• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    巴颜喀拉块体内部五道梁-长沙贡玛断裂中段全新世活动及最新古地震证据

    梁明剑 黄飞鹏 孙凯 张会平 吴微微 张佳伟 杜方 周文英

    梁明剑, 黄飞鹏, 孙凯, 张会平, 吴微微, 张佳伟, 杜方, 周文英, 2022. 巴颜喀拉块体内部五道梁-长沙贡玛断裂中段全新世活动及最新古地震证据. 地球科学, 47(3): 766-778. doi: 10.3799/dqkx.2022.044
    引用本文: 梁明剑, 黄飞鹏, 孙凯, 张会平, 吴微微, 张佳伟, 杜方, 周文英, 2022. 巴颜喀拉块体内部五道梁-长沙贡玛断裂中段全新世活动及最新古地震证据. 地球科学, 47(3): 766-778. doi: 10.3799/dqkx.2022.044
    Liang Mingjian, Huang Feipeng, Sun Kai, Zhang Huiping, Wu Weiwei, Zhang Jiawei, Du Fang, Zhou Wenying, 2022. The Holocene Activity and Its Evidence from Paleoearthquake of the Middle Segment of Wudaoliang-Changshagongma Fault Inside the Bayan Har Block. Earth Science, 47(3): 766-778. doi: 10.3799/dqkx.2022.044
    Citation: Liang Mingjian, Huang Feipeng, Sun Kai, Zhang Huiping, Wu Weiwei, Zhang Jiawei, Du Fang, Zhou Wenying, 2022. The Holocene Activity and Its Evidence from Paleoearthquake of the Middle Segment of Wudaoliang-Changshagongma Fault Inside the Bayan Har Block. Earth Science, 47(3): 766-778. doi: 10.3799/dqkx.2022.044

    巴颜喀拉块体内部五道梁-长沙贡玛断裂中段全新世活动及最新古地震证据

    doi: 10.3799/dqkx.2022.044
    基金项目: 

    地震动力学国家重点实验室开放基金课题 LED2020B02

    西藏拉萨地球物理国家野外科学观测站研究课题 NORSLS21-04

    四川省地震局地震科技专项项目 LY2216

    四川省地震局地震科技专项项目 LY2217

    详细信息
      作者简介:

      梁明剑(1979-),男,高级工程师,博士,主要从事活动构造方面研究.ORCID:0000-0001-5527-7136.E-mail:23800794@qq.com

      通讯作者:

      张会平,ORCID:0000-0002-3042-4301.E-mail: huiping@ies.ac.cn

    • 中图分类号: P65

    The Holocene Activity and Its Evidence from Paleoearthquake of the Middle Segment of Wudaoliang-Changshagongma Fault Inside the Bayan Har Block

    • 摘要:

      为揭示巴颜喀拉块体内部构造变形特征,基于地震地质调查和新年代学方法研究了五道梁-长沙贡玛中段的最新活动性.地质地貌和探槽揭露的证据显示,五道梁-长沙贡玛断裂中段为全新世活动的左旋走滑断裂,也表明其作为巴颜喀拉块体内部的主干断裂之一,具有孕育和发生强震的构造条件.该断裂中段的最晚一次古地震事件发生在(4 409~4 225)a BP之后,距今可能超过千年;而且近两年来断裂中东段小震活动频繁,2020年4月1日发生了5.6级中强地震,其未来的地震危险性需引起关注.

       

    • 图  1  巴颜喀拉块体中东部主要活动断裂及地震活动分布

      断裂数据修改自徐锡伟等(2016);GPS数据引自Wang and Shen(2020);紫色实线框为研究断裂段范围

      Fig.  1.  Distribution of main active faults and seismic activity in the middle-eastern part of the Bayan Har block

      图  2  五道梁‒长沙贡玛断裂中段展布

      底图数据采用ALOS 12.5 m的DEM数据

      Fig.  2.  Distribution of the middle segment of the Wudaoliang-Changshagongma fault

      图  3  五道梁‒长沙贡玛断裂新活动行迹

      a.为哈曲巴玛沟以西,长沙贡玛盆地北缘的五道梁‒长沙断裂中段构造地貌;b.哈曲尕玛沟附近一带的断裂中段构造地貌;底图为Google Earth影像

      Fig.  3.  New active trails of the Wudaoliang-Changshagongma fault

      图  4  阿日扎镇约达村一带断裂剖面与Ⅱ级阶地的砂砾石层变形

      a.阿日扎镇北俄溪河东岸,五道梁‒长沙贡玛断裂发育于砖红色古近系砾岩与早‒中更新统砂砾岩之间;b.断层活动导致俄溪河东岸Ⅱ级阶地的砂砾石层倾斜变形

      Fig.  4.  The fault profile of the Wudaoliang-Changshagongma fault and the deformation of the gravel layer of the Ⅱ-level terrace near Yueda Village, Arizha Town

      图  5  火然村北部的断层槽谷与断层陡坎地貌

      a.俄布绒河出山口西侧,断裂发育于古近系砂砾岩与三叠系板岩、变质砂岩之间;b. 俄布绒河出山口东,山前洪积扇上形成的断层陡坎及坎下发育沼泽带

      Fig.  5.  Fault landforms near the north of the Huoran Village

      图  6  掀日玛沟口一带的断层陡坎地貌

      a.掀日玛沟口附近洪积扇上形成高约0.3~0.6 m的反向陡坎;b.照片远处见断裂发育于砖红色古近系砂砾岩与三叠系变质砂岩之间,近处断裂在洪积扇上形成高约1.6 m的断层陡坎

      Fig.  6.  The fault scarp landforms near the mouth of Xianrimagou river

      图  7  哈曲巴玛沟口西山前洪积扇上的断层陡坎地貌

      a.断裂在哈曲巴玛沟口西的山前冲洪积扇分为多支次级断层;b.断裂在最新一期冲洪积扇上形成高约0.6 m的断层陡坎

      Fig.  7.  The fault scarp landforms on the alluvial fan in the east of the Haqubama river

      图  8  哈曲巴玛沟口西山前洪积扇的挤压脊与断塞塘

      Fig.  8.  The contrusion ridge and sag pond developed on the alluvial fan near the mouth of the Haqubama river

      图  9  哈曲巴玛沟东山前洪积扇上的断层陡坎

      a.哈曲巴玛沟东的宽断层槽谷中发育有高约0.2~0.4 m的反向小陡坎,可能为最新一次地震活动所形成;b.洪积扇上形成的断层线性陡坎

      Fig.  9.  The fault scarps developed on the alluvial fan near the mouth of the Haqubama river

      图  10  冲沟被断裂水平位错约10.5 m

      a. 哈曲巴玛沟口东山前洪积扇上见一冲沟被断裂左旋位错约10.5 m;b.洪积扇的取样照片和地层剖面

      Fig.  10.  A gully was dislated by the fault with a horizontal displacement of about 10.5 m

      图  11  火然村北山前洪积扇跨断层陡坎开挖2个探槽

      a.探槽TC1开挖的照片;b.探槽TC2开挖的照片

      Fig.  11.  Two trenches were excavated across the fault scarp on the alluvial fan in the northern of the Huoran Village

      图  12  探槽TC1南东壁照片及解释剖面

      Fig.  12.  Photograph and interpretation section of the south-eastern wall of trench TC1

      图  13  探槽TC1南东壁断层F2的局部特征

      Fig.  13.  Photograph showing the characteristic of the F2 that revealed in the south-eastern wall of trench TC1

      图  14  探槽TC2北西壁照片及解释剖面

      Fig.  14.  Photograph and interpretation section of the north-western wall of trench TC2

      图  15  探槽TC2揭露的标志层被断错的局部照片

      Fig.  15.  The partial photo showing the mark layer U3-1 were dislocated by the F2 that reveal in the trench TC2

      表  1  年代样品测试结果

      Table  1.   The results of the chronological samples

      取样编号 实验室编号 样品描述 δ13C(‰) 测试年龄(a BP) 校正年龄(a BP)
      WC-C14-01 Beta-607296 炭屑 ‒24.4 3 840±30 4 405~4 220
      WCTC-C14-01 Beta-607291 炭屑 ‒20.4 12 430±40 15 052~14 782
      WCTC-C14-06 Beta-607292 炭屑 ‒23.4 3 830±30 4 409~4 225
      下载: 导出CSV
    • [1] Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., et al., 2008. A Geological and Geophysical Context for the Wenchuan Earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 18(7): 4. https://doi.org/10.1130/gsatg18a.1
      [2] Chen, C. Y., Ren, J. W., Meng, G. J., et al., 2013. Division, Deformation and Tectonic Implication of Active Blocks in the Eastern Segment of Bayan Har Block. Chinese Journal of Geophysics, 56(12): 4125-4141 (in Chinese with English abstract).
      [3] Chen, S. J., Li, R. S., Ji, W. H., et al., 2011. Lithostratigraphy Character and Tectonic-Evolvement of Permian-Trias in the Bayankala Tectonic Belt. Earth Science, 36(3): 393-408 (in Chinese with English abstract).
      [4] Deng, Q. D., Cheng, S. P., Ma, J., et al., 2014. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(7): 2025-2042 (in Chinese with English abstract).
      [5] Deng, Q. D., Ran, Y. K., Yang, X. P., 2007. Distribution Map of Active Faults in China (1: 4 000 000). Seismological Press, Beijing (in Chinese).
      [6] Ding, L., Yang, D., Cai, F. L., et al., 2013. Provenance Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Tectonics, 32(1): 34-48. https://doi.org/10.1002/tect.20013
      [7] Enkelmann, E., Weislogel, A., Ratschbacher, L., et al., 2007. How was the Triassic Songpan-Ganzi Basin Filled? A Provenance Study. Tectonics, 26(4): TC4007. https://doi.org/10.1029/2006tc002078
      [8] Fu, B. H., Shi, P. L., Guo, H. D., et al., 2011. Surface Deformation Related to the 2008 Wenchuan Earthquake, and Mountain Building of the Longmen Shan, Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40(4): 805-824. https://doi.org/10.1016/j.jseaes.2010.11.011
      [9] Gai, H. L., Yao, S. H., Yang, L. P., et al., 2021. Characteristics and Causes of Coseismic Surface Rupture Triggered by the "5.22" MS 7.4 Earthquake in Maduo, Qinghai, and Their Significance. Journal of Geomechanics, 27(6): 899-912 (in Chinese with English abstract).
      [10] Hubbard, J., Shaw, J. H., 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (Mw 7.9) Earthquake. Nature, 458(7235): 194-197. https://doi.org/10.1038/nature07837
      [11] Li, C. X., Yuan, D. Y., Yang, H., et al., 2016. The Tectonic Activity Characteristics of Awancang Fault in the Late Quaternary, the sub-Strand of the Eastern Kunlun Fault. Seismology and Geology, 38(1): 44-64 (in Chinese with English abstract).
      [12] Liang, M. J., Yang, Y., Du, F., et al., 2020. Late Quaternary Activity of the Central Segment of the Dari Fault and Restudy of the Surface Rupture Zone of the 1947 M7${}^{3}\!\!\diagup\!\!{}_{4}\; $ Dari Earthquake, Qinghai Province. Seismology and Geology, 42(3): 703-714 (in Chinese with English abstract).
      [13] Liang, M. J., Zhou, R. J., Yan, L., et al., 2014. The Relationships between Neotectonic Activity of the Middle Segment of Dari Fault and Its Geomorphological Response, Qinghai Province, China. Seismology and Geology, 36(1): 28-38 (in Chinese with English abstract).
      [14] Meng, Q. R., Hu, J. M., Wang, E., et al., 2006. Late Cenozoic Denudation by Large-Magnitude Landslides in the Eastern Edge of Tibetan Plateau. Earth and Planetary Science Letters, 243(1-2): 252-267. https://doi.org/10.1016/j.epsl.2005.12.008
      [15] Pan, J. W., Bai, M. K., Li, C., et al., 2021. Coseismic Surface Rupture and Seismogenic Structure of the 2021-05-22 Maduo (Qinghai) MS7.4 Earthquake. Acta Geologica Sinica, 95(6): 1655-1670 (in Chinese with English abstract).
      [16] Ren, J. J., Xu, X. W., Yeats, R. S., et al., 2013. Latest Quaternary Paleoseismology and Slip Rates of the Longriba Fault Zone, Eastern Tibet: Implications for Fault Behavior and Strain Partitioning. Tectonics, 32(2): 216-238. https://doi.org/10.1002/tect.20029
      [17] Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39(4): 254-269. https://doi.org/10.1016/j.jseaes.2010.03.008
      [18] Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      [19] Shen, Z. K., Lü, J. N., Wang, M., et al., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110: B11409. https://doi.org/10.1029/2004jb003421
      [20] Song, B. W., Zhang, K. X., Xu, Y. D., et al., 2020. Paleogene Tectonic-Stratigraphic Realms and Sedimentary Sequence in China. Earth Science, 45(12): 4352-4369 (in Chinese with English abstract).
      [21] Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611. https://doi.org/10.1130/0091-7613(1982)10611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2
      [22] Wang, M., Shen, Z. K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019jb018774
      [23] Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002
      [24] Wen, X. Z., 2018. The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou Earthquakes, Sichuan, in the last more than one Thousand Years of Rupture History of the Eastern Margin of the Bayan Har Block. Acta Seismologica Sinica, 40(3): 255-267 (in Chinese with English abstract).
      [25] Wu, Z. H., Zhou, C. J., 2017. Distribution Map of Active Faults in China and Its Adjacent Sea Area (1∶5 000 000). Geological Publishing House, Beijing (in Chinese).
      [26] Xiong, R. W., Ren, J. W., Zhang, J. L., et al., 2010. Late Quaternary Active Characteristics of the Gande Segment in the Maduo-Gande Fault Zone. Earthquake, 30(4): 65-73 (in Chinese with English abstract).
      [27] Xu, X. W., Han, Z. J., Yang, X. P., et al., 2016. Seismotectonic Map in China and Its Adjacent Regions. Seismological Press, Beijing (in Chinese).
      [28] Xu, X. W., Wen, X. Z., Chen, G. H., et al., 2008. Discovery of the Longriba Fault Zone in Eastern Bayan Har Block, China and Its Tectonic Implication. Science in China (Series D), 38(5): 529-542 (in Chinese).
      [29] Xu, X., Keller, G. R., Gao, R., et al., 2016. Uplift of the Longmen Shan Area in the Eastern Tibetan Plateau: An Integrated Geophysical and Geodynamic Analysis. International Geology Review, 58(1): 14-31. https://doi.org/10.1080/00206814.2015.1055595
      [30] Yan, L., Li, Y., Zhao, G.H., et al., 2013. Study on the Late Quaternary Activity Characteristics and its Tectonic Geomorphology Response of the middle Segment of Dari Fault in the Northeastern Tibetan Plateau. Acta Geologica Sinica (English Edition), 87(Suppl. ): 403-405.
      [31] Ye, S. Q., Zhang, Q. F., 1993. Study of the Seismic Structure (M=7${}^{3}\!\!\diagup\!\!{}_{4}\; $, 1947) with Remote Sensing Method in Dari, Qinghai. Remote Sensing for Land & Resources, 5(2): 28-34 (in Chinese with English abstract).
      [32] Yuan, D. Y., Feng J. G., Zheng, W. J., et al., 2020. Migration of Large Earthquakes in Tibetan Block Area and Disscussion on Major Active Region in the Future. Seismology and Geology, 42(2): 297-315 (in Chinese with English abstract).
      [33] Zhan, Y., Liang, M. J., Sun, X. Y., et al., 2021. Deep Structure and Seismogenic Pattern of the 2021.5.22 Madoi(Qinghai) Ms7.4 Earthquake. Chinese Journal of Geophysics, 64(7): 2232-2252 (in Chinese with English abstract).
      [34] Zhang, K. X., Wang, G. C., Chen, F. N., et al., 2007. Coupling between the Uplift of Qinghai-Tibet Plateau and Distribution of Basins of Paleogene-Neogene. Earth Science, 32(5): 583-597 (in Chinese with English abstract).
      [35] Zhang, P. Z., Shen, Z. K., Wang, M., et al., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809-812. https://doi.org/10.1130/g20554.1
      [36] Zhang, P. Z., Wen, X. Z., Shen, Z. K., et al., 2010. Oblique, High-Angle, Listric-Reverse Faulting and Associated Development of Strain: The Wenchuan Earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences, 38: 353-382. https://doi.org/10.1146/annurev-earth-040809-152602
      [37] Zhang, P. Z., Wen, X. Z., Xu, X. W., et al., 2009. Tectonic Model of the Great Wenchuan Earthquake of May 12, 2008, Sichuan, China. Chinese Science Bulletin, 54(7): 944-953 (in Chinese). doi: 10.1360/csb2009-54-7-944
      [38] Zhang, Y. M., Li, M. F., Meng, Y. Q., et al., 1996. Research on Fault Activities and Their Seismogeological Implication in Bayan Har Mountain Area. Research on Active Fault, 5: 154-171 (in Chinese with English abstract).
      [39] Zhao, H., Li, D. H., Zhao, J., et al., 2021. Exploration for the Southern Segment of the Ganzi-Yushu Fault Zone Using Shallow Seismic Reflection Method. Earthquake Research in Sichuan, (1): 6-11 (in Chinese with English abstract).
      [40] 陈长云, 任金卫, 孟国杰, 等, 2013. 巴颜喀拉块体东部活动块体的划分、形变特征及构造意义. 地球物理学报, 56(12): 4125-4141. doi: 10.6038/cjg20131217
      [41] 陈守建, 李荣社, 计文化, 等, 2011. 巴颜喀拉构造带二叠-三叠纪岩相特征及构造演化. 地球科学, 36(3): 393-408. doi: 10.3799/dqkx.2011.044
      [42] 邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201407001.htm
      [43] 邓起东, 冉勇康, 杨晓平, 等, 2007. 中国活动构造图(1: 400万). 北京: 地震出版社.
      [44] 盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多"5·22"MS7.4级地震的同震地表破裂特征、成因及意义. 地质力学学报, 27(6): 899-912.
      [45] 李陈侠, 袁道阳, 杨虎, 等, 2016. 东昆仑断裂带东段分支断裂: 阿万仓断裂晚第四纪构造活动特征. 地震地质, 38(1): 44-64. doi: 10.3969/j.issn.0253-4967.2016.01.004
      [46] 梁明剑, 杨耀, 杜方, 等, 2020. 青海达日断裂中段晚第四纪活动性与1947年M7${}^{3}\!\!\diagup\!\!{}_{4}\; $地震地表破裂带再研究. 地震地质, 42(3): 703-714. doi: 10.3969/j.issn.0253-4967.2020.03.011
      [47] 梁明剑, 周荣军, 闫亮, 等, 2014. 青海达日断裂中段构造活动与地貌发育的响应关系探讨. 地震地质, 36(1): 28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003
      [48] 潘家伟, 白明坤, 李超, 等, 2021.2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202106001.htm
      [49] 宋博文, 张克信, 徐亚东, 等, 2020. 中国古近纪构造-地层区划及地层格架. 地球科学, 45(12): 4352-4369. doi: 10.3799/dqkx.2020.122
      [50] 闻学泽, 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和2017年九寨沟地震. 地震学报, 40(3): 255-267.
      [51] 吴中海, 周春景, 2017. 中国及毗邻海区活动断裂分布图(1︰500万). 北京: 地质出版社.
      [52] 熊仁伟, 任金卫, 张军龙, 等, 2010. 玛多-甘德断裂甘德段晚第四纪活动特征. 地震, 30(4): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201004008.htm
      [53] 徐锡伟, 韩竹军, 杨晓平, 等, 2016. 中国及邻近地区地震构造图. 北京: 地震出版社.
      [54] 徐锡伟, 闻学泽, 陈桂华, 等, 2008. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义. 中国科学(D辑), 38(5): 529-542. doi: 10.3321/j.issn:1006-9267.2008.05.001
      [55] 叶世强, 张启富, 1993. 青海达日1947年7${}^{3}\!\!\diagup\!\!{}_{4}\; $级地震构造的遥感研究. 国土资源遥感, 5(2): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199302008.htm
      [56] 袁道阳, 冯建刚, 郑文俊, 等, 2020. 青藏地块区大地震迁移规律与未来主体活动区探讨. 地震地质, 42(2): 297-315. doi: 10.3969/j.issn.0253-4967.2020.02.004
      [57] 詹艳, 梁明剑, 孙翔宇, 等, 2021. 2021年5月22日青海玛多MS7.4地震深部环境及发震构造模式. 地球物理学报, 64(7): 2232-2252.
      [58] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学, 32(5): 583-597. doi: 10.3321/j.issn:1000-2383.2007.05.001
      [59] 张培震, 闻学泽, 徐锡伟, 等, 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式. 科学通报, 54(7): 944-953. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200907016.htm
      [60] 张裕明, 李闽峰, 孟勇琦, 等, 1996. 巴颜喀拉山地区活动断层活动性研究及其地震地质意义. 活动断裂研究, 5: 154-171.
      [61] 赵航, 李大虎, 赵晶, 等, 2021. 甘孜-玉树断裂南段浅层地震反射波法探测. 四川地震, (1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ202101002.htm
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  606
    • HTML全文浏览量:  136
    • PDF下载量:  135
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-11
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回