• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地构造演化旋回及其新生代沉积环境变迁

    郑金云 高阳东 张向涛 庞雄 张青林 劳妙姬 冯轩

    郑金云, 高阳东, 张向涛, 庞雄, 张青林, 劳妙姬, 冯轩, 2022. 珠江口盆地构造演化旋回及其新生代沉积环境变迁. 地球科学, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
    引用本文: 郑金云, 高阳东, 张向涛, 庞雄, 张青林, 劳妙姬, 冯轩, 2022. 珠江口盆地构造演化旋回及其新生代沉积环境变迁. 地球科学, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
    Zheng Jinyun, Gao Yangdong, Zhang Xiangtao, Pang Xiong, Zhang Qinglin, Lao Miaoji, Feng Xuan, 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
    Citation: Zheng Jinyun, Gao Yangdong, Zhang Xiangtao, Pang Xiong, Zhang Qinglin, Lao Miaoji, Feng Xuan, 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258

    珠江口盆地构造演化旋回及其新生代沉积环境变迁

    doi: 10.3799/dqkx.2021.258
    基金项目: 

    国家重点研发计划项目 2018YFC0310100

    国家科技重大专项 2016ZX05026-003

    详细信息
      作者简介:

      郑金云(1982-), 男, 工程师, 主要从事构造地质相关的研究.ORCID: 0000-0002-6734-7303.E-mail: zhengjy3@cnooc.com.cn

    • 中图分类号: P548

    Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin

    • 摘要: 目前对珠江口盆地中生代以来的演化过程及其与沉积环境演变的响应关系尚缺乏系统性认识.基于珠江口盆地中-新生代岩浆活动、断陷结构样式及其改造、典型构造变形样式、沉积中心的转换等特征的对比分析,将盆地中-新生代的构造演化划分为4个阶段、7个期次:(1)中侏罗世-晚白垩世早期(~170~90 Ma)为古太平洋板块俯冲主控的陆缘岩浆弧-弧前盆地演化阶段;(2)晚白垩世-始新世中期(~90~43 Ma)为太平洋板块俯冲后撤背景下弧后周缘前陆/造山后塌陷-主动裂谷演化阶段;(3)始新世中期-中中新世(~43~10 Ma)为华南挤出-古南海俯冲拖曳主导的被动陆缘演化阶段;(4)晚中新世以来(~10~0 Ma)为菲律宾板块NWW向仰冲主导的挤压张扭演化阶段.~90 Ma、~43 Ma、~10 Ma分别实现了由安第斯型俯冲向西太平洋型俯冲、由主动裂谷向被动陆缘伸展、由被动陆缘伸展向挤压张扭的转换.在此过程中,伴随着古南海和南海的发育-消亡,新生代裂陷期沉积环境由东向西、由南向北逐渐海侵,裂后期由南向北阶段性差异沉降,由陆架浅水向陆坡深水转换,这使得珠一/三、珠二、珠四坳陷的石油地质条件具有显著的分带差异性.

       

    • 图  1  珠江口盆地构造单元(a)及其地层柱状图(b)

      Fig.  1.  Tectonic unit (a) and stratigraphic histogram (b) of the Pearl River Mouth Basin

      图  2  南海北部中-新生代岩浆活动特征

      三水盆地年龄数据据袁晓博(2019);华南陆上年龄数据据董树文等(2019)

      Fig.  2.  Characteristics of Meso-Cenozoic magmatism in the northern South China Sea

      图  3  珠江口盆地基底花岗岩(Y+Nb)-Rb构造环境判别图解(图版据Pearce et al., 1984

      Fig.  3.  Tectonic setting discrimination diagram of (Y+Nb)-Rb of basement granite in Pearl River Mouth Basin (from Pearce et al., 1984)

      图  4  白云-荔湾凹陷拆离断裂系统与裂陷期地层迁移、改造特征(位置见图 1AA’)

      Fig.  4.  Characteristics of detachment fault system and strata migration and transformation in Baiyun and Liwan sags

      图  5  珠江口盆地中-新生代构造演化过程

      Fig.  5.  Meso-Cenozoic tectonic evolution in the Pearl River Mouth Basin

      图  6  南海800 km深度地震层析成像(a)与古南海俯冲带分布示意图(b)

      a. 据Hall and Breitfeld(2017);b. 据鲁宝亮等(2014)

      Fig.  6.  Seismic tomography at 800 km depth in the South China Sea (a) and distribution of Paleo-South Sea subduction zone (b)

      图  7  过珠江口盆地裂后期地层充填与叠置样式典型剖面(位置见图 1BB').

      Fig.  7.  Typical section of the filling characteristics and superimposed patterns in the post-rifting stage of the Pearl River Mouth Basin

      图  8  珠江口盆地新生代构造演化与沉积环境演变的响应关系

      Fig.  8.  Response relationship between Cenozoic tectonic evolution and sedimentary environment evolution in Pearl River Mouth Basin

    • [1] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      [2] Cui, Y. C., Shao, L., Li, Z. X., et al., 2021. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36-52. https://doi.org/10.1016/j.gr.2021.06.021
      [3] Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011
      [4] Ding, W.W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      [5] Dong, S.W., Zhang, Y.Q., Li, H.L., et al., 2019. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia—Commemorating 90th Years of the "Yanshan Orogeny". Scientia Sinica Terrae, 49(6): 913-938 (in Chinese). doi: 10.1360/N072017-00432
      [6] Gao, Y.D., Lin, H.M., Liu, P., et al., 2021. Characteristics and Periods of Cenozoic Magmatic Activity in the Eastern Yangjiang Sag, Pearl River Mouth Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 48(2): 154-164 (in Chinese with English abstract).
      [7] Hall, R., Breitfeld, H. T., 2017. Nature and Demise of the Proto-South China Sea. Bulletin of the Geological Society of Malaysia, 63: 61-76. https://doi.org/10.7186/bgsm63201703
      [8] Hao, H.J., Shi, H.S., Zhang, X.T., et al., 2009. Mesozoic Sediments and Their Petroleum Geology Conditions in Chaoshan Sag: A Discussion Based on Drilling Results from the Exploratory Well LF35-1-1. China Offshore Oil and Gas, 21(3): 151-156 (in Chinese with English abstract).
      [9] He, M., Zhu, W.L., Wu, Z., et al., 2019. Neotectonic Movement Characteristics and Hydrocarbon Accumulation of the Pearl River Mouth Basin. China Offshore Oil and Gas, 31(5): 9-20 (in Chinese with English abstract).
      [10] Hou, M.C., Chen, H.D., Tian, J.C., et al., 2007. Sedimentary Facies and Palaeogeography of the Sanshui Basin, Guangdong during the Palaeogene. Sedimentary Geology and Tethyan Geology, 27(2): 37-44 (in Chinese with English abstract).
      [11] Huang, Q.Y., Yan, Y., Zhao, Q.H., et al., 2012. Cenozoic Stratigraphy of Taiwan: Looking into Rifting, Stratigraphy and Paleoceanography of South China Sea. Chinese Science Bulletin, 57(20): 1842-1862 (in Chinese). doi: 10.1360/csb2012-57-20-1842
      [12] Jian, Z. M., Jin, H. Y., Kaminski, M. A., et al., 2019. Discovery of the Marine Eocene in the Northern South China Sea. National Science Review, 6(5): 881-885. https://doi.org/10.1093/nsr/nwz084
      [13] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 doi: 10.1002/2014GC005567
      [14] Li, J.B., Ding, W.W., Wu, Z.Y., et al., 2012. The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea. Chinese Science Bulletin, 57(20): 1896-1905 (in Chinese). doi: 10.1360/csb2012-57-20-1896
      [15] Li, P.L., 1993. Cenozoic Tectonic Movement in the Pearl River Mouth Basin. China Offshore Oil and Gas (Geology), 7(6): 11-17 (in Chinese with English abstract).
      [16] Li, Q.Y., Wu, G.X., Zhang, L.L., et al., 2017. Paleogene Marine Deposition Records of Rifting and Breakup of the South China Sea: An Overview. Scientia Sinica Terrae, 47(12): 1447-1459 (in Chinese).
      [17] Li, X.H., Li, W.X., Li, Z.X., 2007. Another Discussion on the Genetic Types and Tectonic Significance of the Early Yanshan Granites in Nanling. Chinese Science Bulletin, 52(9): 981-991 (in Chinese). doi: 10.1360/csb2007-52-9-981
      [18] Lin, J., Li, J.B., Xu, Y.G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Haiyang Xuebao, 41(10): 125-140 (in Chinese with English abstract).
      [19] Liu, B.J., Pang, X., Yan, C.Z., et al., 2011. Evolution of the Oligocene-Miocene Shelf Slope-Break Zone in the Baiyun Deep-Water Area of the Pearl River Mouth Basin and Its Significance in Oil-Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract).
      [20] Lu, B.L., Wang, P.J., Liang, J.S., et al., 2014. Structural Properties of Paleo-South China Sea and Their Relationship with the Tethys and the Paleo-Pacific Tectonic Domain. Journal of Jilin University (Earth Science Edition), 44(5): 1441-1450 (in Chinese with English abstract).
      [21] Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract).
      [22] Pang, X., Chen, C.M., Peng, D.J., et al., 2008. Basic Geology of Baiyun Deep-Water Area in the Northern South China Sea. China Offshore Oil and Gas, 20(4): 215-222 (in Chinese with English abstract).
      [23] Pang, X., Zheng, J.Y., Mei, L.F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080 (in Chinese with English abstract).
      [24] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [25] Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      [26] Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      [27] Shellnutt, J. G., Lan, C. Y., Van Long, T., et al., 2013. Formation of Cretaceous Cordilleran and Post-Orogenic Granites and Their Microgranular Enclaves from the Dalat Zone, Southern Vietnam: Tectonic Implications for the Evolution of Southeast Asia. Lithos, 182-183: 229-241. https://doi.org/10.1016/j.lithos.2013.09.016
      [28] Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
      [29] Shu, L.S., Yu, J.H., Wang, D.Z., 2000. Late Mesozoic Granitic Magmatism and Its Relation to Metamorphism Ductile Deformation in the Changle-Nan'ao Fault Zone, Fujian Province. Geological Journal of China Universities, 6(3): 368-378 (in Chinese with English abstract).
      [30] Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      [31] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [32] Sun, Z., Lin, J., Wang, P.X., et al., 2020. International Collaboration of Ocean Exploration in the South China Sea Enhanced by International Ocean Discovery Program Expeditions 367/368/368x. Journal of Tropical Oceanography, 39(6): 18-29 (in Chinese with English abstract).
      [33] Wang, C.S., Dai, J.G., Liu, Z.F., et al., 2009. The Uplift History of the Tibetan Plateau and Himalaya and Its Study Approaches and Techniques: A Review. Earth Science Frontiers, 16(3): 1-30 (in Chinese with English abstract).
      [34] Yuan, X.B., 2019. The Record of Cenozoic Magmatism in Sanshui Basin and Its Relationship with the Early Tectonic Evolution Stage of the South China Sea (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [35] Zhang, L.L., Shu, Y., Cai, G.F., et al., 2019. Eocene-Oligocene Sedimentary Environment Evolution and Its Impact on Hydrocarbon Source Conditions in Eastern Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 153-165 (in Chinese with English abstract).
      [36] Zhang, S.F., Zhang, X.T., Zhang, Q.L., et al., 2015. Characteristics of the Cretaceous in the Northern South China Sea and Tectonic Implications. Marine Geology & Quaternary Geology, 35(6): 81-86 (in Chinese with English abstract).
      [37] Zhang, W., Fang, N.Q., 2014. Geochemistry Characteristics of Eocene Volcanic Rocks in Sanshui Basin, Guangdong. Earth Science, 39(1): 37-44 (in Chinese with English abstract).
      [38] Zhang, Z.M., Ding, H.X., Dong, X., et al., 2018. The Gangdese Arc Magmatism: From Neo-Tethyan Subduction to Indo-Asian Collision. Earth Science Frontiers, 25(6): 78-91 (in Chinese with English abstract).
      [39] Zhou, D., Sun, Z., 2017. Plate Evolution in the Pacific Domain since Late Mesozoic and Its Inspiration to Tectonic Research of East Asia Margin. Journal of Tropical Oceanography, 36(3): 1-19 (in Chinese with English abstract).
      [40] Zhou, D., Sun, Z., Chen, H.Z., et al., 2005. Mesozoic Lithofacies, Paleo-Geography, and Tectonic Evolution of the South China Sea and Surrounding Areas. Earth Science Frontiers, 12(3): 204-218 (in Chinese with English abstract).
      [41] Zou, H.P., Li, P.L., Rao, C.T., 1995. Geochemistry of Cenozoic Volcanic Rocks in Zhu Jiangkou Basin and Its Geodynamic Significance. Geochimica, 24(S1): 33-45 (in Chinese with English abstract).
      [42] 丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      [43] 董树文, 张岳桥, 李海龙, 等, 2019. "燕山运动"与东亚大陆晚中生代多板块汇聚构造——纪念"燕山运动"90周年. 中国科学: 地球科学, 49(6): 913-938. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201906002.htm
      [44] 高阳东, 林鹤鸣, 刘培, 等, 2021. 珠江口盆地阳江东凹新生代岩浆活动特征与期次. 成都理工大学学报(自然科学版), 48(2): 154-164. doi: 10.3969/j.issn.1671-9727.2021.02.03
      [45] 郝沪军, 施和生, 张向涛, 等, 2009. 潮汕坳陷中生界及其石油地质条件: 基于LF35-1-1探索井钻探结果的讨论. 中国海上油气, 21(3): 151-156. doi: 10.3969/j.issn.1673-1506.2009.03.002
      [46] 何敏, 朱伟林, 吴哲, 等, 2019. 珠江口盆地新构造运动特征与油气成藏. 中国海上油气, 31(5): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201905002.htm
      [47] 侯明才, 陈洪德, 田景春, 等, 2007. 广东三水盆地古近纪岩相古地理特征及演化. 沉积与特提斯地质, 27(2): 37-44. doi: 10.3969/j.issn.1009-3850.2007.02.006
      [48] 黄奇瑜, 闫义, 赵泉鸿, 等, 2012. 台湾新生代层序: 反映南海张裂, 层序和古海洋变化机制. 科学通报, 57(20): 1842-1862. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220005.htm
      [49] 李家彪, 丁巍伟, 吴自银, 等, 2012. 南海西南海盆的渐进式扩张. 科学通报, 57(20): 1896-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220008.htm
      [50] 李平鲁, 1993. 珠江口盆地新生代构造运动. 中国海上油气(地质), 7(6): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199306003.htm
      [51] 李前裕, 吴国瑄, 张丽丽, 等, 2017. 古近纪南海断陷作用和破裂不整合的海相沉积记录. 中国科学: 地球科学, 47(12): 1447-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201712007.htm
      [52] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001
      [53] 林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. doi: 10.3969/j.issn.0253-4193.2019.10.009
      [54] 柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102008.htm
      [55] 鲁宝亮, 王璞珺, 梁建设, 等, 2014. 古南海构造属性及其与特提斯和古太平洋构造域的关系. 吉林大学学报(地球科学版), 44(5): 1441-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201405005.htm
      [56] 米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001
      [57] 庞雄, 陈长民, 彭大钧, 等, 2008. 南海北部白云深水区之基础地质. 中国海上油气, 20(4): 215-222. doi: 10.3969/j.issn.1673-1506.2008.04.001
      [58] 庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm
      [59] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114.
      [60] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558
      [61] 施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      [62] 舒良树, 于津海, 王德滋, 2000. 长乐-南澳断裂带晚中生代岩浆活动与变质-变形关系. 高校地质学报, 6(3): 368-378. doi: 10.3969/j.issn.1006-7493.2000.03.001
      [63] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      [64] 孙珍, 林间, 汪品先, 等, 2020. 国际大洋发现计划IODP367/368/368X航次推动南海国际化海洋科考成果. 热带海洋学报, 39(6): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY202006002.htm
      [65] 王成善, 戴紧根, 刘志飞, 等, 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1-30. doi: 10.3321/j.issn:1005-2321.2009.03.001
      [66] 袁晓博, 2019. 三水盆地新生代岩浆记录与南海早期演化(博士学位论文). 北京: 中国地质大学.
      [67] 张丽丽, 舒誉, 蔡国富, 等, 2019. 珠江口盆地东部始新世-渐新世沉积环境演变及对烃源条件的影响. 石油学报, 40(S1): 153-165. doi: 10.7623/syxb2019S1013
      [68] 张素芳, 张向涛, 张青林, 等, 2015. 南海北部白垩系发育特征及构造意义. 海洋地质与第四纪地质, 35(6): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506014.htm
      [69] 张维, 方念乔, 2014. 广东三水盆地始新世火山岩地球化学特征. 地球科学, 39(1): 37-44. doi: 10.3799/dqkx.2014.004
      [70] 张泽明, 丁慧霞, 董昕, 等, 2018. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞. 地学前缘, 25(6): 78-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806009.htm
      [71] 周蒂, 孙珍, 2017. 晚中生代以来太平洋域板块过程及其对东亚陆缘构造研究的启示. 热带海洋学报, 36(3): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201703001.htm
      [72] 周蒂, 孙珍, 陈汉宗, 等, 2005. 南海及其围区中生代岩相古地理和构造演化. 地学前缘, 12(3): 204-218. doi: 10.3321/j.issn:1005-2321.2005.03.022
      [73] 邹和平, 李平鲁, 饶春涛, 1995. 珠江口盆地新生代火山岩地球化学特征及其动力学意义. 地球化学, 24(S1): 33-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX5S1.004.htm
    • 加载中
    图(8)
    计量
    • 文章访问数:  275
    • HTML全文浏览量:  241
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-30
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回