Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea
-
摘要: 在南海西北部首次发现中建南峡谷群,目前对其地质信息尚未开展相关研究.综合利用水深地形数据和二维多道地震资料,主要分析中建南峡谷群的地形地貌特征、平面展布与分段性特点,精细刻画峡谷沉积充填结构及演化特征,再进一步讨论峡谷形成的控制因素.中建南海底峡谷群分布于中建阶地与中建北海台之间,它是由西侧的一条主轴峡谷和东侧的多条小型分支峡谷组成,整体呈SE-S-SE走向,以走向转折拐点为起点,将峡谷分为三段式:北段、中段和南段,北段以侵蚀作用为主,中段和南段主要受侵蚀作用、沉积作用,东南部的峡谷口外主要受沉积作用.研究区晚中新世‒第四纪时广泛分布峡谷沉积体系,包括半深海相、三角洲相、峡谷/水道充填相、滑塌相、块体搬运复合沉积和浊积扇相.揭示了该海底峡谷群的发育和演化主要受海平面变化、沉积物源供给和重力流、底流作用的控制.通过对该峡谷群的地形地貌和沉积演化特征的分析,将对海洋地质灾害、南海深水沉积体系研究及油气资源勘探有重要的科学意义.Abstract: The Zhongjiannan Canyons were first discovered in the northwest of the South China Sea. At present, relevant research on its geological information has not been carried out.Based on the comprehensive use of bathymetric topographic data and two-dimensional multi-channel seismic data, in this paper it mainly analyzes the topographic and geomorphic characteristics, plane distribution and segmentation characteristics of the Zhongjiannan Canyons, finely describes the sedimentary evolution and filling structure characteristics of the Zhongjiannan Canyons, and then further discusses the controlling factors of the canyons formation. The Zhongjiannan submarine canyons is distributed between Zhongjian terrace and Zhongjianbei platform. It is composed of a main axis canyon in the west and several small branch canyons in the east. The overall trend is SE-S-SE. According to the trend turning point of the main canyon, the Zhongjiannan canyons are divided into three sections: north section, middle section and south section. The north section is dominated by erosion, the middle and south sections are mainly affected by erosion and sedimentation, and the area outside the canyon mouth in the southeast is mainly affected by sedimentation. Canyon sedimentary systems were widely distributed in the study area from Late Miocene to Quaternary, including semi-deep marine facies, delta facies, canyon/channel filling facies, slump facies, mass transported deposits and turbidite fan facies. It is revealed that the development and evolution of the submarine canyons are mainly controlled by sea level change, sediment source supply, gravity flow and bottom current. The analysis of the topography and sedimentary evolution characteristics of the canyons will have important scientific significance for the study of marine disaster geology, deep-water sedimentary system and oil and gas resources exploration in the South China Sea.
-
图 1 研究区地理位置
a.构造区划图,据钟广见和高红芳(2005)修改;b.地形图,据杨胜雄等(2015)
Fig. 1. Geographical location of the study area
图 3 中建南峡谷群展布特征
a.地形底图;b.推测底流流向,据田洁等(2021)修改;c.地形剖面
Fig. 3. Distribution characteristics of Zhongjiannan canyons in Northwestern South China Sea
图 4 研究区层序地层划分与西部陆架过井地震剖面对比
a. 西部陆架过井地震剖面,Fyhn et al.(2009);b. 研究区地震剖面,位置见图 3b
Fig. 4. Seismic profile characteristics of sequence stratigraphic division and comparison of well crossing seismic profile on the western continental shelf
表 1 中建南峡谷群分段性形态学参数
Table 1. Morphology parameter statistics of different sections of the Zhongjiannan canyons
分段 峡谷支数 主干峡谷 分支峡谷走向 主干 分支 走向 宽度(m) 形态 下切深度(m) 宽深比 北段 1 0 SE 3 144 V型 288.7 10.9 SE 中段 1 2 SW 2 138 U型 116.3 18.4 SE 南段 1 2 SE 2 280 U型 101 22.6 SE -
[1] Betzler, C., Fürstenau, J., Lüdmann, T., et al., 2013. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x [2] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. doi: 10.1007/s12583-020-1284-z [3] Chen, H. J., Cai, G. Q., Luo, W. D., et al., 2012. Features of Canyon Morphology and Their Origin in the Shenhu Area, Northern Slope of the South China Sea. Marine Geology & Quaternary Geology, 32(5): 19-26 (in Chinese with English abstract). [4] Chen, J. X., Guan, Y. X., Song, H. B., et al., 2015. Distribution Characteristics and Geological Implications of Pockmarks and Mud Volcanoes in the Northern and Western Continental Margins of the South China Sea. Chinese Journal of Geophysics, 58(3): 919-938 (in Chinese with English abstract). [5] Davies, R. J., Thatcher, K. E., Mathias, S. A., et al., 2012. Deepwater Canyons: An Escape Route for Methane Sealed by Methane Hydrate. Earth and Planetary Science Letters, 323-324: 72-78. https://doi.org/10.1016/j.epsl.2011.11.007 [6] Fyhn, M. B. W., Boldreel, L. O., Nielsen, L. H., 2009. Geological Development of the Central and South Vietnamese Margin: Implications for the Establishment of the South China Sea, Indochinese Escape Tectonics and Cenozoic Volcanism. Tectonophysics, 478: 184-214. https://doi.org/10.1016/j.tecto.2009.08.002 [7] Gao, H. F., Chen, L., 2006. An Analysis of Structural Framework and Formation Mechanism of Zhongjiannan Basin in the West of South China Sea. Oil & Gas Geology, 27(4): 512-516 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2006.04.011 [8] Gao, H. F., Nie, X., Luo, W. D., 2021. "Source to Sink" Analysis of a Sea Basin: The Quaternary Deepwater Turbidite Fan System in Pearl River Valley Northwest Subbasin, Northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1-12 (in Chinese with English abstract). [9] Gong, C. L., Wang, Y. M., Zhu, W. L., et al., 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159 [10] Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea-Levels since the Triassic. Science, 235: 1156-1167. https://doi.org/10.1126/science.235.4793.1156 [11] He, Y., Zhong, G. F., Wang, L. L., et al., 2014. Characteristics and Occurrence of Submarine Canyon-Associated Landslides in the Middle of the Northern Continental Slope, South China Sea. Marine and Petroleum Geology, 57: 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003 [12] Klaucke, I., Masson, D. G., Kenyon, N. H., et al., 2004. Sedimentary Processes of the Lower Monterey Fan Channel and Channel-Mouth Lobe. Marine Geology, 206(1-4): 181-198. https://doi.org/10.1016/j.mar-geo.2004.02.006 [13] Li, L., Zhang, C., Yan, C., et al., 2021. Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin. Earth Science, 46(10): 3707-3716 (in Chinese with English abstract). [14] Lin, C. S., Liu, J. Y., Cai, S. X., et al., 2001. Sedimentary Composition and Development Background of Large Incised Valley and Submarine Gravity Flow System in Yinggehai-Qiongdongnan Basin. Chinese Science Bulletin, 46(1): 69-72 (in Chinese). doi: 10.1007/BF03183213 [15] Liu, J., Su, M., Qiao, S. H., et al., 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950 (in Chinese with English abstract). [16] Lu, Y. T., Li, W., Wu, S. G., et al., 2018. Morphology, Architecture, and Evolutionary Processes of the Zhongjian Canyon between Two Carbonate Platforms, South China Sea. Interpretation, 6(4): 1-15. https://doi.org/10.1190/INT-2017-0222.1 [17] McDonnell, A., Loucks, R. G., Galloway, W. E., 2008. Paleocene to Eocene Deepwater Slope Canyons, Western Gulf of Mexico: Further Insights for the Provenance of Deep-Water Offshore Wilcox Group Plays. AAPG Bulletin, 92(9): 169-1189. https://doi.org/10.1306/05150808014 [18] Nie, X., Luo, W. D., Zhou, J., 2017. Depositional Characteristics of the Penghu Submarine Canyon in the Northeastern South China Sea. Marine Geology Frontiers, 33(8): 18-23 (in Chinese with English abstract). [19] Popescua, I., Lericolais, G., Paninc, N., et al., 2004. The Danube Submarine Canyon (Black Sea): Morphology and Sedimentary Processes. Mar. Geol., 206: 249-265. https://doi.org/10.1016/j.margeo.2004.03.003 [20] Schwarz, E., Arnott, R. W. C., 2007. Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera): Implications for Reservoir Characterization. Journal of Sedimentary Research, 77(2): 89-109. https://doi.org/10.2110/jsr.2007.015 [21] Shao, L., Li, X. H., Wang, P. X., et al., 2004. Sedimentary Record of the Tectonic Evolution of the South China Sea since the Oligocene-Evidence from Deep Sea Sediments of ODP Site 1148. Advance in Earth Sciences, 19 (4): 539-544 (in Chinese with English abstract). [22] Su, M., Sha, Z. B., Kuang, Z. G., et al., 2015. Erosion and Sedimentation of the Submarine Canyons and the Relationship with Gas Hydrate Accumulation. Geoscience, 29(1): 155-162 (in Chinese with English abstract). [23] Su, M., Zhang, C., Xie, X. N., et al., 2014. Controlling Factors on the Submarine Canyon System: A Case Study of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Science in China (Series D: Earth Sciences), 44(8): 1807-1820 (in Chinese). [24] Tian, J., Song, J., Ma, B. J., et al., 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718 (in Chinese with English abstract). [25] Viana, A. R., Faugères, J. C., Stow, D. A. V., 1998. Bottom-Current-Controlled Sand Deposits: A Review of Modern Shallow- to Deep-Water Environments. Sedimentary Geology, 115(1-4): 53-80. https://doi.org/10.1016/s0037-0738(97)00087-0 [26] Webster, J. M., Beaman, R. J., Puga-Bernabéu, Á., et al., 2012. Late Pleistocene History of Turbidite Sedimentation in a Submarine Canyon off the Northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 75-89. https://doi.org/10.1016/j.palaeo.2012.02.034 [27] Xie, X. N., Chen, Z. H., Sun, Z. P., et al., 2012. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South Sea. Earth Science, 37(4): 627-634 (in Chinese with English abstract). [28] Xie, Y. H., 2020. Sedimentary Characteristics and Hydrocarbon Exploration Potential of the Upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins. Bulletin of Geological Science and Technolog, 39(5): 69-78 (in Chinese with English abstract). [29] Xu, S., Wang, Y. M., Peng, X. C., et al., 2013. Depositional Elements and Settings of HD133 and HD77 Cores in the Taiwan Canyon. Acta Sedimentologica Sinica, 31(2): 325-330 (in Chinese with English abstract). [30] Yang, S. X., Qiu, Y., Zhu, B. D., et al., 2015. Geological and Geophysical Maps of the South China Sea (1∶2 000 000). China Navigation Book Publishing House, Tianjin (in Chinese). [31] Yao, Y. J., Yang, C. P., Li, X. J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4): 1274-1286 (in Chinese with English abstract). [32] Zhao, Q. H., Wang, P. X., Cheng, X. R., et al., 2001. Record of Miocene Carbon Shift Events in the South China Sea. Science in China (Series D: Earth Sciences), 31(10): 808-815 (in Chinese). [33] Zhong, G. J., Gao, H. F., 2005. Sequence Characteristics of Cenozoic Stratigraphy in Zhongjiannan Basin, South China Sea. Geotectonica et Metallogenia, 29(3): 403-409 (in Chinese with English abstract). [34] Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005 [35] 陈泓君, 蔡观强, 罗伟东, 等, 2012. 南海北部陆坡神狐海域峡谷地貌形态特征与成因. 海洋地质与第四纪地质, 32(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201205006.htm [36] 陈江欣, 关永贤, 宋海斌, 等, 2015. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义. 地球物理学报, 58(3): 919-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503019.htm [37] 高红芳, 陈玲, 2006. 南海西部中建南盆地构造格架及形成机制分析. 石油与天然气地质, 27(4): 512-516. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200604011.htm [38] 高红芳, 聂鑫, 罗伟东, 2021. 海盆沉积"源‒汇"系统分析: 南海北部珠江海谷‒西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102001.htm [39] 李林, 张成, 闫春, 等, 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707-3716. doi: 10.3799/dqkx.2021.014 [40] 林畅松, 刘景彦, 蔡世祥, 等, 2001. 莺‒琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200101018.htm [41] 刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm [42] 聂鑫, 罗伟东, 周娇, 2017. 南海东北部澎湖峡谷群沉积特征. 海洋地质前沿, 33(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201708003.htm [43] 邵磊, 李献华, 汪品先, 等, 2004. 南海渐新世以来构造演化的沉积记录: ODP1148站深海沉积物中的证据. 地球科学进展, 19(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404008.htm [44] 苏明, 沙志彬, 匡增桂, 等, 2015. 海底峡谷侵蚀‒沉积作用与天然气水合物成藏. 现代地质, 29(1): 155-162. [45] 苏明, 张成, 解习农, 等, 2014. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例. 中国科学(D辑: 地球科学), 44(8): 1807-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm [46] 田洁, 宋军, 马本俊, 等, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062 [47] 解习农, 陈志宏, 孙志鹏, 等, 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. doi: 10.3799/dqkx.2012.072 [48] 谢玉洪, 2020. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景. 地质科技通报, 39(5): 69-78. [49] 徐尚, 王英民, 彭学超, 等, 2013. 台湾峡谷HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 31(2): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201302011.htm [50] 杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系(1: 2 000 000). 天津: 中国航海图书出版社. [51] 姚永坚, 杨楚鹏, 李学杰, 等, 2013. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304024.htm [52] 赵泉鸿, 汪品先, 成鑫荣, 等, 2001. 中新世"碳位移"事件在南海的记录. 中国科学(D辑: 地球科学), 31(10): 808-815. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110002.htm [53] 钟广见, 高红芳, 2005. 中建南盆地新生代层序地层特征. 大地构造与成矿学, 29(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200503017.htm