• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江水系演化与东亚地形倒转的耦合关系

    张向涛 向绪洪 赵梦 崔宇驰 张浩

    张向涛, 向绪洪, 赵梦, 崔宇驰, 张浩, 2022. 珠江水系演化与东亚地形倒转的耦合关系. 地球科学, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002
    引用本文: 张向涛, 向绪洪, 赵梦, 崔宇驰, 张浩, 2022. 珠江水系演化与东亚地形倒转的耦合关系. 地球科学, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002
    Zhang Xiangtao, Xiang Xuhong, Zhao Meng, Cui Yuchi, Zhang Hao, 2022. Coupling Relationship between Pearl River Water System Evolution and East Asian Terrain Inversion. Earth Science, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002
    Citation: Zhang Xiangtao, Xiang Xuhong, Zhao Meng, Cui Yuchi, Zhang Hao, 2022. Coupling Relationship between Pearl River Water System Evolution and East Asian Terrain Inversion. Earth Science, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002

    珠江水系演化与东亚地形倒转的耦合关系

    doi: 10.3799/dqkx.2022.002
    详细信息
      作者简介:

      张向涛(1969-), 男, 教授级高工, 主要从事油气勘探与地质研究.ORCID: 0000-0003-4406-6004.E-mail: zhangxt1@cnooc.com.cn

      通讯作者:

      向绪洪, E-mail: xiangxh@cnooc.com.cn

    • 中图分类号: P67

    Coupling Relationship between Pearl River Water System Evolution and East Asian Terrain Inversion

    • 摘要: 新生代以来,全球地质演化中最大的地质事件不外乎青藏高原的形成及其环境效应,其中东亚地区的黄土堆积及大型水系的形成最为瞩目.珠江作为串联华南大陆与南海北部“源-汇”系统的纽带,是南海沉积学研究的焦点,揭示其形成过程对探讨云贵高原以及青藏东南侧的地形演变具有重要意义.采用元素地球化学与碎屑锆石U-Pb年龄谱系源汇综合示踪技术,结合珠江流域及珠江三角洲的研究成果,详细探讨珠江的诞生与演化历史.珠江河流体系初始形成于早渐新世,流域范围仅限于华南沿海地区;晚渐新世珠江发生向西拓展事件,流域面积显著扩大,达到云贵高原东侧边缘;到中新世珠江流域发生明显改变,河流进一步向西、向北溯源侵蚀,流域面积急剧扩大,深入云贵高原腹地.23 Ma珠江流域面积的快速扩展与同时期长江三峡贯通、北方黄土发育均是该时期青藏高原大范围隆升的直接产物,是东亚地区基本形成西高东低地貌特征的具体反映.

       

    • 图  1  珠江流域地质图及样品分布

      Fig.  1.  Geological map of the Pearl River Basin and the distribution of research samples

      图  2  珠江口盆地地层柱状图

      Fig.  2.  Schematic stratigraphic column of the Pearl River Mouth Basin

      图  3  珠江流域各支流现代沉积物碎屑锆石U-Pb年龄谱系图(n为统计锆石颗粒数)

      Fig.  3.  U-Pb age histogram of modern sedimentary detrital zircons in the Pearl River (n is the number of zircon particles)

      图  4  珠江流域(源区)及珠江口盆地(汇区)锆石年龄特征分析(n为统计锆石颗粒数)

      Fig.  4.  Analysis of the source area of the Pearl River Basin (n is the number of zircon particles)

      图  5  珠江三角洲不同时期沉积物的重矿物组合(a)和元素含量变化曲线(b;据邵磊等,2008

      Fig.  5.  The heavy mineral assemblage of sediments(a)and variations of element content of boreholes in the Pearl River Delta(b; from Shao et al., 2008)

      图  6  青藏高原阶段性隆升过程与珠江流域拓展之间的对应关系

      青藏高原隆升史据王国芝等(1999)王国灿等(2011)综合完成

      Fig.  6.  Coupling relationship between the multi-stage Tibetan Uplift and the Pearl River drainage evolution

    • [1] Cao, L. C., Shao, L., Qiao, P. J., et al., 2018. Early Miocene Birth of Modern Pearl River Recorded Low-Relief, High-Elevation Surface Formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. https://doi.org/10.1016/j.epsl.2018.05.039
      [2] Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28(8): 703-706. https://doi.org/10.1130/0091-7613(2000)28703:tobtem>2.0.co;2 doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
      [3] Cui, Y.C., Cao, L.C., Qiao, P.J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      [4] Cui, Y. C., Shao, L., Qiao, P. J., et al., 2019. Upper Miocene-Pliocene Provenance Evolution of the Central Canyon in Northwestern South China Sea. Marine Geophysical Research, 40(2): 223-235. https://doi.org/10.1007/S11001-018-9359-2 doi: 10.1007/s11001-018-9359-2
      [5] Cui, Y. C., Shao, L., Yu, M. M., et al., 2021a. Formation of Hengchun Accretionary Prism Turbidites and Implications for Deep-Water Transport Processes in the Northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 55-65. https://doi.org/10.1111/1755-6724.14640
      [6] Cui, Y. C., Shao, L., Li, Z. X., et al., 2021b. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36-52. https://doi.org/10.1016/j.gr.2021.06.021
      [7] He, K.Z., He, H.S., Cai, H.B., 1996. Formation and Evolution of the Western Yunnan Orogenic Belt. Geological Review, 42(2): 97-106 (in Chinese with English abstract).
      [8] Huang, C. Y., Wang, P. X., Yu, M. M., et al., 2019. Potential Role of Strike-Slip Faults in Opening up the South China Sea. National Science Review, 6(5): 891-901. https://doi.org/10.1093/nsr/nwz119
      [9] Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Sub-Basin, South China Sea). GSA Bulletin, 131(7-8): 1059-1074. https://doi.org/10.1130/B35001.1
      [10] Li, C., Luo, J.L., Hu, H.Y., et al., 2019. Thermodynamic Impact on Deepwater Sandstone Diagenetic Evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 44(2): 572-587 (in Chinese with English abstract).
      [11] Li, X. H., Wei, G. J., Shao, L., et al., 2003. Geochemical and Nd Isotopic Variations in Sediments of the South China Sea: A Response to Cenozoic Tectonism in SE Asia. Earth and Planetary Science Letters, 211(3-4): 207-220. https://doi.org/10.1016/S0012-821X(03)00229-2
      [12] Li, X.Q., Ding, H.K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831 (in Chinese with English abstract).
      [13] Liang, W., Li, X.P., 2020. Lithological Exploration and Potential in Mixed Siliciclastic-Carbonate Depositional Area of Eastern Pearl River Mouth Basin. Earth Science, 45(10): 3870-3884 (in Chinese with English abstract).
      [14] Liu, C., Clift, P. D., Carter, A., et al., 2017. Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene. Marine Geology, 394: 52-68. https://doi.org/10.1016/j.margeo.2017.07.011
      [15] Lu, H.Y., Guo, Z.T., 2013. Evolution of the Monsoon and Dry Climate in East Asia during Late Cenozoic: A Review. Scientia Sinica Terrae, 43(12): 1907-1918 (in Chinese). doi: 10.1360/zd-2013-43-12-1907
      [16] Meng, X. B., Shao, L., Cui, Y. C., et al., 2021. Sedimentary Records from Hengchun Accretionary Prism Turbidites on Taiwan Island: Implication on Late Neogene Migration Rate of the Luzon Subduction System. Marine and Petroleum Geology, 124: 104820. https://doi.org/10.1016/j.marpetgeo.2020.104820
      [17] Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract).
      [18] Morton, A. C., Hallsworth, C. R., 1999. Processes Controlling the Composition of Heavy Mineral Assemblages in Sandstones. Sedimentary Geology, 124(1-4): 3-29. https://doi.org/10.1016/S0037-0738(98)00118-3
      [19] Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/S1872-5791(07)60010-4
      [20] Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. https://doi.org/10.1126/science.1155371
      [21] Shao, L., Cui, Y.C., Qiao, P.J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo-Drainage System Evolution. Journal of Palaeogeography (Chinese Edition), 21(2): 216-231 (in Chinese with English abstract).
      [22] Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/B32053.1
      [23] Shao, L., Pang, X., Qiao, P.J., et al., 2008. Sedimentary Filling of the Pearl River Mouth Basin and Its Response to the Evolution of the Pearl River. Acta Sedimentologica Sinica, 26(2): 179-185 (in Chinese with English abstract).
      [24] Shao, L., Qiao, P. J., Zhao, M., et al., 2015. Depositional Characteristics of the Northern South China Sea in Response to the Evolution of the Pearl River. Geological Society, London, Special Publications, 429(1): 31-44. https://doi.org/10.1144/sp429.2
      [25] Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      [26] Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. PNAS, 105(13): 4987-4992. https://doi.org/10.1073/pnas.0703595105
      [27] Wang, G.C., Cao, K., Zhang, K.X., et al., 2011. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Scientia Sinica Terrae, 41(3): 332-349 (in Chinese). doi: 10.1360/zd-2011-41-3-332
      [28] Wang, G.Z., Wang, C.S., Zeng, Y.F., 1999. Sedimentary Evidence of the Western Yunnan Plateau Uplift since Miocene. Bulletin of Mineralogy, Petrology and Geochemistry, 18(3): 167-170 (in Chinese with English abstract).
      [29] Wang, P.X., 2005. Cenozoic Deformation and History of Sea-Land Interactions in Asia. Earth Science, 30(1): 1-18 (in Chinese with English abstract).
      [30] Xiang, X.H., Shao, L., Qiao, P.J., et al., 2011. Characteristics of Heavy Minerals in Pearl River Sediments and Their Implications for Provenance. Marine Geology & Quaternary Geology, 31(6): 27-35 (in Chinese with English abstract).
      [31] Xiao, G.Q., Zhang, C.X., Guo, Z.T., 2014. Initiation of East Asian Monsoon System Related to Tibetan Plateau Uplift from the Latest Oligocene to the Earliest Miocene. Chinese Journal of Nature, 36(3): 165-169 (in Chinese with English abstract).
      [32] Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      [33] Zeng, Q.G., Wang, B.D., Xiluo, L.J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract).
      [34] Zhang, G. C., Shao, L., Qiao, P. J., et al., 2020. Cretaceous-Palaeogene Sedimentary Evolution of the South China Sea Region: A Preliminary Synthesis. Geological Journal, 55(4): 2662-2683. https://doi.org/10.1002/gj.3533
      [35] Zhang, H., Cui, Y. C., Qiao, P. J., et al., 2021. Evolution of the Pearl River and Its Implication for East Asian Continental Landscape Reversion. Acta Geologica Sinica (English Edition), 95(1): 66-76. https://doi.org/10.1111/1755-6724.14641
      [36] Zhang, K.X., Wang, G.C., Hong, H.L., et al., 2013. The Study of the Cenozoic Uplift in the Tibetan Plateau: A Review. Geological Bulletin of China, 32(1): 1-18 (in Chinese with English abstract).
      [37] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271-1294. https://doi.org/10.1007/S11430-010-4048-2
      [38] Zhang, X.T., Chen, L., She, Q.H., et al., 2012. Provenance Evolution of the Paleo-Hanjian River in the North South China Sea. Marine Geology & Quaternary Geology, 32(4): 41-48 (in Chinese with English abstract).
      [39] Zhao, M., Shao, L., Qiao, P.J., 2015. Characteristics of Detrital Zircon U-Pb Geochronology of the Pearl River Sands and Its Implication on Provenances. Journal of Tongji University (Natural Science), 43(6): 915-923 (in Chinese with English abstract).
      [40] Zheng, H.B., Wei, X.C., Wang, P., et al., 2017. Geological Evolution of the Yangtze River. Scientia Sinica Terrae, 47(4): 385-393 (in Chinese). doi: 10.1360/N072017-00003
      [41] Zhong, L. F., Li, G., Yan, W., et al., 2017. Using Zircon U-Pb Ages to Constrain the Provenance and Transport of Heavy Minerals within the Northwestern Shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176-190. https://doi.org/10.1016/j.jseaes.2016.11.019
      [42] Zhu, W. L., Cui, Y. C., Shao, L., et al., 2021. Reinterpretation of the Northern South China Sea Pre- Cenozoic Basement and Geodynamic Implications of the South China Continent: Constraints from Combined Geological and Geophysical Records. Acta Oceanologica Sinica, 40(2): 13-28. https://doi.org/10.1007/S13131-021-1757-7
      [43] 崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      [44] 何科昭, 何浩生, 蔡红飙, 1996. 滇西造山带的形成与演化. 地质论评, 42(2): 97-106. doi: 10.3321/j.issn:0371-5736.1996.02.001
      [45] 李弛, 罗静兰, 胡海燕, 等, 2019. 热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响. 地球科学, 44(2): 572-587. doi: 10.3799/dqkx.2017.618
      [46] 李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. doi: 10.3799/dqkx.2020.197
      [47] 梁卫, 李小平, 2020. 珠江口盆地东部碎屑岩‒碳酸盐混合沉积区岩性油气藏形成地质条件与潜力. 地球科学, 45(10): 3870-3884. doi: 10.3799/dqkx.2020.174
      [48] 鹿化煜, 郭正堂, 2013. 晚新生代东亚气候变化: 进展与问题. 中国科学: 地球科学, 43(12): 1907-1918. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201312001.htm
      [49] 米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
      [50] 邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      [51] 邵磊, 庞雄, 乔培军, 等, 2008. 珠江口盆地的沉积充填与珠江的形成演变. 沉积学报, 26(2): 179-185. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200802002.htm
      [52] 王国灿, 曹凯, 张克信, 等, 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 41(3): 332-349. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103006.htm
      [53] 王国芝, 王成善, 曾允孚, 1999. 中新世以来滇西高原隆升的沉积学证据. 矿物岩石地球化学通报, 18(3): 167-170. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH903.005.htm
      [54] 汪品先, 2005. 新生代亚洲形变与海陆相互作用. 地球科学, 30(1): 1-18. http://www.earth-science.net/article/id/1447
      [55] 向绪洪, 邵磊, 乔培军, 等, 2011. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201106005.htm
      [56] 肖国桥, 张春霞, 郭正堂, 2014. 晚渐新世‒早中新世青藏高原隆升与东亚季风演化. 自然杂志, 36(3): 165-169.
      [57] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
      [58] 张克信, 王国灿, 洪汉烈, 等, 2013. 青藏高原新生代隆升研究现状. 地质通报, 32(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201301000.htm
      [59] 张向涛, 陈亮, 佘清华, 等, 2012. 南海北部古韩江物源的演化特征. 海洋地质与第四纪地质, 32(4): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204009.htm
      [60] 赵梦, 邵磊, 乔培军, 2015. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示踪意义. 同济大学学报(自然科学版), 43(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506018.htm
      [61] 郑洪波, 魏晓椿, 王平, 等, 2017. 长江的前世今生. 中国科学: 地球科学, 47(4): 385-393. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704002.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  354
    • HTML全文浏览量:  123
    • PDF下载量:  99
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-01
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回