Classification System of Typical Engineering Geological Deformation and Failure Modes in Grottoes
-
摘要:
石窟寺是宝贵的石质文物,但在复杂的赋存环境、长期的侵蚀风化以及人类活动的影响下产生了多种变形破坏问题.详细的破坏分类体系是石窟寺病害表征、解释、分级和预测的基础,而目前尚未有针对石窟变形破坏的综合分类方法.分析了川渝、陇东地区代表性石窟的工程地质条件和变形破坏特性,将石窟的变形破坏类型分为工程地质成因型和工程地质力学型,建立了2大类、6亚类、24种破坏现象的综合分类体系.采用工程地质类比法对比了石窟变形破坏及诱发机制的南北差异.陇东石窟因卸荷产生的变形破坏更多,而微环境扰动带来的变形破坏在川渝石窟更突出.在微环境扰动下,川渝石窟的破坏响应以鳞片状剥落破坏为主,而陇东石窟以渔网状剥蚀破坏为主.
Abstract:Sandstone grottoes are valuable stone cultural relics. However, due to its complex occurrence environment, long-term weathering and the human activities, a variety of deformation and failure phenomena have been produced. Detailed classification system and precise characterization are required for the diagnosis, interpretation, classification and prediction of the deformation and failure of stone cultural relics. However, there is no comprehensive classification method to describe types of deformation and failure of rock in grottoes. In this paper it investigates the engineering geological conditions and failure characteristics of grottoes in northern and southern China. Based on the engineering geological theory, the deformation and failure types of grotto are divided into engineering geological genetic types and engineering geomechanics types. According to the specific damage phenomena, a comprehensive classification method is established, including 2 classes, 6 subclasses and 24 kinds of damage phenomena. Different phenomena and mechanism in south and north grottoes are compared. North grottoes have more damage caused by unloading relaxation. But the failure in south grottoes is mainly resulted from changing micro-environment. As for changing micro-environment, fishing-net-shaped denudation is dominant in north grottoes while scaly-shaped exfoliation is prominent in south grottoes.
-
Key words:
- Grotto /
- engineering geomechanics /
- failure phenomenon /
- classification system /
- sandstone /
- micro-environment
-
图 4 砂岩型石窟寺构造控制破坏现象
a.安岳圆觉洞褶皱两翼拉破坏;b.褶皱表面拉伸应力状态示意图,修改自(Hudleston and Holst, 1984);c.北石窟寺263窟构造裂隙剪切破坏;d.北石窟寺长大构造裂隙形成的平直“岩墙”;e.北石窟寺37窟构造裂隙剪切破坏
Fig. 4. Failure of sandstone grottoes caused by tectonic
表 1 南北典型石窟的砂岩物理力学性质
Table 1. Physical and mechanical properties of typical grottoes sandstone in north and south regions
密度(g/cm)3 饱和吸水率(%) P波速(m/s) 矿物平均粒径(mm) 单轴抗压强度(MPa) 巴西抗拉强度(MPa) 庆阳北石窟 2.14 8.89 2 418 0.110 23.3 1.90 郴县大佛寺 2.09 7.32 2 233 0.072 13.6 0.70 安岳圆觉洞 2.19 7.71 2 756 0.055 24.5 1.25 大足宝顶山 2.32 7.61 2 539 0.026 23.7 1.39 表 2 砂岩石窟寺典型工程地质变形破坏模式分类体系
Table 2. Classification system of typical engineering geological failure modes in sandstone grottoes
大类 亚类 次亚类 破坏现象 工程地质成因类型 成岩环境控制型 河流沉积成岩型 韵律层差异破坏 粉化落砂破坏 卵砾石夹层破坏 湖泊沉积成岩型 泥化夹层条带破坏 微环境控制型 水循环控制型 洞顶剥蚀破坏 鳞片状剥落破坏 表层起壳破坏 盐析控制型 渔网状剥蚀破坏 温度控制型 圆弧鼓胀破坏 酸雨控制型 表层脱落破坏 构造活动控制型 褶皱断裂控制型 褶皱两翼破坏 构造裂隙控制型 长大剪切破坏 工程地质力学类型 岩体结构控制型 层理控制型 洞顶冒落破坏 洞顶冒漏破坏 节理控制型 节理面张开破坏 节理面滑移破坏 卸荷松弛控制型 卸荷裂隙控制型 卸荷裂隙拉张破坏 卸荷体的塌落破坏 开挖扰动
控制型洞窟形式控制型 平顶板洞窟破坏 覆斗状洞窟破坏 窟群结构控制型 单窟破坏 多窟破坏 人工扰动控制型 火烧烟熏控制型 膨胀剥落破坏 工程扰动控制型 加固失效破坏 表 3 石窟寺砂岩的变形破坏类型统计
Table 3. Statistical list of deformation and failure types of grottoes' sandstone
破坏现象 庆阳北石窟寺 彬县大佛寺 安岳石窟 大足石窟 韵律层差异破坏 7 - - - 粉化落砂破坏 19 5 - - 卵砾石夹层破坏 - 4 - - 泥化夹层条带破坏 - - 24 11 褶皱两翼破坏 - - 3 - 长大剪切破坏 6 - - - 洞顶冒落破坏 7 2 3 1 洞顶冒漏破坏 2 - - - 节理面张开破坏 37 15 19 10 节理面滑移破坏 7 2 10 4 卸荷裂隙拉张破坏 41 22 53 36 卸荷体的塌落破坏 15 - 10 3 平顶板洞窟破坏 1 1 2 14 覆斗状洞窟破坏 13 4 - 2 单窟破坏 - 6 23 18 多窟破坏 25 8 - - 洞顶剥蚀破坏 8 6 20 23 鳞片状剥落破坏 - 2 43 19 表层起壳破坏 15 5 27 10 渔网状剥蚀破坏 29 7 - - 圆弧鼓胀破坏 8 7 11 10 表层脱落破坏 - 4 28 24 膨胀剥落破坏 11 2 3 14 加固失效破坏 13 3 - 1 注:数值表示类型的数量. -
[1] Bao, Y. C., Liu, Q. H., Du, X. F., et al., 2021. Division of Glutenite Lithofacies Based on the Trielement of Gravel-Matrix-Fracture. Earth Science, 46(6): 2157-2171(in Chinese with English abstract). [2] Buckman, S., Morris, R. H., Bourman, R. P., 2021. Fire-Induced Rock Spalling as a Mechanism of Weathering Responsible for Flared Slope and Inselberg Development. Nature Communications, 12: 2150. https://doi.org/10.1038/s41467-021-22451-2 [3] Chen, H. K., Tang, H. M., 2005. Classification and Identify of Perilous Rock in the Area of the Three Gorges Reservoir. The Chinese Journal of Geological Hazard and Control, 16(4): 53-57, 78(in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2005.04.013 [4] Collins, B. D., Stock, G. M., 2016. Rockfall Triggering by Cyclic Thermal Stressing of Exfoliation Fractures. Nature Geoscience, 9(5): 395-400. https://doi.org/10.1038/ngeo2686 [5] Eppes, M. C., McFadden, L. D., Wegmann, K. W., et al., 2010. Cracks in Desert Pavement Rocks: Further Insights into Mechanical Weathering by Directional Insolation. Geomorphology, 123(1-2): 97-108. https://doi.org/10.1016/j.geomorph.2010.07.003 [6] Eric, D., Clifford, A. P., 2010. Stone Conservation: An Overview of Current Research. Getty Conservation Institute, Los Angeles. [7] Fang, Y., Chen, X., Liu, J. H., et al., 2011. Analysis on Causes of Perilous Rocks in Yungang Grottoes. Geoscience, 25(1): 137-141(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.01.018 [8] Guo, F., Jiang, G. H., 2015. Investigation into Rock Moisture and Salinity Regimes: Implications of Sandstone Weathering in Yungang Grottoes, China. Carbonates and Evaporites, 30(1): 1-11. https://doi.org/10.1007/s13146-014-0191-8 [9] He, Y., Li, Z. Y., 2000. A Study of Geological Disease Analyses and Renovation Methods in Lingquan Temple Grotto of Henan, China. Rock and Soil Mechanics, 21(1): 56-59(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2000.01.014 [10] Heinrichs, K., 2008. Diagnosis of Weathering Damage on Rock-Cut Monuments in Petra, Jordan. Environmental Geology, 56(3): 643-675. https://doi.org/10.1007/s00254-008-1358-1 [11] Huang, J. Z., Wang, J. H., Gao, F., et al., 2018. Recent Progresses in Sandstone Cave Temples Conservation: A Case Study of Yungang Grottoes. Southeast Culture, (1): 15-19(in Chinese with English abstract). doi: 10.3969/j.issn.1001-179X.2018.01.002 [12] Hudleston, P. J., Holst, T. B., 1984. Strain Analysis and Fold Shape in a Limestone Layer and Implications for Layer Rheology. Tectonophysics, 106(3-4): 321-347. https://doi.org/10.1016/0040-1951(84)90183-5 [13] Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960(in Chinese with English abstract). [14] Lan, H. X., Chen, J. H., Macciotta, R., 2019. Universal Confined Tensile Strength of Intact Rock. Scientific Reports, 9: 6170. https://doi.org/10.1038/s41598-019-42698-6 [15] Lan, H. X., Peng, J. B., Zhu, Y. B., et al., 2022. Study and Prospect of Geological Surface Processes and Major Disaster Effects in the Yellow River Basin. Scientia Sinica (Terrae), 52(2): 199-221(in Chinese). doi: 10.1360/SSTe-2021-0115 [16] Li, L., Wang, S. J., Tanimoto, C., 2008. Study of Weathering Characteristics of Sandstone at Longyou Grottoes. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1217-1222(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.06.016 [17] Li, L. P., Lan, H. X., 2022. Complexities of Landslide Moving Path: A Review and Perspective. Earth Science, 47(12)(in press)(in Chinese with English abstract). [18] Liu, R. Z., Zhang, B. J., Zhang, H., et al., 2011. Deterioration of Yungang Grottoes: Diagnosis and Research. Journal of Cultural Heritage, 12(4): 494-499. https://doi.org/10.1016/j.culher.2011.03.008 [19] McFadden, L. D., Eppes, M. C., Gillespie, A. R., et al., 2005. Physical Weathering in Arid Landscapes Due to Diurnal Variation in the Direction of Solar Heating. Geological Society of America Bulletin, 117(1): 161-173. https://doi.org/10.1130/b25508.1 [20] Pye, K., Mottershead, D. N., 1995. Honeycomb Weathering of Carboniferous Sandstone in a Sea Wall at Weston-Super-Mare, UK. Quarterly Journal of Engineering Geology, 28(4): 333-347. https://doi.org/10.1144/gsl.qjegh.1995.028.p4.03 [21] Qi, G., Yang, G. X., Li, B., 2011. Patterns and Mechanisms of Deformation and Failure and Strengthening Countermeasures of the Guge Kingdom Ruins Caverns in Tibet. Journal of Jilin University (Earth Science Edition), 41(5): 1494-1503(in Chinese with English abstract). [22] Qin, Y., Wang, Y. H., Li, L. L., et al., 2016. Experimental Weathering of Weak Sandstone without Direct Water Participation by Using Sandstone from the Yungang Grottoes in Datong, China. Rock Mechanics and Rock Engineering, 49(11): 4473-4478. https://doi.org/10.1007/s00603-016-1003-3 [23] Sun, J., Ling, J. M., Jia, G., et al., 2001. On Longyou Grottoes in West Zhejiang from the Perspective of Engineering Science. Chinese Journal of Rock Mechanics and Engineering, 20(1): 131-133(in Chinese). [24] Sun, M. L., Liu, X. Q., Cao, Z. Z., et al., 2021. The Regional Characteristics of Surface Weathering of Sandstone Grottoes in Gansu Province. Journal of Northwest University (Natural Science Edition), 51(3): 333-343(in Chinese with English abstract). [25] Temraz, M., Khallaf, M., 2015. Weathering Behavior Investigations and Treatment of Kom Ombo Temple Sandstone, Egypt-Based on Their Sedimentological and Petrogaphical Information. Journal of African Earth Sciences, 113: 194-204. https://doi.org/10.1016/j.jafrearsci.2015.10.021 [26] Wang, J. H., Chen, J. Q., 2018. Current Status and Future Development of Cave Temples Protection in China. Southeast Culture, (1): 6-14, 127(in Chinese with English abstract). [27] Wang, K. P., Xu, G. L., Li, S. T., et al., 2017. Geo-Environmental Characteristics of Weathering Deterioration of Red Sandstone Relics: A Case Study in Tongtianyan Grottoes, Southern China. Bulletin of Engineering Geology and the Environment, 77: 1515-1527 https://doi.org/10.1007/s10064-017-1128-y [28] Wang, S. J., 2001. The Wonderful Artical Excelling Nature, Longyou Grottoes. Rock Mechanics and Engineering Trends, 53: 8-9(in Chinese). [29] Yang, Z. F., Wang, S. J., Xu, B., et al., 2000. Analysis of the Engineering Geological Conditions of Longyou Stone Caves and Primary Study on the Protection Strategies. Journal of Engineering Geology, 8(3): 291-295(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2000.03.007 [30] Zhang, J. K., Zhang, L. X., Guo, Q. L., et al., 2021. The Relationship between Weathering Characteristics of the Sandstone Surface and Lithology of the North Grottoes at Qingyang. Journal of Northwest University (Natural Science Edition), 51(3): 344-352(in Chinese with English abstract). [31] Zheng, L. Y., Chen, Z. A., Zhang, L., et al., 2020. Characteristics and Variation Trends of Acid Rain in Chengdu during 2006—2017. Meteorological Science and Technology, 48(3): 380-386(in Chinese with English abstract). [32] Zhou, H. F., Fu, W. X., Ye, F., et al., 2021. Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446(in Chinese with English abstract). [33] 鲍怡晨, 刘强虎, 杜晓峰, 等, 2021. 基于砾石-基质-裂缝三元素的砂砾岩岩相划分. 地球科学, 46(6): 2157-2171. doi: 10.3799/dqkx.2020.284 [34] 陈洪凯, 唐红梅, 2005. 长江三峡水库区危岩分类及宏观判据研究. 中国地质灾害与防治学报, 16(4): 53-57, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200504012.htm [35] 方云, 陈星, 刘俊红, 等, 2011. 云冈石窟危岩发育的成因分析. 现代地质, 25(1): 137-141 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201101019.htm [36] 何燕, 李智毅, 2000. 关于河南灵泉寺石窟地质病害及整治方法的研究. 岩土力学, 21(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200001017.htm [37] 黄继忠, 王金华, 高峰, 等, 2018. 砂岩类石窟寺保护新进展: 以云冈石窟保护研究新成果为例. 东南文化, (1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DNWH201801002.htm [38] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110 [39] 兰恒星, 彭建兵, 祝艳波, 等, 2022. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学: 地球科学, 52(2): 199-221. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202202001.htm [40] 李黎, 王思敬, 谷本亲伯, 2008. 龙游石窟砂岩风化特征研究. 岩石力学与工程学报, 27(6): 1217-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806019.htm [41] 李郎平, 兰恒星, 2022. 滑坡运动路径复杂度研究: 综述与展望. 地球科学, 47(12)(in press). [42] 齐干, 杨国兴, 李兵, 2011. 西藏古格王国遗址洞窟变形破坏模式、机制及加固对策. 吉林大学学报(地球科学版), 41(5): 1494-1503. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105025.htm [43] 孙钧, 凌建明, 贾岗, 等, 2001. 从工程科学角度看浙西大地的龙游石窟. 岩石力学与工程学报, 20(1): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200101033.htm [44] 孙满利, 刘璇清, 曹张喆, 等, 2021. 甘肃砂岩石窟浅表层风化区域特征研究. 西北大学学报(自然科学版), 51(3): 333-343. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202103001.htm [45] 王金华, 陈嘉琦, 2018. 我国石窟寺保护现状及发展探析. 东南文化, (1): 6-14, 127. https://www.cnki.com.cn/Article/CJFDTOTAL-DNWH201801001.htm [46] 王思敬, 2001. 巧夺天工的龙游石窟. 岩石力学与工程动态, 53: 8-9. [47] 杨志法, 王思敬, 许兵, 等, 2000. 龙游石窟群工程地质条件分析及保护对策初步研究. 工程地质学报, 8(3): 291-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200003006.htm [48] 张景科, 张理想, 郭青林, 等, 2021. 庆阳北石窟寺砂岩表层风化特征与地层岩性的关系研究. 西北大学学报(自然科学版), 51(3): 344-352 https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202103003.htm [49] 郑丽英, 陈志安, 张丽, 等, 2020.2006—2017年成都地区酸雨变化特征及趋势分析. 气象科技, 48(3): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003012.htm [50] 周洪福, 符文熹, 叶飞, 等, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097