Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyrite and In-Situ Sulfur Isotope Compositions of Sulfides
-
摘要:
铜厂铜-铁矿床在成矿时代、成矿物质来源及矿床成因等方面存在较大争议,限制了其成矿模式的建立以及进一步的找矿实践. 利用黄铜矿Re-Os同位素对该矿床进行定年,并利用LA-MC-ICP-MS技术对黄铜矿、黄铁矿及磁黄铁矿等硫化物开展原位硫同位素研究. 分析结果显示,5件黄铜矿Re-Os同位素等时线年龄为484±34 Ma(MSWD=8.7),表明铜厂铜-铁矿床形成于早古生代加里东期. 铜厂铜-铁矿床上部铜矿床中黄铜矿(+9.75‰~+13.1‰)和黄铁矿(+9.22‰~+13.9‰)的δ34S值略高于下部铁矿床中黄铜矿(+8.66‰~+10.9‰)、黄铁矿(+8.85‰~+11.0‰)和磁黄铁矿(+7.93‰~+9.28‰). 计算得到早期成矿热液的δ34S∑S值约为+10.6‰,晚期成矿热液的δ34S∑S值约为+12.3‰,说明矿床硫是地幔硫混染海水硫形成的,热化学还原在海水硫酸盐还原过程中起到关键作用. 铜厂铜-铁矿床的形成可分为两期:新元古代晋宁期,Rodinia超大陆裂解导致勉略宁地区发生海底火山喷发形成富含Fe、Cu的初始矿源层;早古生代加里东期,大陆边缘持续的裂解和裂陷形成勉略海槽并导致强烈的岩浆活动,富含挥发分及硫的岩浆热液混合海水硫,并从细碧岩中萃取Fe、Cu等成矿物质,早期成矿热液在铜厂地区深部形成铁矿床,随着磁铁矿和硫化物的沉淀,成矿热液演化到晚期阶段并沿断裂构造带向上运移,在铜厂地区浅部形成铜矿床.
-
关键词:
- 勉略宁 /
- 铜厂铜-铁矿床 /
- Re-Os同位素定年 /
- LA-MC-ICP-MS /
- 原位硫同位素 /
- 成矿模式 /
- 矿床学
Abstract:There are great disputes about the metallogenic age, source of ore-forming material and genesis of the Tongchang copper-iron deposit, which limits the establishment of its metallogenic model and further prospecting practice. Re-Os isotope of chalcopyrite is used to date the ore-forming age, and the S isotope compositions of chalcopyrite, pyrite and pyrrhotite are systematically studied by LA-MC-ICP-MS. The Re-Os isotopic isochron age of the five chalcopyrite samples is 484±34 Ma (MSWD=8.7), indicating that the Tongchang copper-iron deposit was formed in the Early Paleozoic Caledonian period. The δ34S values of chalcopyrite (+9.75‰-+13.1‰) and pyrite (+9.22‰-+13.9‰) in the upper part of Tongchang copper-iron deposit are slightly higher than those of chalcopyrite (+8.66‰-+10.9‰), pyrite (+8.85‰-+11.0‰) and pyrrhotite (+7.93‰-+9.28‰) in the lower part. The δ34S∑S value in the early ore-forming hydrothermal solution is about +10.6‰, and that in the late ore-forming hydrothermal solution is about +12.3‰, showing that the sulfur source of the deposit is from mixture of mantle sulfur and seawater sulfur. Thermochemical sulfate reduction (TSR) plays an important role in the process of seawater sulfate reduction. The formation of the Tongchang copper-iron deposit can be divided into two stages. In Neoproterozoic Jinning period, Rodinia supercontinent breakup event leads to submarine volcanic eruption and the formation of initial source bed which was enriched in Fe and Cu. During the Caledonian period of Early Paleozoic, the continuous cracking and rifting of the continental margin formed the Mian-Lue trough and led to intense magmatic activity. The magmatic hydrothermal solution enriched in volatile and sulfur, mixed with seawater sulfur, and extracted Fe, Cu and partial sulfur source from the spilite of the Guojiagou Formation. The early ore-forming hydrothermal solution formed the iron ore body in the deep part of the Tongchang area. With the precipitation of magnetite and sulfide, the ore-forming hydrothermal solution evolved to the late stage and migrated upward along the fault to form the copper deposit in the upper part of the Tongchang area.
-
图 1 勉略宁矿集区地质构造略图(据岳素伟等,2013)
Fig. 1. Simplified geological map of the Mian-Lue-Ning area (from Yue et al., 2013)
图 2 铜厂矿田地质简图(a)和铜-铁矿床地质剖面示意图(b)
a.据王瑞廷等(2012); b.据任小华(2008)
Fig. 2. Simplified geological map of the Tongchang ore field (a) and geological cross-section of the Tongchang copper-iron deposit (b)
图 8 铜厂铜-铁矿床硫化物原位硫同位素组成
底图据Li and Santosh(2014)
Fig. 8. In-situ S isotopic composition of sulfide from the Tongchang copper-iron deposit
表 1 铜厂铜-铁矿床及岩浆岩形成时代
Table 1. Ages of the Tongchang copper-iron deposit and magmatic rocks
地层/矿体/岩体 方法 年龄(Ma) 资料来源 碧口群 上部浅变质中酸性火山岩 锆石SHRIMP U-Pb同位素年龄 790±15~776±13 闫全人等,2003 下部基性火山岩 840±10 铜厂矿田 铜厂铜矿床 矿化闪长岩中辉钼矿Re-Os同位素模式年龄 889 丁振举等,1998 脉状铜矿石中黄铜矿Rb-Sr等时线年龄 359 铜厂闪长岩 闪长岩 锆石SHRIMP
U-Pb同位素年龄842±6.5 叶霖等,2009 早期闪长岩 锆石LA-ICP-MS
U-Pb同位素年龄879±7 王伟等,2011 中期石英闪长岩 848±5~840±7 含矿钠长岩脉 843±7 晚期花岗闪长岩 824±5 闪长岩 锆石LA-ICP-MS
U-Pb同位素年龄843.7±3.9 宫相宽等,2013 表 2 LA-MC-ICP-MS工作参数
Table 2. LA-MC-ICP-MS operation conditions
MC-ICP-MS工作参数 激光工作参数 仪器型号 Nu Plasma 1700 仪器型号 RESOlution M50-LR RF射频功率 1 300 W 激光能量密度 3.5~4 J/cm2 等离子气(Ar)流速 13 L/min 载气(He)流量 280 mL/min 补充气(Ar)流量 0.96 L/min 束斑 20~37 μm 背景时间 30 s 频率 3~4 Hz 积分时间 50 s 剥蚀方式 点剥蚀 表 3 铜厂铜-铁矿床黄铜矿Re-Os同位素测试数据
Table 3. Re-Os isotopic data of chalcopyrite from the Tongchang copper-iron deposit
样品编号 Re(10-9) ±2σ Os(10-12) ±2σ 187Re/188Os ±2σ 187Os/188Os ±2σ 1/192Os(1012) T17-8 1 110 27 8.763 0.056 1 455.34 37.06 10.74 0.06 0.671 T17-11 3 371 10 19.27 0.10 7 209.31 41.84 58.05 0.39 1.101 T17-12 1 562 30 10.53 0.23 2 184.00 63.49 15.90 0.42 0.717 T17-13 1.298 0.028 21.09 0.14 447.35 10.04 4.03 0.02 0.176 T17-17 0.794 0 0.010 0 63.99 0.37 76.52 1.06 2.28 0.02 0.049 T17-20 4 814 24 31.15 0.19 3 164.05 25.39 25.04 0.28 0.345 表 4 铜厂铜-铁矿床硫化物原位硫同位素组成
Table 4. In-situ S isotopic composition of sulfide from the Tongchang copper-iron deposit
样品类型 样品编号 δ34S(‰) 样品类型 样品编号 δ34S(‰) 上部黄铜矿 TC15-5 +12.3 上部黄铁矿 T17-8 +13.8 +12.5 T17-9 +12.9 TC15-17 +10.5 T17-11 +12.4 +10.5 T17-13 +12.7 +9.75 T17-16 +12.4 +10.6 T17-19 +12.4 +9.90 T17-20 +12.4 TC15-18 +12.7 T17-22 +13.9 TC15-38 +12.9 T17-23 +12.7 T17-8 +12.8 T17-25 +12.3 T17-9 +12.2 下部黄铜矿 yjb-3 +10.6 T17-11 +12.4 yjb-5 +10.6 T17-13 +12.7 yjb-6 +10.9 T17-16 +12.1 Y17-7 +8.76 T17-19 +12.6 Y17-8 +8.85 T17-20 +12.4 Y17-12 +8.66 T17-22 +12.7 下部黄铁矿 yjb-3 +10.8 T17-23 +12.7 yjb-5 +10.7 T17-25 +13.1 yjb-6 +11.0 上部黄铁矿 TC15-5 +13.6 Y17-7 +8.95 TC15-17 -1.02 +9.48 -0.96 +9.05 +9.22 +8.71 +10.3 +8.97 +12.8 Y17-8 +9.64 +4.51 Y17-12 +9.54 -1.96 下部磁黄铁矿 Y17-7 +9.20 +1.25 +9.28 +11.2 +9.07 +10.9 +7.93 TC15-18 +12.6 +8.74 +12.5 TC15-38 +12.9 +13.0 -
[1] Barra, F., Ruiz, J., Mathur, R., et al., 2003. A Re-Os Study of Sulfide Minerals from the Bagdad Porphyry Cu-Mo Deposit, Northern Arizona, USA. Mineralium Deposita, 38(5): 585-596. https://doi.org/10.1007/s00126-002-0341-0 [2] Basuki, N. I., Taylor, B. E., Spooner, E. T. C., 2008. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Economic Geology, 103(4): 783-799. https://doi.org/10.2113/gsecongeo.103.4.783 [3] Chang, Z. S., Large, R. R., Maslennikov, V., 2008. Sulfur Isotopes in Sediment-Hosted Orogenic Gold Deposits: Evidence for an Early Timing and a Seawater Sulfur Source. Geology, 36(12): 971-974. https://doi.org/10.1130/g25001a.1 [4] Chaussidon, M., Lorand, J. P., 1990. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. https://doi.org/10.1016/0016-7037(90)90018-g [5] Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for In Situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107-116. https://doi.org/10.1039/c6ja00270f [6] Chen, W., Wan, Y.S., Li, H.Q., et al., 2011. Isotope Geochronology: Technique and Application. Acta Geologica Sinica, 85(11): 1917-1947 (in Chinese with English abstract). [7] Chen, W., Zhao, X.F., Li, X.C., et al., 2019. An Overview on the Characteristics and Origin of Iron-Oxide Copper Gold (IOCG) Deposits in China. Acta Petrologica Sinica, 35(1): 99-118 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.07 [8] Chen, W. T., Zhou, M. F., 2014. Ages and Compositions of Primary and Secondary Allanite from the Lala Fe-Cu Deposit, SW China: Implications for Multiple Episodes of Hydrothermal Events. Contributions to Mineralogy and Petrology, 168: 1043. https://doi.org/10.1007/s00410-014-1043-1 [9] Chen, X., Xue, C. J., 2016. Origin of H2S in Uragen Large-Scale Zn-Pb Mineralization, Western Tien Shan: Bacteriogenic Structure and S-Isotopic Constraints. Acta Petrologica Sinica, 32(5): 1301-1314 (in Chinese with English abstract). [10] Chen, Y. L., Yang, Z. F., Zhao, D. Z., 2005. Isotope Geochronology and Geochemistry. Geological Publishing House, Beijing, 261-275 (in Chinese). [11] Deng, X. H., Wang, J. B., Pirajno, F., et al., 2016. Re-Os Dating of Chalcopyrite from Selected Mineral Deposits in the Kalatag District in the Eastern Tianshan Orogen, China. Ore Geology Reviews, 77: 72-81. https://doi.org/10.1016/j.oregeorev.2016.01.014 [12] Ding, Z.J., Yao, S.Z., Zhou, Z.G., et al., 1998. Metallogenic Chronology and Its Geologic Significace of Tongchang Copper Ore Deposit, Shaanxi Province. Journal of Xi'an Engineering University, 20(3): 24-27 (in Chinese with English abstract). [13] Elsgaard, L., Isaksen, M. F., Jørgensen, B. B., et al., 1994. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin Hydrothermal Vent Area: Influence of Temperature and Substrates. Geochimica et Cosmochimica Acta, 58(16): 3335-3343. https://doi.org/10.1016/0016-7037(94)90089-2 [14] Gannoun, A., Burton, K. W., Day, J. M. D., et al., 2016. Highly Siderophile Element and Os Isotope Systematics of Volcanic Rocks at Divergent and Convergent Plate Boundaries and in Intraplate Settings. Reviews in Mineralogy and Geochemistry, 81(1): 651-724. https://doi.org/10.2138/rmg.2016.81.11 [15] Gong, X.K., Chen, D.L., Zhao, J., 2013. Studies on Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotope Composition of the Tongchang Diorites, Shaanxi Province. Northwestern Geology, 46(3): 50-63 (in Chinese with English abstract). [16] Han, R.S., Jin, S.C., Liu, C.Q., et al., 2000. Deposit Types and Their Characteristics in Tongchang Orefield, Mian County-Lueyang-Yangpingguan Area, Shaanxi. Geology and Prospecting, 36(4): 11-15, 40 (in Chinese with English abstract). [17] Hou, L., Ding, J., Deng, J., et al., 2015. Geology, Geochronology, and Geochemistry of the Yinachang Fe-Cu-Au-REE Deposit of the Kangdian Region of SW China: Evidence for a Paleo-Mesoproterozoic Tectono-Magmatic Event and Associated IOCG Systems in the Western Yangtze Block. Journal of Asian Earth Sciences, 103: 129-149. https://doi.org/10.1016/j.jseaes.2014.09.016 [18] Huang, X.W., Qi, L., Gao, J.F., et al., 2016. Some Thoughts on Sulfide Re-Os Isotope Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 432-440 (in Chinese with English abstract). [19] Huang, X. W., Zhao, X. F., Qi, L., et al., 2013. Re-Os and S Isotopic Constraints on the Origins of Two Mineralization Events at the Tangdan Sedimentary Rock-Hosted Stratiform Cu Deposit, SW China. Chemical Geology, 347: 9-19. https://doi.org/10.1016/j.chemgeo.2013.03.020 [20] Jiang, S. Y., Yang, J. H., Zhao, K. D., et al., 2000. Re-Os Isotope Tracer and Dating Methods in Ore Deposits Research. Journal of Nanjing University (Natural Sciences), 36(6): 669-677 (in Chinese with English abstract). [21] Jørgensen, B. B., Isaksen, M. F., Jannasch, H. W., 1992. Bacterial Sulfate Reduction above 100 ℃ in Deep-Sea Hydrothermal Vent Sediments. Science, 258(5089): 1756-1757. https://doi.org/10.1126/science.258.5089.1756 [22] Li, J., Wang, X. C., Xu, J. F., et al., 2015a. Disequilibrium-Induced Initial Os Isotopic Heterogeneity in Gram Aliquots of Single Basaltic Rock Powders: Implications for Dating and Source Tracing. Chemical Geology, 406: 10-17. https://doi.org/10.1016/j.chemgeo.2015.04.010 [23] Li, X.C., Zhao, X.F., Zhou, M. F., et al., 2015b. Fluid Inclusion and Isotopic Constraints on the Origin of the Paleoproterozoic Yinachang Fe-Cu-(REE) Deposit, Southwest China. Economic Geology, 110(5): 1339-1369. https://doi.org/10.2113/econgeo.110.5.1339 [24] Li, J., Zhang, J., Yin, L., 2018. Advances and Problems of Re-Os Isotope Analysis of Geological Samples. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2): 242-249 (in Chinese with English abstract). [25] Li, J., Zhong, L.F., Tu, X.L., et al., 2011. Platinum Group Elements and Re-Os Isotope Analyses for Geological Samples Using a Single Digestion Procedure. Geochimica, 40(4): 372-380 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201104007.htm [26] Li, S. R., Santosh, M., 2014. Metallogeny and Craton Destruction: Records from the North China Craton. Ore Geology Reviews, 56: 376-414. https://doi.org/10.1016/j.oregeorev.2013.03.002 [27] Li, T.Z., Zhou, Q., Zhang, H.H., et al., 2017. Re-Os Isotopic Dating of Chalcopyrite from the Liwu-Type Copper Deposit in Western Sichuan and Its Metallogenic Significance. Acta Geologica Sinica, 91(12): 2727-2738 (in Chinese with English abstract). [28] Liu, B., Chen, W.F., Fang, Q.C., et al., 2020. Study on In-Situ Sulfur Isotope Compositions of Sulfides: Implication for the Source of Pb-Zn Mineralized Body of Niutoushan in the Xiangshan Area. Earth Science, 45(2): 389-399 (in Chinese with English abstract). [29] Liu, Y.D., Xie, H.F., Xu, L., et al., 2020. Sulfur Isotopic Geochemistry of the Zigangping Pb-Zn Deposit, Jiulong County, Sichuan Province. Geological Bulletin of China, 39(12): 2029-2036 (in Chinese with English abstract). [30] Lü, X.Q., Mao, Q.G., Guo, N.X., et al., 2020. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract). [31] Luan, Y., Wang, R. T., Qian, Z. Z., et al., 2018. The Genesis of the Xujiagou Copper Deposit, Mian-Lue-Ning Area of Shaanxi Province, NW China: Constraints from Mineral Chemistry and In Situ Pb Isotope Composition. Geological Journal, 53(S1): 44-57. https://doi.org/10.1002/gj.2994 [32] Luan, Y., Wang, R.T., Qian, Z.Z., et al., 2021. Geological Characteristics and Genesis of the Tongchang Copper-Iron Deposit in the Mian-Lue-Ning Ore- Cluster Region, Shaanxi Province. Acta Geologica Sinica, 95(3): 852-867 (in Chinese with English abstract). [33] Ludwig, K. R., 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [34] Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings-Old and New Insights. Sedimentary Geology, 140(1-2): 143-175. https://doi.org/10.1016/s0037-0738(00)00176-7 [35] Machel, H. G., Krouse, H. R., Sassen, R., 1995. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Applied Geochemistry, 10(4): 373-389. https://doi.org/10.1016/0883-2927(95)00008-8 [36] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551 [37] Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York. [38] Pinckney, D. M., Rafter, T. A., 1972. Fractionation of Sulfur Isotopes during Ore Deposition in the Upper Mississippi Valley Zinc-Lead District. Economic Geology, 67(3): 315-328. https://doi.org/10.2113/gsecongeo.67.3.315 [39] Ren, X.H., 2008. Research on Metalliferous Deposit Mineralization and Survey and Prediction of Target Area for Mineral Prospecting Mian-Lue-Ning Region, Shaanxi (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [40] Rye, R. O., Ohmoto, H., 1974. Sulfur and Carbon Isotopes and Ore Genesis: A Review. Economic Geology, 69(6): 826-842. https://doi.org/10.2113/gsecongeo.69.6.826 [41] Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12 [42] Selby, D., Kelley, K. D., Hitzman, M. W., et al., 2009. Re-Os Sulfide (Bornite, Chalcopyrite and Pyrite) Systematics of the Carbonate-Hosted Copper Deposits at Ruby Creek, Southern Brooks Range, Alaska. Economic Geology, 104(3): 437-444. https://doi.org/10.2113/gsecongeo.104.3.437 [43] Song, H., Song, S. W., 2015. Re-Os Dating of Chalcopyrite from the Lala IOCG Deposit in the Kangdian Copper Belt, China. Acta Geologica Sinica (English Edition), 89(2): 689-690. https://doi.org/10.1111/1755-6724.12464 [44] Strauss, H., 2004. 4 Ga of Seawater Evolution: Evidence from the Sulfur Isotopic Composition of Sulfate. In: Amend, J.P., Edwards, K.J., Lyons, T.W., eds., Sulfur Biogeochemistry: Past and Present. Geological Society of America Special Papers, 379: 195-205. https://doi.org/10.1130/0-8137-2379-5.195 [45] Wang, J. Y., 2001. Metallogenic Geological Background, Metallogenic Type, Ore Formation Rule and Ore- Prospecting Target of Mianluening Triangle Block in Qinling Orogenic Zone (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [46] Wang, R. T., Wang, D. S., Dai, J. Z., et al., 2012. Study on Synthetical Exploration Technology for Pb-Zn-Ag-Cu-Au Deposits in Major Mineralization Concentrated Region of Shaanxi Area in Qinling Orogenic Belt. Geological Publishing House, Beijing, 128-138 (in Chinese). [47] Wang, W., Liu, S. W, Wu, F. H, et al., 2011. Emplaced and Metallogenetic Times of Tongchang Diorities, Southern Shaanxi Province and Its Geological Implications. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(1): 91-102 (in Chinese with English abstract). [48] Wang, Y.F., Yang, H.M., 2016. Sulfur Isotope Tracing of Ore-Forming Hydrothermal Fluid for Metallic Sulfide Deposit. Advances in Earth Science, 31(6): 595-602 (in Chinese with English abstract). [49] Yan, Q. R., Wang, Z. Q., Yan, Z., et al., 2003. Age of Bikou Group Volcanic Rocks: SHRIMP Zircon U-Pb Dating Results. Geological Bulletin of China, 22(6): 456-458 (in Chinese). [50] Yang, Y. J., Han, X., Bian, X. W., et al., 2020a. An Analysis of Sedimentary Environment and Prototype Basin of Lueyang Group in the Mian-Lue-Ning Triangle Area, Shaanxi Province. Geological Bulletin of China, 39(10): 1549-1560 (in Chinese with English abstract). [51] Yang, Y. J., Han, X., Du, S. X., 2020b. Analysis of the Metallogenic System and Metallogenic Regularity in Mian-Lue-Ning Triangle Zone. Bulletin of Science and Technology, 36(7): 4-13 (in Chinese with English abstract). [52] Ye, L., Cheng, Z. T., Lu, L. N., et al., 2009. Petrological Geochronology and Zircon SHRIMP U-Pb of Tongchang Diorites, Mianluening Area, Southern Shaanxi Province, China. Acta Petrologica Sinica, 25(11): 2866-2876 (in Chinese with English abstract). [53] Ye, L., Liu, T.G., 1999. Study on the Stable Isotope in Tongchang Copper Deposit, Shaanxi Province. Journal of Mineralogy and Petrology, 19(4): 74-77 (in Chinese with English abstract). [54] Ye, L., Liu, T. G., Shao, S. X., 1997. Inclusion Geochemistry of Tongchang Cu Deposit in the Mian- Lue-Lin Area, South Shaanxi. Acta Mineralogica Sinica, 17(2): 194-199 (in Chinese with English abstract). [55] Ye, L., Yang, Y. L, Gao, W., et al., 2012. Source of Ore-Formation Materials of Tongchang Copper Ore Deposit in Southern Shaanxi Province, China. Journal of Jilin University (Earth Science Edition), 42(1): 92-103 (in Chinese with English abstract). [56] Yuan, S. D., Chou, I. M., Burruss, R. C., et al., 2013. Disproportionation and Thermochemical Sulfate Reduction Reactions in S-H2O-CH4 and S-D2O-CH4 Systems from 200 to 340 ℃ at Elevated Pressures. Geochimica et Cosmochimica Acta, 118(1): 263-275. https://doi.org/10.1016/j.gca.2013.05.021 [57] Yue, S.W., Lin, Z.W., Deng, X.H., et al., 2013. C, H, O, S, Pb Isotopic Geochemistry of the Jianchaling Gold Deposit, Shaanxi Province. Geotectonica et Metallogenia, 37(4): 653-670 (in Chinese with English abstract). https://core.ac.uk/display/155683925 [58] Zhao, B.S., Li, J., Long, X.P., et al., 2018. Re-Os Isochron Age of Pyrites from Meiling Cu Deposit in the Eastern Tianshan: A Case Study for the Os Isotopic Heterogeneity. Earth Science, 43(9): 2966-2979 (in Chinese with English abstract). [59] Zhao, X. F., Zhou, M. F., Su, Z. K., et al., 2017. Geology, Geochronology, and Geochemistry of the Dahongshan Fe-Cu-(Au-Ag) Deposit, Southwest China: Implications for the Formation of Iron Oxide Copper-Gold Deposits in Intracratonic Rift Settings. Economic Geology, 112(3): 603-628. https://doi.org/10.2113/econgeo.112.3.603 [60] Zheng, Y. F., Chen, J. F., 2000. Stable Isotope Geochemistry. Science Press, Beijing, 218-247 (in Chinese). [61] Zhou, M. F., Zhao, X. F., Chen, W. T., et al., 2014. Proterozoic Fe-Cu Metallogeny and Supercontinental Cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam. Earth-Science Reviews, 139: 59-82. https://doi.org/10.1016/j.earscirev.2014.08.013 [62] Zhou, S.H., 2008. Geological Characteristics and Geochemistry of Ore-Forming Fluid in the Tongchang Copper-Gold Polymetallic Deposit, Shaanxi. Geology in China, 35(2): 298-304 (in Chinese with English abstract). [63] 陈文, 万渝生, 李华芹, 等, 2011. 同位素地质年龄测定技术及应用. 地质学报, 85(11): 1917-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111010.htm [64] 陈伟, 赵新福, 李晓春, 等, 2019. 中国铁氧化物‒铜‒金(IOCG)矿床的基本特征及研究进展. 岩石学报, 35(1): 99-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901008.htm [65] 陈兴, 薛春纪, 2016. 西天山乌拉根大规模铅锌成矿中H2S成因: 菌生结构和硫同位素组成约束. 岩石学报, 32(5): 1301-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201605004.htm [66] 陈岳龙, 杨忠芳, 赵志丹, 2005. 同位素地质年代学与地球化学. 北京: 地质出版社, 261-275. [67] 丁振举, 姚书振, 周宗桂, 等, 1998. 陕西略阳铜厂铜矿成矿时代及地质意义. 西安工程学院学报, 20(3): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX803.005.htm [68] 宫相宽, 陈丹玲, 赵姣, 2013. 陕西铜厂闪长岩地球化学、锆石U-Pb定年及Lu-Hf同位素研究. 西北地质, 46(3): 50-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303003.htm [69] 韩润生, 金世昌, 刘丛强, 等, 2000. 陕西勉略阳区铜厂矿田矿床(化)类型及其特征. 地质与勘探, 36(4): 11-15, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200004003.htm [70] 黄小文, 漆亮, 高剑峰, 等, 2016. 关于硫化物Re-Os同位素定年的一些思考. 矿物岩石地球化学通报, 35(3): 432-440. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201603006.htm [71] 蒋少涌, 杨竞红, 赵葵东, 等, 2000. 金属矿床Re-Os同位素示踪与定年研究. 南京大学学报(自然科学版), 36(6): 669-677. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200006001.htm [72] 李杰, 张晶, 尹露, 2018. 地质样品的Re-Os同位素分析技术及存在的问题. 矿物岩石地球化学通报, 37(2): 242-249. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201802009.htm [73] 李杰, 钟立峰, 涂湘林, 等, 2011. 利用同一化学流程分析地质样品中的铂族元素含量和铼‒锇同位素组成. 地球化学, 40(4): 372-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201104007.htm [74] 李同柱, 周清, 张惠华, 等, 2017. 四川西部里伍式富铜矿床黄铜矿Re-Os定年及其成矿意义. 地质学报, 91(12): 2727-2738. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201712010.htm [75] 刘斌, 陈卫锋, 方启春, 等, 2020. 相山西部牛头山铅锌矿化体成矿物质来源: 原位硫同位素的制约. 地球科学, 45(2): 389-399. doi: 10.3799/dqkx.2018.395 [76] 刘应冬, 谢海峰, 徐力, 等, 2020. 四川九龙县子杠坪铅锌矿床硫同位素地球化学特征. 地质通报, 39(12): 2029-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012018.htm [77] 吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228 [78] 栾燕, 王瑞廷, 钱壮志, 等, 2021. 陕西省勉略宁矿集区铜厂铜‒铁矿床地质特征及其成因探讨. 地质学报, 95(3): 852-867. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103017.htm [79] 任小华, 2008. 陕西勉略宁地区金属矿床成矿作用与找矿靶区预测研究(博士学位论文). 西安: 长安大学. [80] 汪军谊, 2001. 秦岭"勉略宁"三角地块成矿地质背景、矿化类型、成矿规律及找矿方向(硕士学位论文). 西安: 西北大学. [81] 王瑞廷, 王东生, 代军治, 等, 2012. 秦岭造山带陕西段主要矿集区铅锌银铜金矿综合勘查技术研究. 北京: 地质出版社, 128-138. [82] 王伟, 刘树文, 吴峰辉, 等, 2011. 陕南铜厂闪长岩体的成岩、成矿时代及其地质意义. 北京大学学报(自然科学版), 47(1): 91-102. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201101016.htm [83] 王云峰, 杨红梅, 2016. 金属硫化物矿床的成矿热液硫同位素示踪. 地球科学进展, 31(6): 595-602. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201606008.htm [84] 闫全人, 王宗起, 闫臻, 等, 2003. 碧口群火山岩的时代——SHRIMP锆石U-Pb测年结果. 地质通报, 22(6): 456-458. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200306011.htm [85] 杨运军, 韩旭, 边小卫, 等, 2020a. 陕西勉略宁三角区略阳群沉积环境及原型盆地分析. 地质通报, 39(10): 1549-1560. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202010006.htm [86] 杨运军, 韩旭, 杜少喜, 2020b. 陕西勉略宁三角区成矿系统与成矿规律浅析. 科技通报, 36(7): 4-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB202007003.htm [87] 叶霖, 程增涛, 陆丽娜, 等, 2009. 陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学. 岩石学报, 25(11): 2866-2876. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911018.htm [88] 叶霖, 刘铁庚, 1999. 铜厂铜矿稳定同位素研究. 矿物岩石, 19(4): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS199904015.htm [89] 叶霖, 刘铁庚, 邵树勋, 1997. 陕南勉宁略地区铜厂铜矿包裹体地球化学特征研究. 矿物学报, 17(2): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199702012.htm [90] 叶霖, 杨玉龙, 高伟, 等, 2012. 陕南铜厂铜矿床成矿物质来源探讨. 吉林大学学报(地球科学版), 42(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201015.htm [91] 岳素伟, 林振文, 邓小华, 等, 2013. 陕西省煎茶岭金矿C、H、O、S、Pb同位素地球化学示踪. 大地构造与成矿学, 37(4): 653-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304011.htm [92] 赵冰爽, 李杰, 龙晓平, 等, 2018. 东天山梅岭铜矿床黄铁矿Re-Os等时线年龄: Os同位素不均一的结果. 地球科学, 43(9): 2966-2979. doi: 10.3799/dqkx.2018.168 [93] 郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社, 218-247. [94] 周圣华, 2008. 陕西铜厂铜金多金属矿床地质特征及成矿流体地球化学. 中国地质, 35(2): 298-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200802016.htm