Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block
-
摘要: 裂缝脉体中蕴藏着天然裂缝演化与古流体充注活动等重要信息,对于深层页岩气保存条件也有指示意义.针对泸州区块龙马溪组深层页岩裂缝脉体,综合运用光学薄片、阴极发光、流体包裹体及微区原位等分析手段,分析了裂缝脉体的发育特征,研究了成脉流体活动及其成岩环境演化,探讨了页岩气保存条件.研究发现,深层页岩裂缝脉体主要为石英与白云石或方解石组成的复合脉体,不同矿物之间表现出较复杂的切割关系,盐水包裹体与高密度甲烷包裹体大量发育,且裂缝脉体主要形成于还原性环境.整体看来,构造抬升背景下,深层页岩裂缝开始形成且处于不断开启或闭合过程,3期不同性质的古流体多次充注胶结,较封闭的成岩体系对深层页岩气的保存有利.Abstract: Fracture veins contain important information such as natural fracture evolution and paleo-fluid injection activities, which is also indicative of the preservation conditions of deep shale gas. In this paper, the development characteristics of fractures and veins in the deep shale of Longmaxi Formation in Luzhou block were analyzed by means of optical thin section, cathode luminescence, fluid inclusion and in-situ microanalysis, and the activity of vein-forming fluid and its diagenetic environment evolution were studied, and the preservation conditions of shale gas were discussed. It is found that the deep shale fracture vein is mainly a composite vein composed of quartz, dolomite or calcite, showing a complex cutting relationship between different minerals, a large number of brine inclusions and high-density methane inclusions are developed, and the fracture vein is mainly formed in a reducing environment. On the whole, under the background of tectonic uplift, the deep shale fractures began to form and were in the process of continuous opening or closing. The three stages of paleo-fluid with different properties were filled and cemented for many times, and the closed diagenetic system was favorable for the preservation of the deep shale gas.
-
Key words:
- Luzhou block /
- Longmaxi Formation /
- deep shale /
- fractured vein body /
- shale gas /
- preservation condition /
- petroleum geology
-
表 1 样品信息表
Table 1. The sampling location
井号 样品编号 采样层位 深度(m) 主要脉体类型 脉体产状 Y-101 A 龙马溪组 4 080.60 石英脉 高角度 B 龙马溪组 3 861.00 石英脉、石英和方解石复合脉 高角度 C 龙马溪组 3 860.76 石英脉、石英和白云石复合脉 高角度 表 2 石英脉体中气液两相盐水包裹体均一温度、盐水包裹体冰点值及盐度统计
Table 2. Statistics of homogenization temperature, freezing point value and salinity of gas-liquid saline inclusions in quartz veins
测试包裹体号 均一温度(℃) 冰点温度(℃) 盐度(%) 赋存矿物 3-1 133.3 ‒5.91 9.1 石英 2-1 141.5 ‒7.32 10.9 石英 2-2 149.2 ‒6.44 9.8 石英 1-1 182.6 ‒12.2 16.2 石英 1-2 188.5 ‒11.4 15.4 石英 1-3 185.4 ‒11.8 15.8 石英 1-4 178.5 ‒12.7 16.7 石英 1-5 234.7 ‒6.8 10.3 石英愈合缝 1-6 237.4 ‒6.5 9.9 石英愈合缝 1-7 220.6 ‒7.5 11.1 石英愈合缝 1-8 235.7 ‒6.3 9.6 石英愈合缝 1-9 238.4 ‒6.1 9.4 石英愈合缝 1-10 223.5 ‒7.2 10.8 石英 表 3 裂缝脉体微量元素特征参数表(10-6)
Table 3. Characteristic parameters of trace elements in fracture veins (10-6)
测试点位 V/Cr Ni/Co U/Th V/(V+Ni) 氧化还原环境 矿物 捕获流体包裹体的温度 C2-1-4 / 6.524 / 0.501 弱氧化-还原 方解石 较低温度区间 C2-1-6 4.328 11 8.923 1.264 47 0.636 还原 方解石 较低温度区间 C2-1-7 4.708 86 9.943 1.550 5 0.725 还原 方解石 较低温度区间 C3-1-4 4.588 2 8.433 1.190 6 0.704 还原 白云石 中温度区间 C3-1-5 2.216 27 6.269 1.168 48 0.56 弱氧化-还原 方解石 较低温度区间 C3-1-7 3.926 23 7.583 1.389 15 0.605 还原 白云石 中温度区间 C3-2-2 6.007 83 7.176 1.757 75 0.777 还原 方解石 较低温度区间 C3-2-3 7.149 45 8.823 1.323 81 0.616 还原 白云石 中温度区间 C3-2-4 4.482 49 8.108 1.290 14 0.576 还原 白云石 中温度区间 C3-2-5 3.748 66 6.695 0.762 35 0.477 弱氧化-还原 方解石 较低温度区间 C3-2-6 4.523 05 8.271 1.400 31 0.701 还原 白云石 中温度区间 C3-2-7 4.403 73 7.018 1.306 93 0.617 还原 白云石 中温度区间 -
[1] Chen, X., Fan, J. X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358 (in Chinese with English abstract). [2] Dong, D. Z., Cheng, K. M., Wang, Y. M., et al., 2010. Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region, China. Oil & Gas Geology, 31(3): 288-299, 308 (in Chinese with English abstract). [3] Evans, M. A., 1995. Fluid Inclusions in Veins from the Middle Devonian Shales: A Record of Deformation Conditions and Fluid Evolution in the Appalachian Plateau. Geological Society of America Bulletin, 107(3): 327-339. doi: 10.1130/0016-7606(1995)107<0327:FIIVFT>2.3.CO;2 [4] Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151 [5] Guo, W. X., Tang, J. M., Ouyang, J. S., et al., 2021. Characteristics of Structural Deformation in the Southern Sichuan Basin and Its Relationship with the Storage Condition of Shale Gas. Natural Gas Industry, 41(5): 11-19 (in Chinese with English abstract). [6] He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract). [7] Hu, X. M., Wang, C. S., 2001. Summarization on the Studying Methods of the Palaeo-Ocean Dissolved Oxygen. Advance in Earth Sciences, 16(1): 65-71(in Chinese with English abstract). [8] Li, W., He, S., Zhang, B. Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4): 402-415 (in Chinese with English abstract). [9] Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698 (in Chinese with English abstract). [10] Liu, L., He, S., Zhai, G. Y., et al., 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597 (in Chinese with English abstract). [11] Ma, X. H., 2018. Enrichment Laws and Scale Effective Development of Shale Gas in the Southern Sichuan Basin. Natural Gas Industry, 38(10): 1-10 (in Chinese with English abstract). [12] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020. Genetic Mechanism of High-Quality Shale Gas Reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract). [13] Nie, H. K., Jin, Z. J., Ma, X., et al., 2017. Graptolites Zone and Sedimentary Characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and Its Adjacent Areas. Acta Petrolei Sinica, 38(2): 160-174 (in Chinese with English abstract). [14] Pan, Z. K., Liu, D. D., Huang, Z. X., et al., 2019. Paleotemperature and Paleopressure of Methane Inclusions in Fracture Cements from the Wufeng-Longmaxi Shales in the Luzhou Area, Southern Sichuan Basin. Petroleum Science Bulletin, 4(3): 242-253 (in Chinese with English abstract). [15] Shu, Z. H., 2018. Fracture Feature of Gas-Bearing Shale Intervals of Wufeng-Longmaxi Formation in Fuling Shale Gas Field and Its Effect. Sino-Global Energy, 23(11): 30-35 (in Chinese with English abstract). [16] Tang, X., 2018. Tectonic Control of Shale Gas Accumulation in Longmaxi Formation in the Southern Sichuan Basin (Dissertation). China University of Mining & Technology, Xuzhou (in Chinese with English abstract). [17] Zhang, J. L., Qiao, S. H., Lu, W. J., et al., 2016. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171: 20-28. doi: 10.1016/j.gexplo.2015.12.003 [18] Zhou, Z., Liu, W. P., Jiang, L., et al., 2020. Multiple Fluid-Flow of the Wufeng-Longmaxi Formation in the Changning Shale-Gas Field, Southern Sichuan Basin. Shandong Chemical Industry, 49(2): 144-147, 151(in Chinese with English abstract). [19] Yang, W., He, S., Su, A., et al., 2021. Paleo-Temperature and -Pressure Characteristics of Fluid Inclusions in Composite Veins of the Doushantuo Shale (Yichang Area, South China): Implications for the Preservation and Enrichment of Shale Gas. Energy & Fuels, 35(5): 4091-4105. [20] 陈旭, 樊隽轩, 张元动, 等, 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm [21] 董大忠, 程克明, 王玉满, 等, 2010. 中国上扬子区下古生界页岩气形成条件及特征. 石油与天然气地质, 31(3): 288-299, 308. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201003008.htm [22] 郭卫星, 唐建明, 欧阳嘉穗, 等, 2021. 四川盆地南部构造变形特征及其与页岩气保存条件的关系. 天然气工业, 41(5): 11-19. doi: 10.3787/j.issn.1000-0976.2021.05.002 [23] 何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm [24] 胡修棉, 王成善, 2001. 古海洋溶解氧研究方法综述. 地球科学进展, 16(1): 65-71. doi: 10.3321/j.issn:1001-8166.2001.01.013 [25] 李文, 何生, 张柏桥, 等, 2018. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征. 石油学报, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm [26] 梁超, 姜在兴, 杨镱婷, 等, 2012. 四川盆地五峰组‒龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm [27] 刘力, 何生, 翟刚毅, 等, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142 [28] 马新华, 2018. 四川盆地南部页岩气富集规律与规模有效开发探索. 天然气工业, 38(10): 1-10. doi: 10.3787/j.issn.1000-0976.2018.10.001 [29] 聂海宽, 何治亮, 刘光祥, 等, 2020. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm [30] 聂海宽, 金之钧, 马鑫, 等, 2017. 四川盆地及邻区上奥陶统五峰组‒下志留统龙马溪组底部笔石带及沉积特征. 石油学报, 38(2): 160-174. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702004.htm [31] 潘占昆, 刘冬冬, 黄治鑫, 等, 2019. 川南地区泸州区块五峰组‒龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复. 石油科学通报, 4(3): 242-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903003.htm [32] 舒志恒, 2018. 涪陵页岩气田五峰组‒龙马溪组含气页岩段裂缝发育特征及其影响. 中外能源, 23(11): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201811006.htm [33] 唐鑫, 2018. 川南地区龙马溪组页岩气成藏的构造控制(博士学位论文). 徐州: 中国矿业大学. [34] 周政, 刘文平, 姜磊, 等, 2020. 川南长宁页岩气田五峰‒龙马溪组多期流体活动特征. 山东化工, 49(2): 144-147, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG202002054.htm