• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例

    李耀华 徐兴友 张君峰 陈珊 白静 刘卫彬 王乾右

    李耀华, 徐兴友, 张君峰, 陈珊, 白静, 刘卫彬, 王乾右, 2022. 火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例. 地球科学, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
    引用本文: 李耀华, 徐兴友, 张君峰, 陈珊, 白静, 刘卫彬, 王乾右, 2022. 火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例. 地球科学, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
    Li Yaohua, Xu Xingyou, Zhang Junfeng, Chen Shan, Bai Jing, Liu Weibin, Wang Qianyou, 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
    Citation: Li Yaohua, Xu Xingyou, Zhang Junfeng, Chen Shan, Bai Jing, Liu Weibin, Wang Qianyou, 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015

    火山活动期断陷湖盆富有机质混积页岩形成条件:以松辽盆地南部梨树断陷沙河子组富有机质页岩为例

    doi: 10.3799/dqkx.2022.015
    基金项目: 

    中国地质调查局项目“松辽盆地南部页岩油战略调查” DD20190115

    详细信息
      作者简介:

      李耀华(1987-),男,博士研究生,主要从事非常规油气资源评价和地质工程一体化领域. ORCID:0000-0003-4225-6736. E-mail:majing06@126.commajing06@126.com

    • 中图分类号: P624

    Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin

    • 摘要: 中国地质调查局实施部署的JLYY-1井在松辽盆地南部沙河子组钻遇51 m的富有机质混积页岩.经过取心观察和室内综合分析发现,这套51 m厚的页岩具有以下特征:第一,混积(来自盆内和盆外的硅质、钙质无机矿物物源以及不同类型的有机物源混合沉积);第二,页岩中夹多套薄层凝灰岩或凝灰质泥/页岩;第三,页岩的纹层和页理极为发育,现场岩心浸水实验观察到大量气泡顺页理面涌出.基于JLYY-1井的元素测井资料,结合地球化学测试、扫描电镜成像、光学显微成像和Roqscan矿物成分成像测试结果,将其归纳为火山活动期断陷湖盆的富有机质混积页岩形成模式,并得出其形成条件如下:(1)多种有机物源的输入提高了页岩中有机质的丰度,也使Ⅰ型、Ⅱ型和Ⅲ型干酪根均有发育;(2)火山活动后期营养元素迁移造成藻类勃发;(3)干热气候条件下封闭咸水环境的碳酸盐岩化作用促进有机质生烃;(4)水体氧化分层形成了该段页岩的4类纹层:硅质、黏土质、钙质和黄铁矿纹层.

       

    • 图  1  梨树断陷区域构造位置和JLYY-1井地理位置

      Fig.  1.  Regional structure location of Lishu fault depression and geographical location of well JLYY-1

      图  2  3 130 m沙河子组页岩m/z-217色谱‒质谱等离子流图

      24-5α(H),14α(H),17α(H)-胆甾烷(20R)、24-甲基-5α(H),14β(H),17β(H)-胆甾烷(20R)、24-乙基-5α(H),14α(H),17α(H)-胆甾烷(20R)在正文分别用C27(R)、C28(R)和C29(R)表示,对应的等离子流积分保存时间分别为56.188、58.746和60.242

      Fig.  2.  The m/z-217 chromatography-mass spectrometry plasma flow diagram of Shahezi Formation shale at 3 130 m

      图  3  3 117.2 m和3 124.8 m沙河子组页岩显微组分

      低等水生藻类来源为主,含量丰富,呈层状与其他矿物混合分布.藻类降解形成的矿物沥青基质已无荧光,部分反光下呈亮白色(微粒体)

      Fig.  3.  Shale macerals of Shahezi Formation at 3 117.2 m and 3 124.8 m (complete information)

      图  4  JLYY1井沙河子组页岩有机质电镜照片

      a,b.固定形态腐殖型有机质;c,d.无定形腐泥型多孔有机质

      Fig.  4.  Electron microscope photos of shale organic matter in Shahezi Formation of well JLYY-1

      图  5  沙河子组混积页岩纹层裂缝有机质填充显微图像

      Fig.  5.  Microscopic images of organic matter filling in laminar fractures of mixed shale of Shahezi Formation

      图  6  成岩作用改造的条带状硅藻类物质显微图像

      Fig.  6.  Microscopic images of banded diatom material transformed by diagenesis

      图  7  JLYY-1井地化录井图:热解S1值、Tmax值、解吸气量(TGC)、生烃组分差异指数(HSCI)计算结果

      Fig.  7.  Geochemical logging of well JLYY-1: calculation results of pyrolysis S1 value, Tmax value, analytical gas volume and hydrocarbon generation index (HSCI)

      图  8  松辽盆地JLYY1井沙河子组泥页岩段柱状图

      左侧元素值为JLYY-1井元素录井数据,有机碳为特殊测井解释结果,S1值为有机地球化学录井数据,解吸气量也是JLYY-1井现场解吸气测试结果

      Fig.  8.  Columnar diagram of Shahezi Formation shale section of well JLYY1 in Songliao basin

      图  9  火山灰沉积成岩后期的营养元素迁移模式

      Fig.  9.  Nutrient element migration model in the later diagenetic stage of volcanic ash deposition

      图  10  JLYY1井沙河子组凝灰岩夹层锆石颗粒

      该20个锆石颗粒边缘条带明显,属于再生重结晶锆石.探针打点为颗粒上红圈处,均为锆石重结晶条带处

      Fig.  10.  Hand specimen and optical micrograph of 3 143 m tuff in Shahezi Formation of well JLYY-1

      图  11  凝灰岩夹层锆石颗粒及其临近页岩层的280U和232Th元素含量

      Fig.  11.  280U and 232Th element contents of zircon particles in tuff interlayer and its adjacent shale of well JLYY-1

      图  12  JLYY-1井混积页岩XRD全岩矿物组成

      全岩矿物组成测试数据是从JLYY-1井3 076~3 164 m均匀采样,采样间隔2~4 m

      Fig.  12.  XRD whole rock mineral compositions of mixed shale in well JLYY-1

      图  13  JLYY-1井混积页岩碳酸岩矿物的赋存形态

      Fig.  13.  Occurrence form of carbonatite minerals in mixed shale of well JLYY-1

      图  14  碳酸根诱导有机质去碳化+羟基化反应原理(Zhang et al., 2015

      Fig.  14.  Principle of decarbonization + hydroxylation of organic matter induced by carbonate

      图  15  沙河子组混积页岩碳酸盐岩矿物‒粘土矿物‒有机质的Ca和C元素交换

      Fig.  15.  Ca and C element exchange of carbonate mineral⁃clay mineral⁃organic matter in mixed shale of Shahezi Formation

      图  16  JLYY1井沙河子组泥页岩层古环境元素分析柱状图

      左侧元素数据来源于元素录井数据,中间矿物组成来源于元素测井解释结果,左侧S1值来源于有机地化录井数据,最左侧TGC代表现场解吸气数据

      Fig.  16.  Histogram of paleoenvironmental element analysis of Shahezi Formation shale in well JLYY-1

      图  17  JLYY1井沙河子组泥页岩现场浸水实验和荧光显示照片

      Fig.  17.  Water immersion test and fluorescent display photos of shale in Shahezi Formation of well JLYY-1

      图  18  JLYY1井沙河子组混积页岩纹层Roqscan扫描图像

      BSE为扫描电镜背散射图像,Minmap是Roqscan全视域矿物图像,识别图像以硅质和黏土质纹层交互出现为主,且存在黄铁矿纹层

      Fig.  18.  Roqscan scanning images of mixed shale lamina of Shahezi Formation in well JLYY-1

      图  19  火山活动期富有机质混积页岩沉积模式

      Fig.  19.  Sedimentary model of organic⁃rich mixed shale during volcanic activity

      表  1  JLYY⁃1井生产天然气的碳同位素测试结果

      Table  1.   Carbon isotope test results of natural gas produced by well JLYY-1

      样品编号 δ13CPDB(‰)
      甲烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 二氧化碳
      1 ‒37.1 ‒28.2 ‒25.4 ‒25.9 ‒24.2 ‒25.2 ‒24.1 ‒28.8
      2 ‒37.0 ‒28.2 ‒25.4 ‒25.8 ‒23.9 ‒25.5 ‒24.0 ‒28.9
      3 ‒37.0 ‒28.3 ‒25.4 ‒25.7 ‒24.0 ‒25.9 ‒24.1 ‒29.0
      下载: 导出CSV
    • [1] Cao, F.L., Wei, H.Y., 2015. Two Causes for the Low Abundance of Framboidal Pyrite in the Permian in Enshi Area in Hubei Province. Journal of East China Institute of Technology (Natural Science), 38(2): 158-166 (in Chinese with English abstract).
      [2] Chen, J. P., Wang, X. L., Chen, J. F., et al., 2021. New Equation to Decipher the Relationship between Carbon Isotopic Composition of Methane and Maturity of Gas Source Rocks. Science in China (Series D: Earth Sciences), 51(4): 560-581 (in Chinese).
      [3] Du, X.B., Liu, X.F., Lu, Y.C., et al., 2020. Classification, Characteristics and Development Models of Continental Fine-Grained Mixed Sedimentation: A Case Study of Dongying Sag. Acta Petrolei Sinica, 41(11): 1324-1333 (in Chinese with English abstract).
      [4] El Diasty, K. E., Peters, J. M., Moldowan, G. I., et al., 2020. Organic Geochemistry of Condensates and Natural Gases in the Northwest Nile Delta Offshore Egypt. Journal of Petroleum Science and Engineering, 187: 106819. doi: 10.1016/j.petrol.2019.106819
      [5] Emmings, J. F., Davies, S. J., Vane, C. H., et al., 2020. From Marine Bands to Hybrid Flows: Sedimentology of a Mississippian Black Shale. Sedimentology, 67(1): 261-304. https://doi.org/10.1111/sed.12642
      [6] Gao, F.L., Song, Y., Liang, Z.K., et al., 2019. Development Characteristics of Organic Pore in the Continental Shale and Its Genetic Mechanism: A Case Study of Shahezi Formation Shale in the Changling Fault Depression of Songliao Basin. Acta Petrolei Sinica, 40(9): 1030-1044 (in Chinese with English abstract).
      [7] Gao, F.L., Wang, C.X., Song, Y., et al., 2021. Pore Evolution of Organic Maceral in Shahezi Formation Shale of Changling Fault Depression, Songliao Basin. Geology in China, 48(3): 948-958 (in Chinese with English abstract).
      [8] Gao, G., Yang, S.R., Qu, T., 2018. Research Status of Mixing Sediments and Their Relationship with Petroleum Enrichment. Geological Science and Technology Information, 37(6): 82-88 (in Chinese with English abstract).
      [9] Gao, Y.F., Liu, W.Z., Ji, X.Y., et al., 2007. Diagenesis Types and Features of Volcanic Rocks and Its Impact on Porosity and Permeability in Yingcheng Formation, Songliao Basin. Journal of Jilin University (Earth Science Edition), 37(6): 1251-1258 (in Chinese with English abstract).
      [10] Guo, Y.R., Liu, J.B., Yang, H., et al., 2012. Hydrocarbon Accumulation Mechanism of Low Permeable Tight Lithologic Oil Reservoirs in the Yanchang Formation, Ordos Basin, China. Petroleum Exploration and Development, 39(4): 417-425 (in Chinese with English abstract).
      [11] Lee, C. T. A., Jiang, H. H., Ronay, E., et al., 2018. Volcanic Ash as a Driver of Enhanced Organic Carbon Burial in the Cretaceous. Scientific Reports, 8(1): 4197. https://doi.org/10.1038/s41598-018-22576-3
      [12] Li, H., Li, F., Gong, Q.L., et al., 2021. Morphological Characteristics and Provenance Significance of Heavy Minerals in the Mixed Siliciclastic-Carbonate Sedimentation: A Case Study from the Xiannüdong Formation, Cambrian (Series 2), Northern Sichuan. Acta Sedimentologica Sinica, 39(3): 525-539 (in Chinese with English abstract).
      [13] Liang, X.P., Jin, Z.J., Liu, Q.Y., et al., 2021. Impact of Volcanic Ash on the Formation of Organic-Rich Shale: A Case Study on the Mesozoic Bazhenov Formation, West Siberian Basin. Oil & Gas Geology, 42(1): 201-211 (in Chinese with English abstract).
      [14] Liu, Z.G., Zhang, Y.S., Song, G.Y., et al., 2021. Mixed Carbonate Rocks Lithofacies Features and Reservoirs Controlling Mechanisms in the Saline Lacustrine Basin in Yingxi Area, Qaidam Basin, NW China. Petroleum Exploration and Development, 48(1): 68-80 (in Chinese with English abstract).
      [15] Long, S.X., Wu, S.X., Li, H.T., et al., 2011. Hybrid Sedimentation in Late Permian-Early Triassic in Western Sichuan Basin, China. Journal of Earth Science, 22(3): 340-350. doi: 10.1007/s12583-011-0186-5
      [16] Ma, K., Hou, J.G., Liu, Y.M., et al., 2017. The Sedimentary Model of Saline Lacustrine Mixed Sedimentation in Permian Lucaogou Formation, Jimsar Sag. Acta Petrolei Sinica, 38(6): 636-648 (in Chinese with English abstract).
      [17] Mount, J., 1985. Mixed Siliciclastic and Carbonate Sediments: A Proposed First-Order Textural and Compositional Classification. Sedimentology, 32(3): 435-442. doi: 10.1111/j.1365-3091.1985.tb00522.x
      [18] Pan, W.J., Wang, Q.B., Du, X.F., et al., 2020. Paleobiological Characteristics and Its Reservoir Significance of Bioclastic Migmatite in First Member of Shahejie Formation in Bohai Sea. Earth Science, 45(10): 3827-3840 (in Chinese with English abstract).
      [19] Pettijohn, F. J., 1975. Sedimentary Rocks. Harper & Row, New York.
      [20] Plet, C., Grice, K., Scarlett, A.G., et al., 2020. Aromatic Hydrocarbons Provide New Insight into Carbonate Concretion Formation and the Impact of Eogenesis on Organic Matter. Organic Geochemistry, 143: 103961. doi: 10.1016/j.orggeochem.2019.103961
      [21] Qiu, X.W., Liu, C.Y., Mao, G.Z., et al., 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150 (in Chinese with English abstract).
      [22] Qu, C. S., Qiu, L.W., Yang, Y. Q., et al., 2017. Carbon and Oxygen Isotope Compositions of Carbonatic Rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and Their Paleolimnological Significance. Acta Geologica Sinica, 91(3): 605-616. (in Chinese with English abstract).
      [23] Raji, M., Gröcke, D.R., Chris Greenwell, H., et al., 2015. The Effect of Interbedding on Shale Reservoir Properties. Marine and Petroleum Geology, 67: 154-169. doi: 10.1016/j.marpetgeo.2015.04.015
      [24] Santos, C. X. C., Bonini, M. G., Augusto, O., 2000. Role of the Carbonate Radical Anion in Tyrosine Nitration and Hydroxylation by Peroxynitrite. Archives of Biochemistry and Biophysics, 377(1): 146-152. https://doi.org/10.1006/abbi.2000.1751
      [25] Schieber, J., 2016. Mud Re-Distribution in Epicontinental Basins-Exploring Likely Processes. Marine and Petroleum Geology, 71: 119-133. doi: 10.1016/j.marpetgeo.2015.12.014
      [26] Sha, Q. A., 2001. Discussion on Mixing Deposit and Hunji Rock. Journal of Palaeogeography, 3(3): 63-66 (in Chinese with English abstract).
      [27] Shao, M.L., Li, J.Q., Cao, Q., 2019. Recognition, Evaluation and Significance of Source Rocks in Taodi Well 1, Taonan Fault Depression, Southern Songliao Basin. In: Natural Gas Professional Committee of China Petroleum Society, Proceedings of the 31st National Natural Gas Academic Conference (2019) (01 Geological Exploration), 6 (in Chinese).
      [28] Strąpoć, D., Jacquet, B., Torres, O., et al., 2020. Deep Biogenic Methane and Drilling-Associated Gas Artifacts: Influence on Gas-Based Characterization of Petroleum Fluids. AAPG Bulletin, 104: 887-912. doi: 10.1306/08301918011
      [29] Tandel, R. S., Dash, P., Bhat, A., et al., 2021. Morphological and Molecular Characterization of Saprolegnia spp. from Himalayan Snow Trout, Schizothorax Richardsonii: A Case Study Report. Aquaculture, 531: 735824.
      [30] Walker, K. R., Shanmugam, G., Ruppel, S. C., 1983. A Model for Carbonate to Terrigenous Clastic Sequences. GSA Bulletin, 94(6): 700-712. https://doi.org/10.1130/0016-7606(1983)94700:AMFCTT>2.0.CO;2 doi: 10.1130/0016-7606(1983)94700:AMFCTT>2.0.CO;2
      [31] Wang, Y. M., Wang, H. Y., Shen, J. J., et al., 2020. A New Discovery and Geological Significance of Thick-Layered Bentonites in the Upper Member of Lower Silurian Longmaxi Formation in the Northern Sichuan- Western Hubei Area. Acta Petrolei Sinica, 41(11): 1309-1323 (in Chinese with English abstract).
      [32] Williams, H., Turner, F., Gilbert, C., et al., 1982. Petrography: An Introduction to the Study of Rocks in Thin Section. W.H. Freeman and Co., New York.
      [33] Yang, S., Hu, W., Wang, X., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. doi: 10.1016/j.epsl.2019.04.020
      [34] Yuan, X. D, Jiang, Z.X., Zhang, Y.F., 2020. Characteristics of the Cretaceous Continental Shale Oil Reservoirs in Luanping Basin. Acta Petrolei Sinica, 41(10): 1197-1208 (in Chinese with English abstract).
      [35] Zhang, G. S., He, X. X., Nadagouda, M. N., et al., 2015. The Effect of Basic pH and Carbonate Ion on the Mechanism of Photocatalytic Destruction of Cylindrospermopsin. Water Research, 73: 353-361. https://doi.org/10.1016/j.watres.2015.01.011
      [36] Zhang, H., Peng, P.A., Zhang, W.Z., et al., 2014. Zircon U-Pb Ages and Hf Isotope Characterization and Their Geological Significance of Chang 7 Tuff of Yanchang Formation in Ordos Basin. Acta Petrologica Sinica, 30(2): 565-575 (in Chinese with English abstract).
      [37] Zhang, J.F., Xu, X.Y., Bai, J., et al., 2020. Enrichment and Exploration of Deep Lacustrine Shale Oil in the First Member of Cretaceous Qingshankou Formation, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 47(4): 637-652 (in Chinese with English abstract).
      [38] Zhang, K., Song, Y., Jiang, S., et al., 2019. Mechanism Analysis of Organic Matter Enrichment in Different Sedimentary Backgrounds: A Case Study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region. Marine and Petroleum Geology, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044
      [39] Zhang, L. M., Wang, C. S., Wignall, P. B., et al., 2018. Deccan Volcanism Caused Coupled pCO(2) and Terrestrial Temperature Rises, and Pre-Impact Extinctions in Northern China. Geology, 46(3): 271-274. doi: 10.1130/G39992.1
      [40] Zhang, W. Z., Yang, H., Xie, L.Q., et al., 2010. Lake- Bottom Hydrothermal Activities and Their Influences on the High-Quality Source Rock Development: A Case from Chang 7 Source Rocks in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60043-2
      [41] Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51-78. https://doi.org/10.1016/j.earscirev.2018.12.002
      [42] 曹丰龙, 韦恒叶, 2015. 湖北省恩施地区二叠系低丰度草莓状黄铁矿的两种成因. 东华理工大学学报(自然科学版), 38(2): 158-166. doi: 10.3969/j.issn.1674-3504.2015.02.004
      [43] 陈建平, 王绪龙, 陈践发, 等, 2021. 甲烷碳同位素判识天然气及其源岩成熟度新公式. 中国科学(D辑: 地球科学), 51(4): 560-581. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htm
      [44] 杜学斌, 刘晓峰, 陆永潮, 等, 2020. 陆相细粒混合沉积分类、特征及发育模式: 以东营凹陷为例. 石油学报, 41(11): 1324-1333. doi: 10.7623/syxb202011003
      [45] 高凤琳, 宋岩, 梁志凯, 等, 2019. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例. 石油学报, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
      [46] 高凤琳, 王成锡, 宋岩, 等, 2021. 松辽盆地长岭断陷沙河子组页岩有机显微组分孔隙演化规律研究. 中国地质, 48(3): 948-958. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103022.htm
      [47] 高岗, 杨尚儒, 屈童, 2018. 混合沉积研究现状及其与油气富集的关系. 地质科技情报, 37(6): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806010.htm
      [48] 高有峰, 刘万洙, 纪学雁, 等, 2007. 松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响. 吉林大学学报(地球科学版), 37(6): 1251-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200706024.htm
      [49] 郭彦如, 刘俊榜, 杨华, 等, 2012. 鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理. 石油勘探与开发, 39(4): 417-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204005.htm
      [50] 李红, 李飞, 龚峤林, 等, 2021. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例. 沉积学报, 39(3): 525-539. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103003.htm
      [51] 梁新平, 金之钧, 刘全有, 等, 2021. 火山灰对富有机质页岩形成的影响: 以西西伯利亚盆地中生界巴热诺夫组为例. 石油与天然气地质, 42(1): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101018.htm
      [52] 刘占国, 张永庶, 宋光永, 等, 2021. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制. 石油勘探与开发, 48(1): 68-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101008.htm
      [53] 马克, 侯加根, 刘钰铭, 等, 2017. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式. 石油学报, 38(6): 636-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201706003.htm
      [54] 潘文静, 王清斌, 杜晓峰, 等, 2020. 渤海沙一段生物碎屑混积岩古生物特征及储层意义. 地球科学, 45(10): 3827-3840. doi: 10.3799/dqkx.2020.109
      [55] 邱欣卫, 刘池洋, 毛光周, 等, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015
      [56] 曲长胜, 邱隆伟, 杨勇强, 等, 2017. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义. 地质学报, 91(3): 605-616. doi: 10.3969/j.issn.0001-5717.2017.03.008
      [57] 沙庆安, 2001. 混合沉积和混积岩的讨论. 古地理学报, 3(3): 63-66. doi: 10.3969/j.issn.1671-1505.2001.03.008
      [58] 邵明礼, 李晶秋, 曹群, 2019. 松辽盆地南部洮南断陷洮地1井烃源岩的认识和评价及其意义. 见: 中国石油学会天然气专业委员会, 第31届全国天然气学术年会(2019)论文集(01地质勘探), 6.
      [59] 王玉满, 王红岩, 沈均均, 2020. 川北‒鄂西地区下志留统龙马溪组上段厚层斑脱岩的新发现及地质意义. 石油学报, 41(11): 1309-1323. doi: 10.7623/syxb202011002
      [60] 袁晓冬, 姜在兴, 张元福, 等, 2020. 滦平盆地白垩系陆相页岩油储层特征. 石油学报, 41(10): 1197-1208. doi: 10.7623/syxb202010004
      [61] 张辉, 彭平安, 张文正, 2014. 鄂尔多斯盆地延长组长7段凝灰岩锆石U-Pb年龄、Hf同位素组成特征及其地质意义. 岩石学报, 30(2): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402018.htm
      [62] 张君峰, 徐兴友, 白静, 等, 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htm
      [63] 张文正, 杨华, 解丽琴, 等, 2010. 湖底热水活动及其对优质烃源岩发育的影响: 以鄂尔多斯盆地长7烃源岩为例. 石油勘探与开发, 37(4): 424-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004006.htm
    • 加载中
    图(19) / 表(1)
    计量
    • 文章访问数:  279
    • HTML全文浏览量:  124
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-05
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回