Depositional Timing and Provenance Characteristics of the Early Paleozoic Gaotan Formation in the Wugongshan Area, Jiangxi Province: New Evidence from Detrital Zircon U-Pb Dating and Rare Earth Element Compositions of Garnet-Bearing Mica Quartz Schist
-
摘要:
武功山地区高滩组是华南板块分布较为广泛的早古生代地层之一,经历了绿片岩相‒角闪岩相变质,其沉积时代限定与物源性质确定对客观重建华南板块早古生代地壳演化过程具有重要的意义.本文利用LA-ICP-MS对高滩组中的含榴云母石英片岩进行了碎屑锆石U-Pb测年与稀土元素分析,获得含榴云母石英片岩最年轻一组碎屑锆石年龄为524±12 Ma,结合区域上高滩组被早古生代约462 Ma花岗岩侵入的地质关系,初步限定武功山地区高滩组的沉积时代为524~462 Ma.高滩组含榴云母石英片岩碎屑锆石U-Pb年龄变化于3 622~497 Ma之间,最主要的年龄峰值为956 Ma,4个次要的年龄峰值分别为2 456 Ma、1 644 Ma、850 Ma与524 Ma.对比扬子、华夏陆块早古生代沉积岩系的碎屑锆石年龄图谱,发现高滩组与华夏陆块早古生代地层具有相似的物源特征,指示早古生代期间武功山地区属于华夏陆块的组成部分.
Abstract:The Gaotan Formation, which has undergone greenschist to amphibolite facies metamorphism, is one of the most widely distributed Early Paleozoic strata units in the Wugongshan complex of Jiangxi Province. Depositional timing and provenance of the Gaotan Formation is vital for probing the Early Paleozoic crustal evolutionary of the Wugongshan complex. In this paper, LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) was used to analyze the zircon U-Pb ages and rare earth element compositions of bearing-garnet micas quartz schist in the Gaotan Formation of the Wugongshan complex. The age of the youngest group of detrital zircons from the garnet-bearing micas quartz schist is 524±12 Ma, combined with geological relationship which the Gaotan Formation was intruded by the ca. 462 Ma granites in the Wugongshan complex, it is speculated that the depositional timing of the Gaotan formation is 524-462 Ma. Detrital zircon U-Pb ages of the Gaotan Formation range from 3 622 Ma to 497 Ma, with the main age peak of 956 Ma and four secondary age peaks of 2 456 Ma, 1 644 Ma, 850 Ma and 524 Ma, respectively. By comparing the detrital zircon ages of the Early Paleozoic sedimentary rocks in the Yangtze and Cathaysia blocks, the provenance characteristics of the Gaotan Formation are similar to the Early Paleozoic strata in the Cathaysia block, indicating that the Wugongshan complex was a part of the Cathaysia block during the Early Paleozoic.
-
图 1 武功山大地构造位置简图(a;修改自Metcalfe, 2013),武功山区域地质简图(b;修改自Shu et al., 1998),柱状图及采样位置(c;修改自马虎超等,2019)
Ⅰ.中国中部造山带;Ⅱ.松潘‒甘孜增生杂岩;Ⅲ.羌塘板块;Ⅳ.拉萨地体;Ⅴ.喜马拉雅地体;Ⅵ.缅甸西部地体;Ⅶ.西布马苏地体;Ⅷ.印度支那地体;MDF.主要断裂带
Fig. 1. Sketch map of Wugong mountain geotectonic location (a; modified from Metcalfe, 2013) and simplified geological map of the Wugongshan complex showing sampling localities (b; modified from Shu et al., 1998), and histogram (c; modified from Ma et al., 2019)
图 2 武功山杂岩高滩组含榴云母石英片岩代表性野外和显微照片
矿物缩写据沈其韩(2009);a~c.高滩组含榴云母石英片岩主要矿物组合:石英+斜长石+黑云母+白云母+石榴子石;a-1~c-1.露头尺度小型褶皱;a-2~c-2.单偏光镜下显微尺度的挤压褶皱;a-3~c-3.正交偏光镜下显微尺度的挤压褶皱
Fig. 2. Representative photomicrographs and field photos of garnet-bearing mica quartz schist from the Gaotan Formation in the Wugongshan complex
图 4 武功山杂岩高滩组含榴云母石英片岩中碎屑锆石U-Pb年龄谐和图(a, b),锆石年龄频率直方图(c, d)与稀土元素配分模式(e, f)
球粒陨石稀土元素数据Sun and McDonough(1989)
Fig. 4. U-Pb age concordia diagram (a, b), histogram with frequency distribution diagram (c, d) and REE patterns (e, f) of detrital zircons from the garnet-bearing mica quartz schist of the Gaotan Formation in the Wugongshan complex
图 6 武功山杂岩与世界区域前寒武系碎屑锆石U-Pb年龄频率直方对比图
数据来源:a.本次研究及Wang et al.(2015);b.Yao et al.(2011);c. Yin(2003)、Wang et al.(2010)、Yao et al.(2015);d. Webb et al.(2011,2013);e~g. Condie et al.(2009)
Fig. 6. Comparison of U-Pb age frequency histograms of Precambrian detrital zircons from Wugongshan complex and the world area
-
[1] Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [2] Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere? Geology, 41(8): 903-906. https://doi.org/10.1130/g34395.1 [3] Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006 [4] Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3-4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001 [5] Duan, L., Meng, Q. R., Zhang, C. L., et al., 2011. Tracing the Position of the South China Block in Gondwana: U-Pb Ages and Hf Isotopes of Devonian Detrital Zircons. Gondwana Research, 19(1): 141-149. https://doi.org/10.1016/j.gr.2010.05.005 [6] Faure, M., Shu, L. S., Wang, B., et al., 2009. Intracontinental Subduction: A Possible Mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5): 360-368. https://doi.org/10.1111/j.1365-3121.2009.00888.x [7] Faure, M., Sun, Y., Shu, L. S., et al., 1996. Extensional Tectonics within a Subduction-Type Orogen. the Case Study of the Wugongshan Dome (Jiangxi Province, Southeastern China). Tectonophysics, 263(1-4): 77-106. https://doi.org/10.1016/S0040-1951(97)81487-4 [8] Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2-3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006 [9] Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1-2): 79-100. https://doi.org/10.1016/j.precamres.2006.08.002 [10] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627. https://doi.org/10.1130/0091-7613(2000)28627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2 [11] Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010 [12] Hsü, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-C [13] Hu, Z. C., Liu, Y. S., Chen, L., et al., 2011. Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution. Journal of Analytical Atomic Spectrometry, 26(2): 425-430. https://doi.org/10.1039/c0ja00145g [14] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h [15] Jiang, W., Yu, J. H., Wang, X. L., et al., 2020. Early Paleozoic Magmatism in Northern Kontum Massif, Central Vietnam: Insights into Tectonic Evolution of the Eastern Indochina Block. Lithos, 376-377: 105750. https://doi.org/10.1016/j.lithos.2020.105750 [16] Li, X. H., 1997. Timing of the Cathaysia Block Formation: Constraints from SHRIMP U-Pb Zircon Geochronology. Episodes, 20(3): 188-192. https://doi.org/10.18814/epiiugs/1997/v20i3/008 [17] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. https://doi.org/10.1016/j.precamres.2009.07.004 [18] Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202-1215. https://doi.org/10.1016/j.gr.2014.01.003 [19] Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163. https://doi.org/10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2 doi: 10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2 [20] Liu, P. H., Tian, Z. H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216 (in Chinese with English abstract). [21] Liu, X. Y., Yang, X. H., Nie, L. M., et al., 2016. Basic Characteristics of the Magma Core Complex at Wugongshan, Jiangxi. Acta Geologica Sinica, 90(3): 468-474 (in Chinese with English abstract). [22] Lou, F.S., Shen, W.Z., Wang, D.Z., et al., 2005. Zircon U-Pb Isotopic Chronology of the Wugongshan Dome Compound Granite in Jiangxi Province. Acta Geologica Sinica, 79(5): 636-644 (in Chinese with English abstract). [23] Ma, H. C., Xu, W. T., Zhong, K. H., et al., 2019. Detrital Zircon U-Pb Ages and Hf Isotopes of the Cambrian Gaotan Formation in Gannan and Its Geological Significance. Xinjiang Geology, 37(2): 270-277 (in Chinese with English abstract). [24] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 [25] Nguyen, Q. M., Feng, Q. L., Zi, J. W., et al., 2019. Cambrian Intra-Oceanic Arc Trondhjemite and Tonalite in the Tam Ky-Phuoc Son Suture Zone, Central Vietnam: Implications for the Early Paleozoic Assembly of the Indochina Block. Gondwana Research, 70: 151-170. https://doi.org/10.1016/j.gr.2019.01.002 [26] Qin, X. F., Pan, Y. M., Li, J., et al., 2006. Zircon SHRIMP U-Pb Geochronology of the Yunkai Metamorphic Complex in Southeastern Guangxi, China. Geological Bulletin of China, 25(5): 553-559 (in Chinese with English abstract). [27] Rino, S., Komiya, T., Windley, B. F., et al., 2004. Major Episodic Increases of Continental Crustal Growth Determined from Zircon Ages of River Sands: Implications for Mantle Overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146(1-2): 369-394. https://doi.org/10.1016/j.pepi.2003.09.024 [28] Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2 [29] Santosh, M., Yang, Q. Y., Shaji, E., et al., 2015. An Exotic Mesoarchean Microcontinent: The Coorg Block, Southern India. Gondwana Research, 27(1): 165-195. https://doi.org/10.1016/j.gr.2013.10.005 [30] Shen, Q. H., 2009. The Recommendation of a Systematic List of Mineral Abbreviations. Acta Petrologica et Mineralogica, 28(5): 495-500 (in Chinese with English abstract). [31] Shi, H. F., Wang, J. P., Yao, Y., et al., 2020. Geochemistry and Geochronology of Diorite in Pengshan Area of Jiangxi Province: Implications for Magmatic Source and Tectonic Evolution of Jiangnan Orogenic Belt. Journal of Earth Science, 31(1): 23-34. https://doi.org/10.1007/s12583-020-0875-z [32] Shu, L. S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). [33] Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). [34] Shu, L. S., Chen, X. Y., Lou, F. S., 2020. Pre-Jurassic Tectonics of the South China. Acta Geologica Sinica, 94(2): 333-360 (in Chinese with English abstract). [35] Shu, L. S., Deng, P., Yu, J. H., et al., 2008. Formation Age and Geochemical Characteristics of Rhyolite in the Western Margin of Wuyi Mountain. Science in China (Series D), 38(8): 950-959 (in Chinese). [36] Shu, L. S., Faure, M., Wang, B., et al., 2008. Late Palaeozoic-Early Mesozoic Geological Features of South China: Response to the Indosinian Collision Events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151-165. https://doi.org/10.1016/j.crte.2007.10.010 [37] Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05 [38] Shu, L. S., Sun, Y., Wang, D. Z., et al., 1998. Mesozoic Doming Extensional Tectonics of Wugongshan, South China. Science China Earth Sciences, 41(6): 601-608. https://doi.org/10.1007/BF02878742 [39] Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596 [40] Shu, L. S., Charvet, J., 1996. Kinematics and Geochronology of the Proterozoic Dongxiang-Shexian Ductile Shear Zone: With HP Metamorphism and Ophiolitic Melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291-302. https://doi.org/10.1016/s0040-1951(96)00104-7 [41] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [42] Torsvik, T. H., Cocks, L. R. M., 2013. Gondwana from Top to Base in Space and Time. Gondwana Research, 24(3-4): 999-1030. https://doi.org/10.1016/j.gr.2013.06.012 [43] Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Basement of the Yangtze Craton. Earth Science, 46(5): 1630-1643 (in Chinese with English abstract). [44] Wang, J. Q., Shu, L. S., Santosh, M., et al., 2015. The Pre-Mesozoic Crustal Evolution of the Cathaysia Block, South China: Insights from Geological Investigation, Zircon U-Pb Geochronology, Hf Isotope and REE Geochemistry from the Wugongshan Complex. Gondwana Research, 28(1): 225-245. https://doi.org/10.1016/j.gr.2014.03.008 [45] Wang, T., Wang, Z. Q., Wang, D. S., et al., 2018. U-Pb and Hf Isotopic Data of Detrital Zircons from the Laohutang Formation in the Wugongshan Area, Central Jiangxi Province: Constraint on Sedimentary Age and Material Source. Acta Geoscientica Sinica, 39(2): 167-178 (in Chinese with English abstract). [46] Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003 [47] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027 [48] Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750 [49] Wang, Y. J., Zhang, Y. Z., Fan, W. M., et al., 2014. Early Neoproterozoic Accretionary Assemblage in the Cathaysia Block: Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses. Precambrian Research, 249: 144-161. https://doi.org/10.1016/j.precamres.2014.05.003 [50] Webb, A. A. G., Yin, A., Dubey, C. S., 2013. U-Pb Zircon Geochronology of Major Lithologic Units in the Eastern Himalaya: Implications for the Origin and Assembly of Himalayan Rocks. Geological Society of America Bulletin, 125(3-4): 499-522. https://doi.org/10.1130/b30626.1 [51] Webb, A. A. G., Yin, A., Harrison, T. M., et al., 2011. Cenozoic Tectonic History of the Himachal Himalaya (Northwestern India) and Its Constraints on the Formation Mechanism of the Himalayan Orogen. Geosphere, 7(4): 1013-1061. https://doi.org/10.1130/GES00627.1 [52] Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism: Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61-74. https://doi.org/10.1007/s00410-002-0432-z [53] Wu, F. J., Zhong, C. G., Zhong, D. H., 2001. Basic Features and Age of the Extensional Gliding Nappe Structure of Wugongshan Magmatic Thermal Dome in Jiangxi. Jiangxi Geology, 15(3): 161-165 (in Chinese with English abstract). [54] Wu, F. J., Zhang, F. R., 2003. Features and Genesis of Caledonian Granites in the Wugongshan in the Eastern Segment of the Northern Margin of South China Plate. Chinese Geology, 30(2): 166-172 (in Chinese with English abstract). [55] Xia, Y., Xu, X. S., Zhu, K. Y., 2012. Paleoproterozoic S- and A-Type Granites in Southwestern Zhejiang: Magmatism, Metamorphism and Implications for the Crustal Evolution of the Cathaysia Basement. Precambrian Research, 216-219: 177-207. https://doi.org/10.1016/j.precamres.2012.07.001 [56] Xiang, H., Zhang, L., Zhou, H. W., et al., 2008. U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang: The Response of the Cathaysia Block to Indosinian Orogenic Event. Science China Earth Sciences, 51(6): 788-800. https://doi.org/10.1007/s11430-008-0053-0 [57] Xiang, L., Shu, L. S., 2010. The Tectonic Evolution of The Pre-Devonian in the Eastern Part of South China: Evidence from Detrital Zircon. Science in China (Series D), 40(10): 1377-1388 (in Chinese). [58] Xu, W. T., Ma, H. C., Lu, L. N., et al., 2019. Zircon U-Pb Ages and Hf Isotope Features of Rocks from Niujiaohe Formation of Cambrian in the Southern Jiangxi Area and Their Geological Implications. Geology and Exploration, 55(2): 542-561 (in Chinese with English abstract). [59] Xue, E. K., Wang, W., Huang, S. F., et al., 2019. Detrital Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Neoproterozoic-Cambrian Successions in the Cathaysia Block of South China: Implications on Paleogeographic Reconstruction in Supercontinent. Precambrian Research, 331: 105348. https://doi.org/10.1016/j.precamres.2019.105348 [60] Yang, S. F., Chen, H. L., Gong, G. H., et al., 2019. Sedimentary Characteristics and Basin-Orogen Processes of the Late Early Paleozoic Foreland Basins in the Lower Yangtze Region. Earth Science, 44(5): 1494-1510 (in Chinese with English abstract). [61] Yang, S. F., Chen, H. L., Wu, G. H., et al., 1995. Discovery of Early Paleozoic Island-Arc Volcanic Rock in Northern Part of Fujian Province and the Significance for Tectonic Study. Geological Sciences, 30(2): 105-116 (in Chinese with English abstract). [62] Yang, Z. Y., Jiang, S. Y., 2019. Detrital Zircons in Metasedimentary Rocks of Mayuan and Mamianshan Group from Cathaysia Block in Northwestern Fujian Province, South China: New Constraints on Their Formation Ages and Paleogeographic Implication. Precambrian Research, 320: 13-30. https://doi.org/10.1016/j.precamres.2018.10.004 [63] Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016 [64] Yao, J. L., Shu, L. S., Cawood, P. A., et al., 2017. Constraining Timing and Tectonic Implications of Neoproterozoic Metamorphic Event in the Cathaysia Block, South China. Precambrian Research, 293: 1-12. https://doi.org/10.1016/j.precamres.2017.01.032 [65] Yao, J. L., Shu, L. S., Santosh, M., 2011. Detrital Zircon U-Pb Geochronology, Hf-Isotopes and Geochemistry: New Clues for the Precambrian Crustal Evolution of Cathaysia Block, South China. Gondwana Research, 20(2-3): 553-567. https://doi.org/10.1016/j.gr.2011.01.005 [66] Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Palaeozoic Metamorphism of the Neoproterozoic Basement in NE Cathaysia: Zircon U-Pb Ages, Hf Isotope and Whole-Rock Geochemistry from the Chencai Group. Journal of the Geological Society, 171(2): 281-297. https://doi.org/10.1144/jgs2013-036 [67] Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt: Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262: 84-100. https://doi.org/10.1016/j.precamres.2015.02.021 [68] Yan, C. L., Shu, L. S., Santosh, M., et al., 2015. The Precambrian Tectonic Evolution of the Western Jiangnan Orogen and Western Cathaysia Block: Evidence from Detrital Zircon Age Spectra and Geochemistry of Clastic Rocks. Precambrian Research, 268: 33-60. https://doi.org/10.1016/j.precamres.2015.07.002 [69] Ye, M. F., Li, X. H., Li, W. X., et al., 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Research, 12(1-2): 144-156. https://doi.org/10.1016/j.gr.2006.09.001 [70] Yin, C. Y., 2003. Lower Boundary Age of the Nanhua System and the Gucheng Glacial Stage: Evidence from SHRIMP- Dating. Chinese Science Bulletin, 48(16): 1657. https://doi.org/10.1360/03wd0112 [71] Yu, J. H., Reillyy, S. O., Wang, L. J., et al., 2007. The Discovery of Ancient Materials in the Cathaysia Block and the Formation of the Precambrian Crust. Chinese Science Bulletin, 52(1): 11-18 (in Chinese). doi: 10.1360/csb2007-52-1-11 [72] Yu, J. H., Wei, Z. Y., Wang, L. J., et al., 2006. Cathaysia Block: A Young Continent Composed of Ancient Materials. Geological Journal of China Universities, 12(4): 440-447 (in Chinese with English abstract). [73] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 [74] Zhang, A. M., Wang, Y. J., Fan, W. M., et al., 2012. Earliest Neoproterozoic (Ca. 1.0 Ga) Arc-back-Arc Basin Nature along the Northern Yunkai Domain of the Cathaysia Block: Geochronological and Geochemical Evidence from the Metabasite. Precambrian Research, 220-221: 217-233. https://doi.org/10.1016/j.precamres.2012.08.003 [75] Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005 [76] Zhao, G. C., He, Y., Sun, M., 2009. The Xiong'Er Volcanic Belt at the Southern Margin of the North China Craton: Petrographic and Geochemical Evidence for Its Outboard Position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181. https://doi.org/10.1016/j.gr.2009.02.004 [77] Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 [78] Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of the Continental Crust of the Precambrian Period in South China. Chinese Science Bulletin, 52(1): 1-10 (in Chinese). doi: 10.1007/s11434-007-0015-5 [79] Zou, H. P., Du, X. D., Lao, M. J., et al., 2014. Detrital Zircon U-Pb Geochronology of Cambrian Sandstones in Damingshan, Central Guangxi and Its Tectonic Implications. Acta Geologica Sinica, 88(10): 1800-1819 (in Chinese with English abstract). [80] 刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228 [81] 刘细元, 杨细浩, 聂龙敏, 等, 2016. 江西武功山岩浆核杂岩基本特征. 地质学报, 90(3): 468-474. doi: 10.3969/j.issn.0001-5717.2016.03.004 [82] 楼法生, 沈渭洲, 王德滋, 等, 2005. 江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究. 地质学报, 79(5): 636-644. doi: 10.3321/j.issn:0001-5717.2005.05.008 [83] 马虎超, 徐文坦, 钟康惠, 等, 2019. 赣南地区寒武纪高滩组碎屑锆石U-Pb年龄和Hf同位素特征及地质意义. 新疆地质, 37(2): 270-277. doi: 10.3969/j.issn.1000-8845.2019.02.022 [84] 覃小锋, 潘元明, 李江, 等, 2006. 桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学. 地质通报, 25(5): 553-559. doi: 10.3969/j.issn.1671-2552.2006.05.004 [85] 沈其韩, 2009. 推荐一个系统的矿物缩写表. 岩石矿物学杂志, 28(5): 495-500. doi: 10.3969/j.issn.1000-6524.2009.05.011 [86] 舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002 [87] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003 [88] 舒良树, 陈祥云, 楼法生, 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001 [89] 舒良树, 邓平, 于津海, 等, 2008. 武夷山西缘流纹岩的形成时代及其地球化学特征. 中国科学(D辑), 38(8): 950-959. doi: 10.3321/j.issn:1006-9267.2008.08.003 [90] 涂城, 张少兵, 苏克, 等, 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630-1643. doi: 10.3799/dqkx.2020.169 [91] 王涛, 王宗起, 王东升, 等, 2018. 江西武功山地区老虎塘组碎屑锆石U-Pb年龄和Hf同位素: 沉积时代厘定及其源区特征. 地球学报, 39(2): 167-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201802005.htm [92] 吴富江, 钟春根, 钟达洪, 等, 2001. 江西武功山岩浆热穹窿伸展滑覆构造的基本特征及形成时代. 江西地质, 15(3): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ200103000.htm [93] 吴富江, 张芳荣, 2003. 华南板块北缘东段武功山加里东期花岗岩特征及成因探讨. 中国地质, 30(2): 166-172. doi: 10.3969/j.issn.1000-3657.2003.02.009 [94] 向磊, 舒良树, 2010. 华南东段前泥盆纪构造演化: 来自碎屑锆石的证据. 中国科学(D辑), 40(10): 1377-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010008.htm [95] 徐文坦, 马虎超, 陆丽娜, 等, 2019. 赣南地区寒武系牛角河组碎屑锆石U-Pb年龄和Hf同位素特征及其地质意义. 地质与勘探, 55(2): 542-561. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201902009.htm [96] 杨树锋, 陈汉林, 龚根辉, 等, 2019. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程. 地球科学, 44(5): 1494-1510. doi: 10.3799/dqkx.2019.973 [97] 杨树锋, 陈汉林, 武光海, 等, 1995. 闽北早古生代岛弧火山岩的发现及其大地构造意义. 地质科学, 30(2): 105-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX502.000.htm [98] 于津海, Reillyy, S. O., 王丽娟, 等, 2007. 华夏陆块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52(1): 11-18. doi: 10.3321/j.issn:0023-074X.2007.01.002 [99] 于津海, 魏震洋, 王丽娟, 等, 2006. 华夏地块: 一个由古老物质组成的年轻陆块. 高校地质学报, 12(4): 440-447. doi: 10.3969/j.issn.1006-7493.2006.04.004 [100] 郑永飞, 张少兵, 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52(1): 1-10. doi: 10.3321/j.issn:0023-074X.2007.01.001 [101] 邹和平, 杜晓东, 劳妙姬, 等, 2014. 广西大明山地块寒武系碎屑锆石U-Pb年龄及其构造意义. 地质学报, 88(10): 1800-1819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201410003.htm -
dqkxzx-47-3-1078-附表.docx