Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin
-
摘要: 中国地质调查局实施部署的JLYY-1井在松辽盆地南部沙河子组钻遇51 m的富有机质混积页岩.经过取心观察和室内综合分析发现,这套51 m厚的页岩具有以下特征:第一,混积(来自盆内和盆外的硅质、钙质无机矿物物源以及不同类型的有机物源混合沉积);第二,页岩中夹多套薄层凝灰岩或凝灰质泥/页岩;第三,页岩的纹层和页理极为发育,现场岩心浸水实验观察到大量气泡顺页理面涌出.基于JLYY-1井的元素测井资料,结合地球化学测试、扫描电镜成像、光学显微成像和Roqscan矿物成分成像测试结果,将其归纳为火山活动期断陷湖盆的富有机质混积页岩形成模式,并得出其形成条件如下:(1)多种有机物源的输入提高了页岩中有机质的丰度,也使Ⅰ型、Ⅱ型和Ⅲ型干酪根均有发育;(2)火山活动后期营养元素迁移造成藻类勃发;(3)干热气候条件下封闭咸水环境的碳酸盐岩化作用促进有机质生烃;(4)水体氧化分层形成了该段页岩的4类纹层:硅质、黏土质、钙质和黄铁矿纹层.Abstract: JLYY-1 well was drilled to explore the continental shale gas resources by the China Geological Survey of the Shahezi Formation in the south of Songliao basin, where 51 m hybrid sedimentary shale layer contributed to a high-yield shale gas breakthrough. Through coring observation and indoor comprehensive analysis, it is found that this set of 51 m shale has the following characteristics. First, hybrid sedimentary(carbonate minerals and siliceous minerals account for a high proportion, followed by volcanic materials). Second, shale is intercalated with multiple sets of thin-layer tuff or tuffaceous mud/shale. Thirdly, a large number of bubbles gushing along the foliation surface were observed in the field core immersion experiment. Based on the element logging data of well JLYY-1, combined with the test results of scanning electron microscope imaging, optical microscopic imaging, and Roqscan mineral composition imaging, it is summarized as the formation mode of organic-rich hybrid sedimentary shale in the faulted continental basin during volcanic activity periods, and the formation conditions are as follows. (1) The input of multiple organic sources improves the abundance of organic matter in shale contributing to the co-preservation of type Ⅰ, Ⅱ and type Ⅲ kerogens. (2) In the later stage of volcanic activity, the migration of nutrient elements leads to algae bloom in the intervening shales. (3) Carbonate diagenesis contributes to hydrocarbon generation in the hybrid sedimentary shales which are sedimented in a closed saltwater environment under dry and hot climates. (4) The oxidation stratification of the water body forms four types of laminae of shale in this section: siliceous, clayey, calcareous, and pyrite laminae.
-
Key words:
- continental shale gas /
- hybrid sedimentary shale /
- volcanic activity /
- carbonatization /
- lamina /
- Songliao basin /
- petroleum geology
-
图 2 3 130 m沙河子组页岩m/z-217色谱‒质谱等离子流图
24-5α(H),14α(H),17α(H)-胆甾烷(20R)、24-甲基-5α(H),14β(H),17β(H)-胆甾烷(20R)、24-乙基-5α(H),14α(H),17α(H)-胆甾烷(20R)在正文分别用C27(R)、C28(R)和C29(R)表示,对应的等离子流积分保存时间分别为56.188、58.746和60.242
Fig. 2. The m/z-217 chromatography-mass spectrometry plasma flow diagram of Shahezi Formation shale at 3 130 m
图 14 碳酸根诱导有机质去碳化+羟基化反应原理(Zhang et al., 2015)
Fig. 14. Principle of decarbonization + hydroxylation of organic matter induced by carbonate
表 1 JLYY⁃1井生产天然气的碳同位素测试结果
Table 1. Carbon isotope test results of natural gas produced by well JLYY-1
样品编号 δ13CPDB(‰) 甲烷 乙烷 丙烷 异丁烷 正丁烷 异戊烷 正戊烷 二氧化碳 1 ‒37.1 ‒28.2 ‒25.4 ‒25.9 ‒24.2 ‒25.2 ‒24.1 ‒28.8 2 ‒37.0 ‒28.2 ‒25.4 ‒25.8 ‒23.9 ‒25.5 ‒24.0 ‒28.9 3 ‒37.0 ‒28.3 ‒25.4 ‒25.7 ‒24.0 ‒25.9 ‒24.1 ‒29.0 -
[1] Cao, F.L., Wei, H.Y., 2015. Two Causes for the Low Abundance of Framboidal Pyrite in the Permian in Enshi Area in Hubei Province. Journal of East China Institute of Technology (Natural Science), 38(2): 158-166 (in Chinese with English abstract). [2] Chen, J. P., Wang, X. L., Chen, J. F., et al., 2021. New Equation to Decipher the Relationship between Carbon Isotopic Composition of Methane and Maturity of Gas Source Rocks. Science in China (Series D: Earth Sciences), 51(4): 560-581 (in Chinese). [3] Du, X.B., Liu, X.F., Lu, Y.C., et al., 2020. Classification, Characteristics and Development Models of Continental Fine-Grained Mixed Sedimentation: A Case Study of Dongying Sag. Acta Petrolei Sinica, 41(11): 1324-1333 (in Chinese with English abstract). [4] El Diasty, K. E., Peters, J. M., Moldowan, G. I., et al., 2020. Organic Geochemistry of Condensates and Natural Gases in the Northwest Nile Delta Offshore Egypt. Journal of Petroleum Science and Engineering, 187: 106819. doi: 10.1016/j.petrol.2019.106819 [5] Emmings, J. F., Davies, S. J., Vane, C. H., et al., 2020. From Marine Bands to Hybrid Flows: Sedimentology of a Mississippian Black Shale. Sedimentology, 67(1): 261-304. https://doi.org/10.1111/sed.12642 [6] Gao, F.L., Song, Y., Liang, Z.K., et al., 2019. Development Characteristics of Organic Pore in the Continental Shale and Its Genetic Mechanism: A Case Study of Shahezi Formation Shale in the Changling Fault Depression of Songliao Basin. Acta Petrolei Sinica, 40(9): 1030-1044 (in Chinese with English abstract). [7] Gao, F.L., Wang, C.X., Song, Y., et al., 2021. Pore Evolution of Organic Maceral in Shahezi Formation Shale of Changling Fault Depression, Songliao Basin. Geology in China, 48(3): 948-958 (in Chinese with English abstract). [8] Gao, G., Yang, S.R., Qu, T., 2018. Research Status of Mixing Sediments and Their Relationship with Petroleum Enrichment. Geological Science and Technology Information, 37(6): 82-88 (in Chinese with English abstract). [9] Gao, Y.F., Liu, W.Z., Ji, X.Y., et al., 2007. Diagenesis Types and Features of Volcanic Rocks and Its Impact on Porosity and Permeability in Yingcheng Formation, Songliao Basin. Journal of Jilin University (Earth Science Edition), 37(6): 1251-1258 (in Chinese with English abstract). [10] Guo, Y.R., Liu, J.B., Yang, H., et al., 2012. Hydrocarbon Accumulation Mechanism of Low Permeable Tight Lithologic Oil Reservoirs in the Yanchang Formation, Ordos Basin, China. Petroleum Exploration and Development, 39(4): 417-425 (in Chinese with English abstract). [11] Lee, C. T. A., Jiang, H. H., Ronay, E., et al., 2018. Volcanic Ash as a Driver of Enhanced Organic Carbon Burial in the Cretaceous. Scientific Reports, 8(1): 4197. https://doi.org/10.1038/s41598-018-22576-3 [12] Li, H., Li, F., Gong, Q.L., et al., 2021. Morphological Characteristics and Provenance Significance of Heavy Minerals in the Mixed Siliciclastic-Carbonate Sedimentation: A Case Study from the Xiannüdong Formation, Cambrian (Series 2), Northern Sichuan. Acta Sedimentologica Sinica, 39(3): 525-539 (in Chinese with English abstract). [13] Liang, X.P., Jin, Z.J., Liu, Q.Y., et al., 2021. Impact of Volcanic Ash on the Formation of Organic-Rich Shale: A Case Study on the Mesozoic Bazhenov Formation, West Siberian Basin. Oil & Gas Geology, 42(1): 201-211 (in Chinese with English abstract). [14] Liu, Z.G., Zhang, Y.S., Song, G.Y., et al., 2021. Mixed Carbonate Rocks Lithofacies Features and Reservoirs Controlling Mechanisms in the Saline Lacustrine Basin in Yingxi Area, Qaidam Basin, NW China. Petroleum Exploration and Development, 48(1): 68-80 (in Chinese with English abstract). [15] Long, S.X., Wu, S.X., Li, H.T., et al., 2011. Hybrid Sedimentation in Late Permian-Early Triassic in Western Sichuan Basin, China. Journal of Earth Science, 22(3): 340-350. doi: 10.1007/s12583-011-0186-5 [16] Ma, K., Hou, J.G., Liu, Y.M., et al., 2017. The Sedimentary Model of Saline Lacustrine Mixed Sedimentation in Permian Lucaogou Formation, Jimsar Sag. Acta Petrolei Sinica, 38(6): 636-648 (in Chinese with English abstract). [17] Mount, J., 1985. Mixed Siliciclastic and Carbonate Sediments: A Proposed First-Order Textural and Compositional Classification. Sedimentology, 32(3): 435-442. doi: 10.1111/j.1365-3091.1985.tb00522.x [18] Pan, W.J., Wang, Q.B., Du, X.F., et al., 2020. Paleobiological Characteristics and Its Reservoir Significance of Bioclastic Migmatite in First Member of Shahejie Formation in Bohai Sea. Earth Science, 45(10): 3827-3840 (in Chinese with English abstract). [19] Pettijohn, F. J., 1975. Sedimentary Rocks. Harper & Row, New York. [20] Plet, C., Grice, K., Scarlett, A.G., et al., 2020. Aromatic Hydrocarbons Provide New Insight into Carbonate Concretion Formation and the Impact of Eogenesis on Organic Matter. Organic Geochemistry, 143: 103961. doi: 10.1016/j.orggeochem.2019.103961 [21] Qiu, X.W., Liu, C.Y., Mao, G.Z., et al., 2011. Petrological-Geochemical Characteristics of Volcanic Ash Sediments in Yanchang Formation in Ordos Basin. Earth Science, 36(1): 139-150 (in Chinese with English abstract). [22] Qu, C. S., Qiu, L.W., Yang, Y. Q., et al., 2017. Carbon and Oxygen Isotope Compositions of Carbonatic Rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and Their Paleolimnological Significance. Acta Geologica Sinica, 91(3): 605-616. (in Chinese with English abstract). [23] Raji, M., Gröcke, D.R., Chris Greenwell, H., et al., 2015. The Effect of Interbedding on Shale Reservoir Properties. Marine and Petroleum Geology, 67: 154-169. doi: 10.1016/j.marpetgeo.2015.04.015 [24] Santos, C. X. C., Bonini, M. G., Augusto, O., 2000. Role of the Carbonate Radical Anion in Tyrosine Nitration and Hydroxylation by Peroxynitrite. Archives of Biochemistry and Biophysics, 377(1): 146-152. https://doi.org/10.1006/abbi.2000.1751 [25] Schieber, J., 2016. Mud Re-Distribution in Epicontinental Basins-Exploring Likely Processes. Marine and Petroleum Geology, 71: 119-133. doi: 10.1016/j.marpetgeo.2015.12.014 [26] Sha, Q. A., 2001. Discussion on Mixing Deposit and Hunji Rock. Journal of Palaeogeography, 3(3): 63-66 (in Chinese with English abstract). [27] Shao, M.L., Li, J.Q., Cao, Q., 2019. Recognition, Evaluation and Significance of Source Rocks in Taodi Well 1, Taonan Fault Depression, Southern Songliao Basin. In: Natural Gas Professional Committee of China Petroleum Society, Proceedings of the 31st National Natural Gas Academic Conference (2019) (01 Geological Exploration), 6 (in Chinese). [28] Strąpoć, D., Jacquet, B., Torres, O., et al., 2020. Deep Biogenic Methane and Drilling-Associated Gas Artifacts: Influence on Gas-Based Characterization of Petroleum Fluids. AAPG Bulletin, 104: 887-912. doi: 10.1306/08301918011 [29] Tandel, R. S., Dash, P., Bhat, A., et al., 2021. Morphological and Molecular Characterization of Saprolegnia spp. from Himalayan Snow Trout, Schizothorax Richardsonii: A Case Study Report. Aquaculture, 531: 735824. [30] Walker, K. R., Shanmugam, G., Ruppel, S. C., 1983. A Model for Carbonate to Terrigenous Clastic Sequences. GSA Bulletin, 94(6): 700-712. https://doi.org/10.1130/0016-7606(1983)94700:AMFCTT>2.0.CO;2 doi: 10.1130/0016-7606(1983)94700:AMFCTT>2.0.CO;2 [31] Wang, Y. M., Wang, H. Y., Shen, J. J., et al., 2020. A New Discovery and Geological Significance of Thick-Layered Bentonites in the Upper Member of Lower Silurian Longmaxi Formation in the Northern Sichuan- Western Hubei Area. Acta Petrolei Sinica, 41(11): 1309-1323 (in Chinese with English abstract). [32] Williams, H., Turner, F., Gilbert, C., et al., 1982. Petrography: An Introduction to the Study of Rocks in Thin Section. W.H. Freeman and Co., New York. [33] Yang, S., Hu, W., Wang, X., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. doi: 10.1016/j.epsl.2019.04.020 [34] Yuan, X. D, Jiang, Z.X., Zhang, Y.F., 2020. Characteristics of the Cretaceous Continental Shale Oil Reservoirs in Luanping Basin. Acta Petrolei Sinica, 41(10): 1197-1208 (in Chinese with English abstract). [35] Zhang, G. S., He, X. X., Nadagouda, M. N., et al., 2015. The Effect of Basic pH and Carbonate Ion on the Mechanism of Photocatalytic Destruction of Cylindrospermopsin. Water Research, 73: 353-361. https://doi.org/10.1016/j.watres.2015.01.011 [36] Zhang, H., Peng, P.A., Zhang, W.Z., et al., 2014. Zircon U-Pb Ages and Hf Isotope Characterization and Their Geological Significance of Chang 7 Tuff of Yanchang Formation in Ordos Basin. Acta Petrologica Sinica, 30(2): 565-575 (in Chinese with English abstract). [37] Zhang, J.F., Xu, X.Y., Bai, J., et al., 2020. Enrichment and Exploration of Deep Lacustrine Shale Oil in the First Member of Cretaceous Qingshankou Formation, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 47(4): 637-652 (in Chinese with English abstract). [38] Zhang, K., Song, Y., Jiang, S., et al., 2019. Mechanism Analysis of Organic Matter Enrichment in Different Sedimentary Backgrounds: A Case Study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze Region. Marine and Petroleum Geology, 99: 488-497. doi: 10.1016/j.marpetgeo.2018.10.044 [39] Zhang, L. M., Wang, C. S., Wignall, P. B., et al., 2018. Deccan Volcanism Caused Coupled pCO(2) and Terrestrial Temperature Rises, and Pre-Impact Extinctions in Northern China. Geology, 46(3): 271-274. doi: 10.1130/G39992.1 [40] Zhang, W. Z., Yang, H., Xie, L.Q., et al., 2010. Lake- Bottom Hydrothermal Activities and Their Influences on the High-Quality Source Rock Development: A Case from Chang 7 Source Rocks in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60043-2 [41] Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51-78. https://doi.org/10.1016/j.earscirev.2018.12.002 [42] 曹丰龙, 韦恒叶, 2015. 湖北省恩施地区二叠系低丰度草莓状黄铁矿的两种成因. 东华理工大学学报(自然科学版), 38(2): 158-166. doi: 10.3969/j.issn.1674-3504.2015.02.004 [43] 陈建平, 王绪龙, 陈践发, 等, 2021. 甲烷碳同位素判识天然气及其源岩成熟度新公式. 中国科学(D辑: 地球科学), 51(4): 560-581. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202104005.htm [44] 杜学斌, 刘晓峰, 陆永潮, 等, 2020. 陆相细粒混合沉积分类、特征及发育模式: 以东营凹陷为例. 石油学报, 41(11): 1324-1333. doi: 10.7623/syxb202011003 [45] 高凤琳, 宋岩, 梁志凯, 等, 2019. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例. 石油学报, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm [46] 高凤琳, 王成锡, 宋岩, 等, 2021. 松辽盆地长岭断陷沙河子组页岩有机显微组分孔隙演化规律研究. 中国地质, 48(3): 948-958. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103022.htm [47] 高岗, 杨尚儒, 屈童, 2018. 混合沉积研究现状及其与油气富集的关系. 地质科技情报, 37(6): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806010.htm [48] 高有峰, 刘万洙, 纪学雁, 等, 2007. 松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响. 吉林大学学报(地球科学版), 37(6): 1251-1258. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200706024.htm [49] 郭彦如, 刘俊榜, 杨华, 等, 2012. 鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理. 石油勘探与开发, 39(4): 417-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204005.htm [50] 李红, 李飞, 龚峤林, 等, 2021. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例. 沉积学报, 39(3): 525-539. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202103003.htm [51] 梁新平, 金之钧, 刘全有, 等, 2021. 火山灰对富有机质页岩形成的影响: 以西西伯利亚盆地中生界巴热诺夫组为例. 石油与天然气地质, 42(1): 201-211. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101018.htm [52] 刘占国, 张永庶, 宋光永, 等, 2021. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制. 石油勘探与开发, 48(1): 68-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101008.htm [53] 马克, 侯加根, 刘钰铭, 等, 2017. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式. 石油学报, 38(6): 636-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201706003.htm [54] 潘文静, 王清斌, 杜晓峰, 等, 2020. 渤海沙一段生物碎屑混积岩古生物特征及储层意义. 地球科学, 45(10): 3827-3840. doi: 10.3799/dqkx.2020.109 [55] 邱欣卫, 刘池洋, 毛光周, 等, 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. doi: 10.3799/dqkx.2011.015 [56] 曲长胜, 邱隆伟, 杨勇强, 等, 2017. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义. 地质学报, 91(3): 605-616. doi: 10.3969/j.issn.0001-5717.2017.03.008 [57] 沙庆安, 2001. 混合沉积和混积岩的讨论. 古地理学报, 3(3): 63-66. doi: 10.3969/j.issn.1671-1505.2001.03.008 [58] 邵明礼, 李晶秋, 曹群, 2019. 松辽盆地南部洮南断陷洮地1井烃源岩的认识和评价及其意义. 见: 中国石油学会天然气专业委员会, 第31届全国天然气学术年会(2019)论文集(01地质勘探), 6. [59] 王玉满, 王红岩, 沈均均, 2020. 川北‒鄂西地区下志留统龙马溪组上段厚层斑脱岩的新发现及地质意义. 石油学报, 41(11): 1309-1323. doi: 10.7623/syxb202011002 [60] 袁晓冬, 姜在兴, 张元福, 等, 2020. 滦平盆地白垩系陆相页岩油储层特征. 石油学报, 41(10): 1197-1208. doi: 10.7623/syxb202010004 [61] 张辉, 彭平安, 张文正, 2014. 鄂尔多斯盆地延长组长7段凝灰岩锆石U-Pb年龄、Hf同位素组成特征及其地质意义. 岩石学报, 30(2): 565-575. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402018.htm [62] 张君峰, 徐兴友, 白静, 等, 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htm [63] 张文正, 杨华, 解丽琴, 等, 2010. 湖底热水活动及其对优质烃源岩发育的影响: 以鄂尔多斯盆地长7烃源岩为例. 石油勘探与开发, 37(4): 424-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004006.htm