• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海西北部中建南海底峡谷群的发现及演化特征

    孙美静 姚永坚 罗伟东 胡小三 周娇 徐子英 鞠东 刘杰

    孙美静, 姚永坚, 罗伟东, 胡小三, 周娇, 徐子英, 鞠东, 刘杰, 2022. 南海西北部中建南海底峡谷群的发现及演化特征. 地球科学, 47(11): 4005-4019. doi: 10.3799/dqkx.2022.034
    引用本文: 孙美静, 姚永坚, 罗伟东, 胡小三, 周娇, 徐子英, 鞠东, 刘杰, 2022. 南海西北部中建南海底峡谷群的发现及演化特征. 地球科学, 47(11): 4005-4019. doi: 10.3799/dqkx.2022.034
    Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie, 2022. Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea. Earth Science, 47(11): 4005-4019. doi: 10.3799/dqkx.2022.034
    Citation: Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie, 2022. Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea. Earth Science, 47(11): 4005-4019. doi: 10.3799/dqkx.2022.034

    南海西北部中建南海底峡谷群的发现及演化特征

    doi: 10.3799/dqkx.2022.034
    基金项目: 

    南方海洋科学与工程广东省实验室(广州)重大专项 GML2019ZD0207

    广东省促进经济发展专项基金(海洋经济发展用途)项目 GDNRC[2020]047

    广东省促进经济发展专项基金(海洋经济发展用途)项目 GDNRC[2021]58

    国家自然科学基金项目 U20A20100

    中国地质调查局项目 DD20221712

    中国地质调查局项目 DD20221719

    中国地质调查局项目 DD20160138

    详细信息
      作者简介:

      孙美静(1986-),女,硕士,高级工程师,主要从事沉积学及海洋地质方面工作. E-mail:sunmeijing0411@163.com

    • 中图分类号: P631

    Sedimentary Evolution Characteristics and Controlling Factors of Zhongjiannan Canyons in Northwestern South China Sea

    • 摘要: 在南海西北部首次发现中建南峡谷群,目前对其地质信息尚未开展相关研究.综合利用水深地形数据和二维多道地震资料,主要分析中建南峡谷群的地形地貌特征、平面展布与分段性特点,精细刻画峡谷沉积充填结构及演化特征,再进一步讨论峡谷形成的控制因素.中建南海底峡谷群分布于中建阶地与中建北海台之间,它是由西侧的一条主轴峡谷和东侧的多条小型分支峡谷组成,整体呈SE-S-SE走向,以走向转折拐点为起点,将峡谷分为三段式:北段、中段和南段,北段以侵蚀作用为主,中段和南段主要受侵蚀作用、沉积作用,东南部的峡谷口外主要受沉积作用.研究区晚中新世‒第四纪时广泛分布峡谷沉积体系,包括半深海相、三角洲相、峡谷/水道充填相、滑塌相、块体搬运复合沉积和浊积扇相.揭示了该海底峡谷群的发育和演化主要受海平面变化、沉积物源供给和重力流、底流作用的控制.通过对该峡谷群的地形地貌和沉积演化特征的分析,将对海洋地质灾害、南海深水沉积体系研究及油气资源勘探有重要的科学意义.

       

    • 图  1  研究区地理位置

      a.构造区划图,据钟广见和高红芳(2005)修改;b.地形图,据杨胜雄等(2015)

      Fig.  1.  Geographical location of the study area

      图  2  南海西部ADCP剖面流速矢量垂向结构分布(剖面位置见图 1b

      Fig.  2.  Vertical structure distribution of velocity vector of ADCP profile in the west of the South China Sea (see Fig. 1b for profile location)

      图  3  中建南峡谷群展布特征

      a.地形底图;b.推测底流流向,据田洁等(2021)修改;c.地形剖面

      Fig.  3.  Distribution characteristics of Zhongjiannan canyons in Northwestern South China Sea

      图  4  研究区层序地层划分与西部陆架过井地震剖面对比

      a. 西部陆架过井地震剖面,Fyhn et al.(2009);b. 研究区地震剖面,位置见图 3b

      Fig.  4.  Seismic profile characteristics of sequence stratigraphic division and comparison of well crossing seismic profile on the western continental shelf

      图  5  研究区发育的典型地震相类型(剖面位置见图 3b

      Fig.  5.  Types of seismic facies-sedimentary facies identified in the study area (see Fig. 3b for profile location)

      图  6  峡谷北段地震剖面反射特征(剖面位置见图 3a, 3b

      Fig.  6.  Reflection characteristics of seismic profile in the north section of canyons (see Fig. 3a, 3b for profile location)

      图  7  峡谷中段地震剖面反射特征(剖面位置见图 3a, 3b

      Fig.  7.  Reflection characteristics of seismic profile in the middle section of canyons (see Fig. 3a, 3b for profile location)

      图  8  峡谷南段地震剖面反射特征(剖面位置见图 3b

      Fig.  8.  Reflection characteristics of seismic profile in the south section of canyons (see Fig. 3b for location)

      图  9  南部峡谷口外第四纪浊积扇沉积(剖面位置见图 3b

      Fig.  9.  The Quaternary turbidite fan deposits outside the mouth of the southern canyons (see Fig. 3b for section location)

      图  10  中建南峡谷群北部沉积物源供给特征(剖面位置见图 1b

      Fig.  10.  The north sediment source supply characteristics in the Zhongjiannan canyons (see Fig. 1b for location)

      图  11  峡谷周缘前积反射特征(剖面位置见图 3a, 3b

      Fig.  11.  Progradation reflection characteristics around the canyons (see Fig. 3a, 3b for section location)

      图  12  中建南峡谷群沉积充填模式图

      Fig.  12.  Sedimentary evolution model of the Zhongjiannan canyons

      图  13  中建南峡谷群晚中新世‒第四纪沉积相平面展布图

      Fig.  13.  The sedimentary facies distribution of Zhongjiannan canyons since Late Miocene-Quaternary

      表  1  中建南峡谷群分段性形态学参数

      Table  1.   Morphology parameter statistics of different sections of the Zhongjiannan canyons

      分段 峡谷支数 主干峡谷 分支峡谷走向
      主干 分支 走向 宽度(m) 形态 下切深度(m) 宽深比
      北段 1 0 SE 3 144 V型 288.7 10.9 SE
      中段 1 2 SW 2 138 U型 116.3 18.4 SE
      南段 1 2 SE 2 280 U型 101 22.6 SE
      下载: 导出CSV
    • [1] Betzler, C., Fürstenau, J., Lüdmann, T., et al., 2013. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x
      [2] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. doi: 10.1007/s12583-020-1284-z
      [3] Chen, H. J., Cai, G. Q., Luo, W. D., et al., 2012. Features of Canyon Morphology and Their Origin in the Shenhu Area, Northern Slope of the South China Sea. Marine Geology & Quaternary Geology, 32(5): 19-26 (in Chinese with English abstract).
      [4] Chen, J. X., Guan, Y. X., Song, H. B., et al., 2015. Distribution Characteristics and Geological Implications of Pockmarks and Mud Volcanoes in the Northern and Western Continental Margins of the South China Sea. Chinese Journal of Geophysics, 58(3): 919-938 (in Chinese with English abstract).
      [5] Davies, R. J., Thatcher, K. E., Mathias, S. A., et al., 2012. Deepwater Canyons: An Escape Route for Methane Sealed by Methane Hydrate. Earth and Planetary Science Letters, 323-324: 72-78. https://doi.org/10.1016/j.epsl.2011.11.007
      [6] Fyhn, M. B. W., Boldreel, L. O., Nielsen, L. H., 2009. Geological Development of the Central and South Vietnamese Margin: Implications for the Establishment of the South China Sea, Indochinese Escape Tectonics and Cenozoic Volcanism. Tectonophysics, 478: 184-214. https://doi.org/10.1016/j.tecto.2009.08.002
      [7] Gao, H. F., Chen, L., 2006. An Analysis of Structural Framework and Formation Mechanism of Zhongjiannan Basin in the West of South China Sea. Oil & Gas Geology, 27(4): 512-516 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2006.04.011
      [8] Gao, H. F., Nie, X., Luo, W. D., 2021. "Source to Sink" Analysis of a Sea Basin: The Quaternary Deepwater Turbidite Fan System in Pearl River Valley Northwest Subbasin, Northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1-12 (in Chinese with English abstract).
      [9] Gong, C. L., Wang, Y. M., Zhu, W. L., et al., 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159
      [10] Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea-Levels since the Triassic. Science, 235: 1156-1167. https://doi.org/10.1126/science.235.4793.1156
      [11] He, Y., Zhong, G. F., Wang, L. L., et al., 2014. Characteristics and Occurrence of Submarine Canyon-Associated Landslides in the Middle of the Northern Continental Slope, South China Sea. Marine and Petroleum Geology, 57: 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003
      [12] Klaucke, I., Masson, D. G., Kenyon, N. H., et al., 2004. Sedimentary Processes of the Lower Monterey Fan Channel and Channel-Mouth Lobe. Marine Geology, 206(1-4): 181-198. https://doi.org/10.1016/j.mar-geo.2004.02.006
      [13] Li, L., Zhang, C., Yan, C., et al., 2021. Characteristics and Genetic Mechanism of a Large-Scale Submarine Gravity-Driven System in Huaguang Depression, Qiongdongnan Basin. Earth Science, 46(10): 3707-3716 (in Chinese with English abstract).
      [14] Lin, C. S., Liu, J. Y., Cai, S. X., et al., 2001. Sedimentary Composition and Development Background of Large Incised Valley and Submarine Gravity Flow System in Yinggehai-Qiongdongnan Basin. Chinese Science Bulletin, 46(1): 69-72 (in Chinese). doi: 10.1007/BF03183213
      [15] Liu, J., Su, M., Qiao, S. H., et al., 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950 (in Chinese with English abstract).
      [16] Lu, Y. T., Li, W., Wu, S. G., et al., 2018. Morphology, Architecture, and Evolutionary Processes of the Zhongjian Canyon between Two Carbonate Platforms, South China Sea. Interpretation, 6(4): 1-15. https://doi.org/10.1190/INT-2017-0222.1
      [17] McDonnell, A., Loucks, R. G., Galloway, W. E., 2008. Paleocene to Eocene Deepwater Slope Canyons, Western Gulf of Mexico: Further Insights for the Provenance of Deep-Water Offshore Wilcox Group Plays. AAPG Bulletin, 92(9): 169-1189. https://doi.org/10.1306/05150808014
      [18] Nie, X., Luo, W. D., Zhou, J., 2017. Depositional Characteristics of the Penghu Submarine Canyon in the Northeastern South China Sea. Marine Geology Frontiers, 33(8): 18-23 (in Chinese with English abstract).
      [19] Popescua, I., Lericolais, G., Paninc, N., et al., 2004. The Danube Submarine Canyon (Black Sea): Morphology and Sedimentary Processes. Mar. Geol., 206: 249-265. https://doi.org/10.1016/j.margeo.2004.03.003
      [20] Schwarz, E., Arnott, R. W. C., 2007. Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera): Implications for Reservoir Characterization. Journal of Sedimentary Research, 77(2): 89-109. https://doi.org/10.2110/jsr.2007.015
      [21] Shao, L., Li, X. H., Wang, P. X., et al., 2004. Sedimentary Record of the Tectonic Evolution of the South China Sea since the Oligocene-Evidence from Deep Sea Sediments of ODP Site 1148. Advance in Earth Sciences, 19 (4): 539-544 (in Chinese with English abstract).
      [22] Su, M., Sha, Z. B., Kuang, Z. G., et al., 2015. Erosion and Sedimentation of the Submarine Canyons and the Relationship with Gas Hydrate Accumulation. Geoscience, 29(1): 155-162 (in Chinese with English abstract).
      [23] Su, M., Zhang, C., Xie, X. N., et al., 2014. Controlling Factors on the Submarine Canyon System: A Case Study of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Science in China (Series D: Earth Sciences), 44(8): 1807-1820 (in Chinese).
      [24] Tian, J., Song, J., Ma, B. J., et al., 2021. Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon. Earth Science, 46(2): 708-718 (in Chinese with English abstract).
      [25] Viana, A. R., Faugères, J. C., Stow, D. A. V., 1998. Bottom-Current-Controlled Sand Deposits: A Review of Modern Shallow- to Deep-Water Environments. Sedimentary Geology, 115(1-4): 53-80. https://doi.org/10.1016/s0037-0738(97)00087-0
      [26] Webster, J. M., Beaman, R. J., Puga-Bernabéu, Á., et al., 2012. Late Pleistocene History of Turbidite Sedimentation in a Submarine Canyon off the Northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 75-89. https://doi.org/10.1016/j.palaeo.2012.02.034
      [27] Xie, X. N., Chen, Z. H., Sun, Z. P., et al., 2012. Depositional Architecture Characteristics of Deepwater Depositional Systems on the Continental Margins of Northwestern South Sea. Earth Science, 37(4): 627-634 (in Chinese with English abstract).
      [28] Xie, Y. H., 2020. Sedimentary Characteristics and Hydrocarbon Exploration Potential of the Upstream of the Central Canyon in the Yinggehai and Qiongdongnan Basins. Bulletin of Geological Science and Technolog, 39(5): 69-78 (in Chinese with English abstract).
      [29] Xu, S., Wang, Y. M., Peng, X. C., et al., 2013. Depositional Elements and Settings of HD133 and HD77 Cores in the Taiwan Canyon. Acta Sedimentologica Sinica, 31(2): 325-330 (in Chinese with English abstract).
      [30] Yang, S. X., Qiu, Y., Zhu, B. D., et al., 2015. Geological and Geophysical Maps of the South China Sea (1∶2 000 000). China Navigation Book Publishing House, Tianjin (in Chinese).
      [31] Yao, Y. J., Yang, C. P., Li, X. J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4): 1274-1286 (in Chinese with English abstract).
      [32] Zhao, Q. H., Wang, P. X., Cheng, X. R., et al., 2001. Record of Miocene Carbon Shift Events in the South China Sea. Science in China (Series D: Earth Sciences), 31(10): 808-815 (in Chinese).
      [33] Zhong, G. J., Gao, H. F., 2005. Sequence Characteristics of Cenozoic Stratigraphy in Zhongjiannan Basin, South China Sea. Geotectonica et Metallogenia, 29(3): 403-409 (in Chinese with English abstract).
      [34] Zhu, M. Z., Graham, S., Pang, X., et al., 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
      [35] 陈泓君, 蔡观强, 罗伟东, 等, 2012. 南海北部陆坡神狐海域峡谷地貌形态特征与成因. 海洋地质与第四纪地质, 32(5): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201205006.htm
      [36] 陈江欣, 关永贤, 宋海斌, 等, 2015. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义. 地球物理学报, 58(3): 919-938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503019.htm
      [37] 高红芳, 陈玲, 2006. 南海西部中建南盆地构造格架及形成机制分析. 石油与天然气地质, 27(4): 512-516. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200604011.htm
      [38] 高红芳, 聂鑫, 罗伟东, 2021. 海盆沉积"源‒汇"系统分析: 南海北部珠江海谷‒西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202102001.htm
      [39] 李林, 张成, 闫春, 等, 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707-3716. doi: 10.3799/dqkx.2021.014
      [40] 林畅松, 刘景彦, 蔡世祥, 等, 2001. 莺‒琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200101018.htm
      [41] 刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm
      [42] 聂鑫, 罗伟东, 周娇, 2017. 南海东北部澎湖峡谷群沉积特征. 海洋地质前沿, 33(8): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201708003.htm
      [43] 邵磊, 李献华, 汪品先, 等, 2004. 南海渐新世以来构造演化的沉积记录: ODP1148站深海沉积物中的证据. 地球科学进展, 19(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200404008.htm
      [44] 苏明, 沙志彬, 匡增桂, 等, 2015. 海底峡谷侵蚀‒沉积作用与天然气水合物成藏. 现代地质, 29(1): 155-162.
      [45] 苏明, 张成, 解习农, 等, 2014. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例. 中国科学(D辑: 地球科学), 44(8): 1807-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408019.htm
      [46] 田洁, 宋军, 马本俊, 等, 2021. 中建海底峡谷地貌及沉积特征的分段性. 地球科学, 46(2): 708-718. doi: 10.3799/dqkx.2020.062
      [47] 解习农, 陈志宏, 孙志鹏, 等, 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. doi: 10.3799/dqkx.2012.072
      [48] 谢玉洪, 2020. 莺琼盆地区中央峡谷源头沉积特征及油气勘探前景. 地质科技通报, 39(5): 69-78.
      [49] 徐尚, 王英民, 彭学超, 等, 2013. 台湾峡谷HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 31(2): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201302011.htm
      [50] 杨胜雄, 邱燕, 朱本铎, 等, 2015. 南海地质地球物理图系(1: 2 000 000). 天津: 中国航海图书出版社.
      [51] 姚永坚, 杨楚鹏, 李学杰, 等, 2013. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304024.htm
      [52] 赵泉鸿, 汪品先, 成鑫荣, 等, 2001. 中新世"碳位移"事件在南海的记录. 中国科学(D辑: 地球科学), 31(10): 808-815. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110002.htm
      [53] 钟广见, 高红芳, 2005. 中建南盆地新生代层序地层特征. 大地构造与成矿学, 29(3): 403-409. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200503017.htm
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  160
    • HTML全文浏览量:  88
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-23
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回