系; 3.侏罗系; 4.三叠系; 5.中生界; 6.二叠系; 7.石炭系-二叠系; 8.石炭系; 9.泥盆系; 10.上古生界; 11.前泥盆系; 12.志留系; 13.奥陶系-志留系; 14.奥陶系; 15.下古生界; 16.元古宇; 17.太古宇; 18.中生代杂岩; 19.喜山期花岗岩; 20.燕山晚期-喜山期花岗岩; 21.燕山期花岗岩; 22.华力西期-燕山期花岗岩; 23.元古宙花岗岩; 24.闪长岩类; 25.超铁镁质岩类; 26.碱性岩类; 27.国界; 28.省界; 29.水系; 30.断裂; 31.川藏铁路
Fig. 3. Simple diagram of regional geology along Sichuan-Tibet Railway and its adjacent areas
图 4 川藏铁路沿线典型构造带地层柱状图对比
据曾庆高等(2020)、李祥辉等(1997)、费琪等(1996)编制
Fig. 4. Stratigraphic column of the typical structural belts along the Sichuan-Tibet Railway
图 6 北川地热田地热水运移模式(据屈泽伟等,2021修改)
Fig. 6. Hot water transport mode of Beichuan geothermal fields (modified by Qu et al., 2021)
图 8 古堆地热田地热水运移模式图(据王思琪,2017略改)
Fig. 8. Hot water transport mode of Gudui geothermal field (modified by Wang et al., 2017)
图 9 喜马拉雅陆-陆碰撞型地热域地热地质剖面简图(据Zhang et al., 2017; 王贵玲等, 2020编制)
Fig. 9. Briefly geothermal geological profile of the Himalayan land-land collision geothermal domain (modified by Wang et al., 2020; Zhang et al., 2017)
表 1 川藏铁路沿线及邻区典型地热钻孔测试数据
Table 1. Test data of typical geothermal boreholes along Sichuan-Tibet Railway and its adjacent areas
序号 井号 地名 资源类型 产水层段(m) 热储层位 井口温度(℃) 水化学类型 热储温度(℃) 资料来源 1 川5 自贡 坳陷盆地型 1 540 T2白云岩 Cl-Na 65 据黄尚瑶等, 2001 2 BJ01 北川 1 005~1 800 T1-2白云岩 39.0 Cl-Na 39.6 据屈泽伟等,2021 3 DZK02 康定 断裂-深循环型 1 177.0~1 425.5 T1-2z砂板岩 116 HCO3-Na 145 本文数据 4 SCQ132 理塘 地表温泉 T3q砂板岩 86 HCO3·SO4-Na 150 据孙东等,2019 5 SC103-3 巴塘 地表温泉 T3t砂板岩 85.8 HCO3-Na 177 6 XZQ201 林芝 地表温泉 T+J杂岩 75.6 HCO3-Na 166 据刘峰等, 2020 7 ZK303 古堆 岩浆岩型 230 J2r炭质板岩 178 Cl -Na 205 据王思琪,2017 8 ZK355 羊八井 180~280 Q砂砾岩 119 Cl-Na 173 据多吉,2003 9 ZK4002 羊八井 785~2 006 Anznn变质岩 204 Cl-Na 278 -
[1] Bai, M. K., Chevalier, M. L., Pan, J. W., et al., 2018. Southeastward Increase of the Late Quaternary Slip-Rate of the Xianshuihe Fault, Eastern Tibet. Geodynamic and Seismic Hazard Implications. Earth and Planetary Science Letters, 485: 19-31. https://doi.org/10.1016/j.epsl.2017.12.045 [2] Bian, S., Yu, Z.Q., Gong, J.F., et al., 2021. Spatiotemporal Distribution and Geodynamic Mechanism of the nearly NS-Trending Rifts in the Tibetan Plateau. Journal of Geomechanics, 27(2): 178-194 (in Chinese with Englishabstract). [3] Chen, M. X., Wang, J. Y., 1994. Geothermal Resources in China: Formation Characteristics and Potential Assessment. Sciences Press, Beijing (in Chinese). [4] Davies, J. H., 2013. Global Map of Solid Earth Surface Heat Flow. Geochemistry, Geophysics, Geosystems, 14(10): 4608-4622. https://doi.org/10.1002/ggge.20271 [5] Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science in China (Series D), 47(3): 293-309 (in Chinese). [6] Dong, H. W., Larson, K. P., Kellett, D. A., et al., 2020. Timing of Slip across the South Tibetan Detachment System and Yadong-Gulu Graben, Eastern Himalaya. Journal of the Geological Society, 178 (1): jgs2019-197. http://dx.doi.org/10.1144/jgs2019-197 [7] Duo, J., 2003. The Basic Characteristics of the Yangbajing Geothermal Field? Typical High Temperature Geothermal System. Engineering Science, 5(1): 42-47 (in Chinese with English abstract). [8] Fei, Q., Deng, Z. F., 1996. Marine Petroleum Potential in Xizang (Tibet) Tethys Tectonic Domain. Earth Science, 21(2): 113-119 (in Chinese with English abstract). [9] He, Z. L., Feng, J. Y., Zhang, Y., et al., 2017. A Tentative Discussion on an Evaluation System of Geothermal Unit Ranking and Classification in China. Earth Science Frontiers, 24(3): 168-179 (in Chinese with English abstract). [10] Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 611-626 (in Chinese). [11] He, Y. M., Xun, X. H., Xie, Y., 2016. Formed Causes and hydro-Geochemistry Characteristics of Hot Springs in Tibet Voca. Journal of Geological Hazards and Environment Preservation, 27(4): 66-70 (in Chinese with English abstract). [12] Huang, S. Y., Wang, J., 2001. Distribution Characteristics of Geothermal Resources and Their Development and Utilization Prospects in Western China. In: Liu, S. B., Si, S. R., eds., Strategy of Geothermal Resources Development in Western China. Seismological Press, Beijing (in Chinese). [13] Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract). [14] Lin, W. J., Liu, Z. M., Wang, W. L., et al., 2013. The Assessment of Geothermal Resources Potential of China. Geology in China, 40(1): 312-321 (in Chinese with English abstract). [15] Li, C., 1987. The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Jilin University(Earth Science Edition), 17(2): 155-166 (in Chinese with English abstract). [16] Li, W. Y., Zhang, J., Tang, X. C., et al., 2018. The Deep Geothermal Structure of High-Temperature Hydrothermal Activity Region in Western Sichuan Plateau: A Geophysical Study. Chinese Journal of Geophysics, 61(7): 2926-2936 (in Chinese with English abstract). [17] Li, X. H., Wang, C. S., 1997. Phanerozoic Supersequences in Tethyan Himalayas in Xizang (Tibet). Tethyan Geology, 21: 8-29 (in Chinese). [18] Liu, F., Ma, J. F., Wei, S. C., 2020. Geothermal Survey Effectively Serves the Planning and Construction of Sichuan-Tibet Railway. News Letter of China Geological Survey, 6(3-4): 6-9 (in Chinese). [19] Liu, Q. Q., Shi, Y. N., Wei, D. P., et al., 2017. Near-Surface Geothermal Gradient Observation and Geothermal Analyses in the Xianshuihe Fault Zone, Eastern Tibetan Plateau. Acta Geologica Sinica (English Edition), 91(2): 414-428. https://doi.org/10.1111/1755-6724.13108 [20] Liu, Z., Lin, W. J., Zhang, M., et al., 2014. Geothermal Fluid Genesis and Mantle Fluids Contributions in Nimu-Naqu, Tibet. Earth Science Frontiers, 21(6): 356-371 (in Chinese with English abstract). [21] Ma, G. Q., 1998. Basic Regional Geological Features of Tibet. Regional Geology of China, 17(1): 16-24 (in Chinese with English abstract). [22] Mao, X. P., Wang, X. W., Li, K. W., et al., 2018. Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11): 4256-4266 (in Chinese with English abstract). [23] Mo, X. X., Pan, G. T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau: Constrained by Tectono-Magmatic Events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract). [24] Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419-426. http://doi.org/10.1126/science.189.4201.419 [25] Pan, J. W., Li, H. B., Marie, L. C., et al., 2020. A Newly Discovered Active Fault on the Selaha-Kangding Segment along the SE Xianshuihe Fault: The South Mugecuo Fault. Acta Geologica Sinica, 94(11): 3178-3188 (in Chinese with English abstract). [26] Qu, Z. W., Yang, X. D., Wu, J. T., et al., 2021. Genesis, Fluid Characteristics and Productivity Analysis of Beichuan Geothermal Field. Ground Water, 43(3): 21-26 (in Chinese with English abstract). [27] Rybach, L., Muffler, L. J. P., 1981. Geothermal System: Principle and Analysis of Typical Geothermal System. Translated by Tong, W.. Geological Publishing House, Beijing (in Chinese). [28] Sorey, M. L., Nathenson, M., Smith, C., 1983. Methods for Assessing Low-Temperature Geothermal Resources. In: Reed, M. J., ed., Assesment of Low Temperature Geothermal Resouces of the United State-1982. U. S. Geological Survey, Menlo Park. [29] Sun, D., Cao, N., Liu, X. Z., et al., 2019. Geothermal Resources and Development in Garzê Prefecture, Sichuan. Acta Geologica Sichuan, 39(1): 133-138 (in Chinese with English abstract). [30] Tang, X. C., Zhang, J., Pang, Z. H., et al., 2017. The Eastern Tibetan Plateau Geothermal Belt, Western China: Geology, Geophysics, Genesis, and Hydrothermal System. Tectonophysics, 717: 433-448. https://doi.org/10.1016/j.tecto.2017.08.035 [31] Wang, G. L., Lin, W. J., 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937 (in Chinese with English abstract). [32] Wang, G. L., Zhang, W., Liang, J. Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 449-459 (in Chinese with English abstract). [33] Wang, J. Y., 2015. Geothermics and Its Application. Science Press, Beijing (in Chinese). [34] Wang, J. Y., Xiong, L. P., Pang, Z. H., 1993. Low Medium Temperature Geothermal System of Convective Type. Science Press, Beijing (in Chinese). [35] Wang, S. Q., 2017. Hydrogeochemical Processes and Genesis Machenism of High-Temperature Geothermal System in Gudui, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [36] Wang, X. W., Wang, T. H., Zhang, X., et al., 2019. Genetic Mechanism of Xiwenzhuang Geothermal Field in Taiyuan Basin. Earth Science, 44(3): 1042-1056 (in Chinese with English abstract). [37] Wang, X. W., Wo, Y. J., Zhou, Y., et al., 2010. The Kinematics of the Fold-Thrust Zones in the Western Yangtze Area. Earth Science Frontiers, 17(3): 200-212 (in Chinese with English abstract). [38] Wang, X. W., Wo, Y. J., Zhang, R. Q., 2008. Tectonic-Sedimentary Cycle of the Yangtze Craton from Nanhuaan to the Early Palaeozoic. Geoscience, 22(4): 525-533 (in Chinese with English abstract). [39] Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese). [40] Xu, S., Guan, L. F., Zhang, M. L., et al., 2022. Degassing of Deep-Sourced CO2 from Xianshuihe-Anninghe Fault Zones in the Eastern Tibetan Plateau. Science in China (Sreies D), 52(2): 291-308. https://doi.org/10.1007/s11430-021-9810-x [41] Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract). [42] Zeng, Q. G., Wang, B. D., Xiluo, L., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). [43] Zhang, C. F., Guo, W., Wang, X. P., 2018. Discussion on Types and Characteristics of Geothermal Resources in China. Ground Water, 40(4): 1-5 (in Chinese with English abstract). [44] Zhang, J., Li, W. Y., Tang, X. C., et al., 2017. Geothermal Data Analysis at the High-Temperature Hydrothermal Area in Western Sichuan. Science China Earth Sciences, 60(8): 1507-1521. https://doi.org/10.1007/s11430-016-9053-2 [45] Zhang, M., Lin, W. J., Liu, Z., et al., 2014. Hydrogeochemical Characteristics and Genetic Model of Gulu High-Temperature Geothermal System in Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 382-392 (in Chinese with English abstract). [46] Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436 (in Chinese with English abstract). [47] Zhang, Y., Feng, J. Y., He, Z. L., et al., 2017. Classification of Geothermal Systems and Their Formation Key Factors. Earth Science Frontiers, 24(3): 190-198 (in Chinese with English abstract). [48] Zuo, J. M., Wu, Z. H., Ha, G. H., et al., 2021. Spatial Variation of nearly NS-Trending Normal Faulting in the Southern Yadong-Gulu Rift, Tibet: New Constraints from the Chongba Yumtso Fault, Duoqing Co Graben. Journal of Structural Geology, 144: 104256. https://doi.org/10.1016/j.jsg.2020.104256 [49] 卞爽, 于志泉, 龚俊峰, 等, 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制. 地质力学学报, 27(2): 178-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202102004.htm [50] 陈墨香, 汪集旸, 1994. 中国地热资源——形成特点和潜力评估. 北京: 科学出版社. [51] 丁林, Maksatbek, S., 蔡福龙, 等, 2017. 印度与欧亚大陆初始碰撞时限、封闭方式和过程. 中国科学(D辑), 47(3): 293-309. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201703003.htm [52] 多吉, 2003. 典型高温地热系统: 羊八井热田基本特征. 中国工程科学, 5(1): 42-47. doi: 10.3969/j.issn.1009-1742.2003.01.008 [53] 费琪, 邓忠凡, 1996. 西藏特提斯构造域海相油气前景. 地球科学, 21(2): 113-119. doi: 10.3321/j.issn:1000-2383.1996.02.001 [54] 何治亮, 冯建赟, 张英, 等, 2017. 试论中国地热单元分级分类评价体系. 地学前缘, 24(3): 168-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703019.htm [55] 胡圣标, 何丽娟, 汪集旸, 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 611-626. doi: 10.3321/j.issn:0001-5733.2001.05.005 [56] 贺咏梅, 荀晓慧, 谢晔, 2016. 西藏沃卡温泉水文地球化学特征及成因. 地质灾害与环境保护, 27(4): 66-70. doi: 10.3969/j.issn.1006-4362.2016.04.012 [57] 黄尚瑶, 王钧, 2001. 中国西部地热资源分布特征及其开发利用前景. 见: 刘时彬, 司士荣, 主编, 中国西部地热资源开发战略研究. 北京: 地震出版社. [58] 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200105004.htm [59] 蔺文静, 刘志明, 王婉丽, 等, 2013. 中国地热资源及其潜力评估. 中国地质, 40(1): 312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021 [60] 李才, 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 吉林大学学报(地球科学版), 17(2): 155-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198702003.htm [61] 李午阳, 张健, 唐显春, 等, 2018. 川西高温水热活动区深部热结构的地球物理分析. 地球物理学报, 61(7): 2926-2936. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807021.htm [62] 李祥辉, 王成善, 1997. 西藏特提斯喜马拉雅显生宇的超层序. 特提斯地质, 21: 8-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD721.001.htm [63] 刘峰, 马剑飞, 魏帅超, 2020. 地热调查有效服务川藏铁路规划建设. 中国地质调查成果快讯, 6(3-4): 6-9. [64] 刘昭, 蔺文静, 张萌, 等, 2014. 西藏尼木-那曲地热流体成因及幔源流体贡献. 地学前缘, 21(6): 356-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406040.htm [65] 马冠卿, 1998. 西藏区域地质基本特征. 中国区域地质, 17(1): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD801.002.htm [66] 毛小平, 汪新伟, 李克文, 等, 2018. 地热田热量来源及形成主控因素. 地球科学, 43(11): 4256-4266. doi: 10.3799/dqkx.2018.210 [67] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [68] 潘家伟, 李海兵, Marie, L. C., 等, 2020. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178-3188. doi: 10.3969/j.issn.0001-5717.2020.11.002 [69] 屈泽伟, 杨晓东, 吴军涛, 等, 2021. 北川地热田成因、流体特征及产能分析. 地下水, 43(3): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU202103006.htm [70] Rybach, L., Muffler, L. J. P., 1981. 地热系统: 原理和典型地热系统分析. 佟伟, 译. 北京: 地质出版社. [71] 孙东, 曹楠, 刘馨泽, 等, 2019. 川西甘孜州地热资源特征及开发利用前景. 四川地质学报, 39(1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201901031.htm [72] 王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002 [73] 王贵玲, 张薇, 梁继运, 等, 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm [74] 汪集旸, 2015. 地热学及其应用. 北京: 科学出版社. [75] 汪集旸, 熊亮萍, 庞忠和, 1993. 中低温对流型地热系统. 北京: 科学出版社. [76] 王思琪, 2017. 西藏古堆高温地热系统水文地球化学过程与形成机理(博士学位论文). 北京: 中国地质大学. [77] 汪新伟, 王婷灏, 张瑄, 等, 2019. 太原盆地西温庄地热田的成因机制. 地球科学, 44(3): 1042-1056. doi: 10.3799/dqkx.2018.387 [78] 汪新伟, 沃玉进, 周雁, 等, 2010. 上扬子地区褶皱-冲断带的运动学特征. 地学前缘, 17(3): 200-212. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003021.htm [79] 汪新伟, 沃玉进, 张荣强, 2008. 扬子克拉通南华纪-早古生代的构造-沉积旋回. 现代地质, 22(4): 525-533. doi: 10.3969/j.issn.1000-8527.2008.04.006 [80] 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201001087.htm [81] 徐胜, 管芦峰, 张茂亮, 等, 2022. 青藏高原东缘鲜水河-安宁河断裂带深源气体释放. 中国科学(D辑), 52(2): 291-308. [82] 徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401 [83] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 [84] 张朝锋, 郭文, 王晓鹏, 2018. 中国地热资源类型和特征探讨. 地下水, 40(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU201804001.htm [85] 张萌, 蔺文静, 刘昭, 等, 2014. 西藏谷露高温地热系统水文地球化学特征及成因模式. 成都理工大学学报(自然科学版), 41(3): 382-392. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201403015.htm [86] 张森琦, 李旭峰, 宋健, 等, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094 [87] 张英, 冯建赟, 何治亮, 等, 2017. 地热系统类型划分与主控因素分析. 地学前缘, 24(3): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703022.htm