Mechanical Response Characteristics and Mechanism of Coal-Rock with CO2 Injection in Deep Coal Seam: A Review
-
摘要: 为揭示CO2注入煤岩力学响应特征及机理,回顾了CO2注入煤岩力学性质影响因素、CO2注入对煤岩大分子-孔隙-裂隙结构改造作用和煤岩力学参数的统计模型、理论模型与智能预测模型.结果表明:CO2注入煤岩力学性质受控于煤阶、CO2压力、水分、围压和时间等因素,CO2注入压力的增高、水的加入及时间的延长均会进一步降低煤岩力学性质,而围压对CO2注入力学性能弱化具有一定改善作用.CO2水溶液通过溶胀作用、萃取作用和塑化作用促使煤岩大分子结构重组,通过微晶结构改变、化学溶蚀和非均匀变形改造煤岩孔隙结构,通过化学溶蚀、膨胀应力和化学-应力耦合作用诱发煤岩结构损伤,均不同程度引起煤岩力学性能弱化.在CO2注入煤岩力学参数预测模型中,类Langmuir模型、广延指数模型和修正的粘聚力模型具有明确的物理意义,而智能预测模型具有更高的预测精度,预测准确度可达99%以上.本次研究为科学评价CO2-ECBM安全性和促进深部煤层CO2高效注入奠定了理论基础.Abstract: To reveal the mechanical response characteristics and mechanisms of coal-rock with CO2 injection, the influencing factors of mechanical properties of coal-rock with CO2 injection, the transformation effect of CO2 on the macro molecular-pore-fracture structure of coal-rock and the statistical model, theoretical model and intelligence prediction model of mechanical parameters of coal-rock with CO2 injection were reviewed. Results show that mechanical properties of coal-rock with CO2 injection are controlled by the coal rank, the CO2 pressure, the moisture, the confining pressure and the time. The increase of CO2 injection pressure, the addition of water and the extension of time can further reduce the mechanical properties of coal-rock with CO2 injection, while the confining pressure can ameliorate the weakening effect of mechanical property to a certain extent. The CO2 aqueous solution recombines the macro molecular structure of coal-rock by the swelling, extraction and plasticization effects, reforms the pore structure of coal-rock by the micro crystalline structure change, chemical corrosion and non-uniform deformation effects, damages the fracture structure by the chemical corrosion, swelling stress and chemical-stress coupling effects, which all weaken the mechanical properties of coal-rock in varying degrees. Among the prediction models of mechanical parameters of coal-rock with CO2 injection, the Langmuir-like model, the extended exponential model and the modified cohesion model have clear physical significance, while the intelligence prediction model has higher prediction accuracy, and the prediction accuracy can reach more than 99%. This study lays a theoretical foundation for scientifically evaluating the CO2-ECBM safety and promoting the efficient injection of CO2 into deep coal seams.
-
Key words:
- CO2-ECBM /
- mechanical property /
- weakening mechanism /
- multi-scale structure /
- prediction model /
- petroleum geology
-
图 2 不同煤阶煤CO2注入后峰值强度和弹性模量变化规律
数据来源:褐煤,Perera et al., 2011;陈德飞,2014;Ranathunga et al., 2016a;烟煤,Perera et al., 2013;Zhang et al., 2019a;Zhou et al., 2020;无烟煤,贾金龙,2016;Zagoršcak and Thomas, 2018;牛庆合,2019
Fig. 2. Variations of peak strength and elastic modulus of different rank coals with CO2 injection
图 7 CO2注入煤岩内部孔裂隙结构响应模式(修改自Niu et al., 2021)
Fig. 7. Response pattern of pore-fracture structure in coal-rock with CO2 injection (modified from Niu et al., 2021)
表 1 CO2注入煤岩力学性质影响因素及规律
Table 1. Influencing factors and laws of mechanical properties of coal-rock with CO2 injection
影响因素 实验条件 煤岩
分类范围 ΔS(%) ΔE(%) Δμ(%) Δc(%) Δφ(%) 数据来源 CO2注入压力 单轴、室温 褐煤 1~3 MPa 3~10↘ 3~16↘ - - - Perera et al., 2011 单轴、33 ℃ 烟煤 3~16 MPa 44~78↘ 20~72↘ - - - Perera et al., 2013 三轴、室温 褐煤 5 MPa 15↘ 41↘ - 20↘ 5↘ 陈德飞,2014 三轴、22 ℃ - 0.2~5.5 MPa 2~46↘ 6~32↘ - Masoudian et al., 2014 单轴、35 ℃ 褐煤 2~10 MPa 6~61↘ 16~44↘ 10~62↗ - - Ranathunga et al., 2016a 三轴、40 ℃ 无烟煤 8 MPa 54↘ 41↘ 65↗ - - 贾金龙,2016 单轴、40 ℃ 无烟煤 2~8 MPa 34~80↘ 29~83↘ - - - Zagorščak and Thomas, 2018 三轴、50 ℃ 烟煤 12 MPa 17↘ 21↘ - 16↘ 2↘ Meng and Qiu, 2018 单轴、37 ℃ 烟煤 2~10 MPa 34~63↘ 34~66↘ 9~31↗ - - Zhang et al., 2019a 三轴、40 ℃ 无烟煤 4~8 MPa 47~63↘ 32~50↘ - - - 牛庆合,2019 单轴、25 ℃ 烟煤 0.2~2 MPa 8~48↘ - - - - Zhou et al., 2020 水分 单轴、37 ℃ 烟煤 59/68↘ 62/71↘ 26/38↗ - - Zhang et al., 2019a 三轴、37 ℃ 烟煤 干燥/饱水+CO2 19/23↘ 18/20↘ - - - Zhang et al., 2019b 三轴、40 ℃ 无烟煤 47/64↘ 32/55↘ 19/28↗ - - Niu et al., 2021 围压 三轴、室温 褐煤 0~10 MPa 19~2↘ 21~0↘ - - - Viete and Ranjith, 2005 三轴、35 ℃ 褐煤 0~10 MPa 31~10↘ 28~13↘ - - - Ranathunga et al., 2016a, 2016b 三轴、37 ℃ 烟煤 0~11 MPa 39~17↘ 41~17↘ - - - Zhang et al., 2019a, 2019b 时间 单轴、室温 - 25~45 d 42~65↘ 24~43↘ - - - Bagga et al., 2015 单轴、50 ℃ 无烟煤 5~30 d 50~67↘ 50~63↘ - - - 贺伟,2018 单轴、40 ℃ 褐煤 1~45 d 13~23↘ - - - - Sampath et al., 2019a 单轴、35 ℃ 烟煤 1~13 d 16~47↘ 11~40↘ - - - Su et al., 2020 三轴、35 ℃ 褐煤 21~288 d 44~50↘ 59~69↘ - - - Ranathunga et al., 2016b 注:ΔS、ΔE、Δμ、Δc和Δφ分别代表峰值强度、弹性模量、泊松比、粘聚力和内摩擦角等力学参数的变化百分比,计算公式为,Δf=|f1-f0|/f0×100,f代表力学参数,下标1和0代表流体注入后和流体注入前;“↘”、“↗”分别代表力学参数降低和升高;“/”前、后的数据分别代表干燥、饱水+CO2状态下力学参数. -
[1] Bagga, P., Roy, D. G., Singh, T. N., 2015. Effect of Carbon Dioxide Sequestration on the Mechanical Properties of Indian Coal. EUROCK 2015 & 64th Geomechanics Colloquium, Salzburg. [2] Bai, B., 2008. Flow-Geomechanics Theory and Numerical Simulation Method of Site Stability for CO2 Sequestration in Coalbeds (Dissertation). Institute of Mechanics, Chinese Academy of Sciences, Wuhan (in Chinese with English abstract). [3] Chen, D.F., 2014. Effect of Gas Adsorption on Seepage and Mechanical Properties of Coal Rock (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract). [4] Chen, R., Qin, Y., 2012. Fluid-Solid Coupling between Supercritical CO2 and Minerals in Coal and Geological Significances. Coal Science and Technology, 40(10): 17-21 (in Chinese with English abstract). [5] Chen, Y., Tang, D. Z., Xu, H., et al., 2015. Pore and Fracture Characteristics of Different Rank Coals in the Eastern Margin of the Ordos Basin, China. Journal of Natural Gas Science and Engineering, 26: 1264-1277. doi: 10.1016/j.jngse.2015.08.041 [6] Cui, C., Li, H.Y., Liu, Y.Q., et al., 2018. Experiment Effect Study of Equivalent Confining Pressure on Mechanical Properties of Coal and Rock under Condition of True Three Axis. Coal Science and Technology, 46(5): 47-53(in Chinese with English abstract). [7] Czerw, K., Baran, P., Zarębska, K., 2017. Application of the Stretched Exponential Equation to Sorption Induced Swelling of Bituminous Coal. International Journal of Coal Geology, 173: 76-83. https://doi.org/10.1016/j.coal.2017.02.010 [8] Du, F., Wang, G.D., Jiang, Y.F., et al., 2015. Research on Influence of High-Pressure Methane and Carbon Dioxide Absorption on Functional Groups of Coal. Mining Safety & Environmental Protection, 42(5): 1-4, 9 (in Chinese with English abstract). [9] Du, Q.H., Liu, X.L., Wang, W.M., et al., 2019. Dynamic Response of Coal under Impact Load after Supercritical CO2-Water-Coal Interaction. Journal of China Coal Society, 44(11): 3453-3462 (in Chinese with English abstract). [10] Du, Y., 2018. Experimental Study on Mineral Geochemical Reaction and Its Inducing the Reservoir Structure Response with the Injection of ScCO2 into the Coal Seam (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [11] Du, Y., Fu, C. Q., Pan, Z. J., et al., 2020. Geochemistry Effects of Supercritical CO2 and H2O on the Mesopore and Macropore Structures of High-Rank Coal from the Qinshui Basin, China. International Journal of Coal Geology, 223: 103467. doi: 10.1016/j.coal.2020.103467 [12] Du, Y., Sang, S.X., Wang, W.F., 2018. Study and Review on Geochemical Effect of Coal and Rock Injected with Supercritical CO2. Coal Science and Technology, 46(3): 10-18 (in Chinese with English abstract). [13] Du, Y.K., Pang, F., Chen, K., et al., 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11): 3749-3756 (in Chinese with English abstract). [14] Fang, H. H., Sang, S. X., Liu, S. Q., 2019. The Coupling Mechanism of the Thermal-Hydraulic-Mechanical Fields in CH4-Bearing Coal and Its Application in the CO2-Enhanced Coalbed Methane Recovery. Journal of Petroleum Science and Engineering, 181: 106177. doi: 10.1016/j.petrol.2019.06.041 [15] Feng, X.T., 1994. A Study Thinking on Intellgent Rock Mechanics. Chinese Journal of Rock Mechanics and Engineering, 13(3): 205-208 (in Chinese with English abstract). [16] Fry, R., Day, S., Sakurovs, R., 2009. Moisture-Induced Swelling of Coal. International Journal of Coal Preparation and Utilization, 29(6): 298-316. https://doi.org/10.1080/19392690903584575 [17] Fulton, P. F., Parente, C. A., Rogers, B. A., et al., 1980. A Laboratory Investigation of Enhanced Recovery of Methane from Coal by Carbon Dioxide Injection. Society of Petroleum Engineers, Texas. [18] Guo, H. Y., Gao, Z. X., Xia, D., et al., 2019. Simulation Study on the Biological Methanation of CO2 Sequestered in Coal Seams. Journal of CO2 Utilization, 34: 171-179. doi: 10.1016/j.jcou.2019.06.007 [19] Han, S.J., Sang, S.X., 2020. Mechanism and Characterization Model of Supercritical CO2 Adsorption on Coals: A Review. Coal Science and Technology, 48(1): 227-238 (in Chinese with English abstract). [20] He, L.G., Yang, D., 2021. Study on the Degradation Effect of Supercritical CO2 on the Coal Mechanical Properties. Mining Research and Development, 41(2): 94-99 (in Chinese with English abstract). [21] He, W., 2018. Experimental Study on Swelling Characteristics of CO2 Adsorption and Storage in Different Coal Rank (Dissertation). Taiyuan University of Technology, Taiyuan (in Chinese with English abstract). [22] Hou, C. L., Jiang, B., Liu, H. W., et al., 2020. The Differences of Nanoscale Mechanical Properties among Coal Maceral Groups. Journal of Natural Gas Science and Engineering, 80: 103394. doi: 10.1016/j.jngse.2020.103394 [23] Jia, J.L., 2016. Experimental Simulation on Stress and Strain Effects as Supercritical CO2 being Injected into Deep Anthracite Reservoirs (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [24] Jiang, R.X., Yu, H.G., Wang, L., 2016. Development of an Apparatus for the Supercritical CO2 Extraction of Organic Matter from Coal Based on CO2 Sequestration in Coal Seams. Journal of China Coal Society, 41(3): 680-686 (in Chinese with English abstract). [25] Karacan, C. Ö., 2003. Heterogeneous Sorption and Swelling in a Confined and Stressed Coal during CO2 Injection. Energy & Fuels, 17(6): 1595-1608. [26] Karacan, C. O., 2007. Swelling-Induced Volumetric Strains Internal to a Stressed Coal Associated with CO2 Sorption. International Journal of Coal Geology, 72(3-4): 209-220. doi: 10.1016/j.coal.2007.01.003 [27] Kiani, A., Sakurovs, R., Grigore, M., et al., 2018. Gas Sorption Capacity, Gas Sorption Rates and Nanoporosity in Coals. International Journal of Coal Geology, 200: 77-86. doi: 10.1016/j.coal.2018.10.012 [28] Kolak, J. J., Hackley, P. C., Ruppert, L. F., et al., 2015. Using Ground and Intact Coal Samples to Evaluate Hydrocarbon Fate during Supercritical CO2 Injection into Coal Beds: Effects of Particle Size and Coal Moisture. Energy & Fuels, 29(8): 5187-5203. [29] Larsen, J. W., 2003. The Effects of Dissolved CO2 on Coal Structure and Properties. International Journal of Coal Geology, 57(1): 63-70. https://doi.org/10.1016/j.coal.2003.08.001 [30] Lawal, A. I., Kwon, S., 2020. Application of Artificial Intelligence to Rock Mechanics: An Overview. Journal of Rock Mechanics and Geotechnical Engineering, 13(1): 248-266. [31] Li, S., Tang, D.Z., Xu, H., et al., 2016. Progress in Geological Researches on the Deep Coalbed Methane Reservoirs. Earth Science Frontiers, 23(3): 10-16 (in Chinese with English abstract). [32] Li, W., Pang, B., Su, E. L., et al., 2019. Time- Dependence of Mechanical Property Alterations on Anthracite Coals Treated by Supercritical Carbon Dioxide. Geofluids, 1-9. [33] Li, Y., Cao, D. Y., Wu, P., et al., 2017. Variation in Maceral Composition and Gas Content with Vitrinite Reflectance in Bituminous Coal of the Eastern Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 114-125. doi: 10.1016/j.petrol.2016.10.018 [34] Li, Z. B., Wang, F. S., Shu, C. M., et al., 2020. Damage Effects on Coal Mechanical Properties and Micro-Scale Structures during Liquid CO2-ECBM Process. Journal of Natural Gas Science and Engineering, 83: 103579. doi: 10.1016/j.jngse.2020.103579 [35] Liu, C.J., Sang, S.X., Wang, G.X., et al., 2010. Simulation Experiment on the Changes of Pore Structure in Different Ranks Coals during the CO2 Geosequestration. Journal of China University of Mining & Technology, 39(4): 496-503 (in Chinese with English abstract). [36] Liu, J. F., Peach, C. J., Spiers, C. J., 2016. Anisotropic Swelling Behaviour of Coal Matrix Cubes Exposed to Water Vapour: Effects of Relative Humidity and Sample Size. International Journal of Coal Geology, 167: 119-135. doi: 10.1016/j.coal.2016.09.011 [37] Liu, S. Q., Fang, H. H., Sang, S. X., et al., 2020. CO2 Injectability and CH4 Recovery of the Engineering Test in Qinshui Basin, China Based on Numerical Simulation. International Journal of Greenhouse Gas Control, 95: 102980. doi: 10.1016/j.ijggc.2020.102980 [38] Liu, S. Q., Sang, S. X., Ma, J. S., et al., 2019. Effects of Supercritical CO2 on Micropores in Bituminous and Anthracite Coal. Fuel, 242: 96-108. doi: 10.1016/j.fuel.2019.01.008 [39] Masoudian, M. S., Airey, D. W., El-Zein, A., 2014. Experimental Investigations on the Effect of CO2 on Mechanics of Coal. International Journal of Coal Geology, 128-129: 12-23. doi: 10.1016/j.coal.2014.04.001 [40] Massarotto, P., Golding, S. D., Bae, J. S., et al., 2010. Changes in Reservoir Properties from Injection of Supercritical CO2 into Coal Seams—A Laboratory Study. International Journal of Coal Geology, 82(3): 269-279. [41] Mastalerz, M., Drobniak, A., Walker, R., et al., 2010. Coal Lithotypes before and after Saturation with CO2: Insights from Micro- and Mesoporosity, Fluidity, and Functional Group Distribution. International Journal of Coal Geology, 83(4): 467-474. doi: 10.1016/j.coal.2010.06.007 [42] Meng, M., Qiu, Z. S., 2018. Experiment Study of Mechanical Properties and Microstructures of Bituminous Coals Influenced by Supercritical Carbon Dioxide. Fuel, 219: 223-238. https://doi.org/10.1016/j.fuel.2018.01.115 [43] Miao, Y. N., Zhao, C. J., Zhou, G., 2020. New Rate-Decline Forecast Approach for Low-Permeability Gas Reservoirs with Hydraulic Fracturing Treatments. Journal of Petroleum Science and Engineering, 190: 107112. doi: 10.1016/j.petrol.2020.107112 [44] Moore, T. A., 2012. Coalbed Methane: A Review. International Journal of Coal Geology, 101(1): 36-81. [45] Niu, Q.H., 2019. Experimental Study on the Mechanical Response Mechanism and Injectivity with Supercritical CO2 Injection in Anthracite (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [46] Niu, Q. H., Cao, L. W., Sang, S. X., et al., 2017. The Adsorption-Swelling and Permeability Characteristics of Natural and Reconstituted Anthracite Coals. Energy, 141: 2206-2217. doi: 10.1016/j.energy.2017.11.095 [47] Niu, Q. H., Cao, L. W., Sang, S. X., et al., 2019. Experimental Study of Permeability Changes and Its Influencing Factors with CO2 Injection in Coal. Journal of Natural Gas Science and Engineering, 61: 215-225. doi: 10.1016/j.jngse.2018.09.024 [48] Niu, Q. H., Cao, L. W., Sang, S. X., et al., 2021. Experimental Study on the Softening Effect and Mechanism of Anthracite with CO2 Injection. International Journal of Rock Mechanics and Mining Sciences, 138: 104614. https://doi.org/10.1016/J.IJRMMS.2021.104614 doi: 10.1016/j.ijrmms.2021.104614 [49] Niu, Q.H., Cao, L.W., Zhou, X.Z., 2018. Experimental Study of the Influences of CO2 Injection on Stress-Strain and Permeability of Coal Reservoir. Coal Geology & Exploration, 46(5): 43-48 (in Chinese with English abstract). [50] Niu, Q. H., Wang, Q. Z., Wang, W., et al., 2022. Responses of Multi-Scale Microstructures, Physical- Mechanical and Hydraulic Characteristics of Roof Rocks Caused by the Supercritical CO2-Water-Rock Reaction. Energy, 238(PartB): 121727. [51] Pan, J. N., Meng, Z. Z., Hou, Q. L., et al., 2013. Coal Strength and Young's Modulus Related to Coal Rank, Compressional Velocity and Maceral Composition. Journal of Structural Geology, 54: 129-135. doi: 10.1016/j.jsg.2013.07.008 [52] Pan, Z. J., Connell, L. D., 2007. A Theoretical Model for Gas Adsorption-Induced Coal Swelling. International Journal of Coal Geology, 69(4): 243-252. doi: 10.1016/j.coal.2006.04.006 [53] Pan, Z. J., Ye, J. P., Zhou, F. B., et al., 2018. CO2 Storage in Coal to Enhance Coalbed Methane Recovery: A Review of Field Experiments in China. International Geology Review, 60(5/6): 754-776. https://doi.org/10.1080/00206814.2017.1373607 [54] Perera, M. S. A., 2017. Influences of CO2 Injection into Deep Coal Seams: A Review. Energy & Fuels, 31(10): 10324-10334. [55] Perera, M. S. A., Ranjith, P. G., Peter, M., 2011. Effects of Saturation Medium and Pressure on Strength Parameters of Latrobe Valley Brown Coal: Carbon Dioxide, Water and Nitrogen Saturations. Energy, 36(12): 6941-6947. doi: 10.1016/j.energy.2011.09.026 [56] Perera, M. S. A., Ranjith, P. G., Viete, D. R., 2013. Effects of Gaseous and Super-Critical Carbon Dioxide Saturation on the Mechanical Properties of Bituminous Coal from the Southern Sydney Basin. Applied Energy, 110: 73- 81. doi: 10.1016/j.apenergy.2013.03.069 [57] Perera, M. S. A., Sampath, K. H. S. M., 2019. Modelling of Free and Adsorbed CO2 -Induced Mechanical Property Alterations in Coal. International Journal of Coal Geology, 217: 103348. [58] Pirzada, M. A., Zoorabadi, M., Ramandi, H.L., et al., 2018. CO2 Sorption Induced Damage in Coals in Unconfined and Confined Stress States: A Micrometer to Core Scale Investigation. International Journal of Coal Geology, 198: 167-176. doi: 10.1016/j.coal.2018.09.009 [59] Qi, L.L., Peng, X.S., Wang, Z.F., et al., 2015. Study on Reasonable Adsorption Equilibrium Time of Anthracite Based on COMSOL Simulation. Safety in Coal Mines, 46(3): 51-53, 57 (in Chinese with English abstract). [60] Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., 2016a. Influence of CO2 Adsorption on the Strength and Elastic Modulus of Low Rank Australian Coal under Confining Pressure. International Journal of Coal Geology, 167: 148-156. doi: 10.1016/j.coal.2016.08.027 [61] Ranathunga, A. S., Perera, M. S. A., Ranjith, P. G., et al., 2016b. Super-Critical CO2 Saturation-Induced Mechanical Property Alterations in Low Rank Coal: An Experimental Study. The Journal of Supercritical Fluids, 109: 134-140. doi: 10.1016/j.supflu.2015.11.010 [62] Ranjith, P. G., Perera, M. S. A., 2012. Effects of Cleat Performance on Strength Reduction of Coal in CO2 Sequestration. Energy, 45(1): 1069-1075. https://doi.org/10.1016/j.energy.2012.05.041 [63] Ren, J.W., Wang, T., Chen, Y.L., et al., 2020. Research Status and Application Potential of CO2 Mineralization. Earth Science, 45(7): 2413-2425 (in Chinese with English abstract). [64] Sampath, K. H. S. M., Perera, M. S. A., Li, D. Y., et al., 2019a. Evaluation of the Mechanical Behaviour of Brine+CO2 Saturated Brown Coal under Mono-Cyclic Uni-Axial Compression. Engineering Geology, 263(C): 105312. https://doi.org/10.1016/j.enggeo.2019.105312 [65] Sampath, K. H. S. M., Perera, M. S. A., Ranjith, P. G., et al., 2019b. Application of Neural Networks and Fuzzy Systems for the Intelligent Prediction of CO2-Induced Strength Alteration of Coal. Measurement, 135: 47-60. doi: 10.1016/j.measurement.2018.11.031 [66] Sampath, K. H. S. M., Perera, M. S. A., Ranjith, P. G., et al., 2019c. Qualitative and Quantitative Evaluation of the Alteration of Micro-Fracture Characteristics of Supercritical CO2-Interacted Coal. The Journal of Supercritical Fluids, 147: 90-101. doi: 10.1016/j.supflu.2019.02.014 [67] Sampath, K. H. S. M., Sin, I., Perera, M. S. A., et al., 2020. Effect of Supercritical-CO2 Interaction Time on the Alterations in Coal Pore Structure. Journal of Natural Gas Science and Engineering, 76(C): 103214. https://doi.org/10.1016/j.jngse.2020.103214 [68] Sang, S.X., 2018. Research Review on Technical Effectiveness of CO2 Geological Storage and Enhanced Coalbed Methane Recovery. Coal Geology & Exploration, 46(5): 1-9 (in Chinese with English abstract). [69] Sang, S.X., Liu, S.Q., Wang, W.F., 2020. Theory and Evaluation of Effectiveness of CO2 Geological Storage and Enhanced Development of Coalbed Methane in Deep Coal Seam. Science Press, Beijing (in Chinese). [70] Shi, X., Jiang, S., Wang, Z. X., et al., 2020. Application of Nanoindentation Technology for Characterizing the Mechanical Properties of Shale before and after Supercritical CO2 Fluid Treatment. Journal of CO2 Utilization, 37: 158-172. doi: 10.1016/j.jcou.2019.11.022 [71] Song, Y., Zou, Q. L., Su, E. L., et al., 2020. Changes in the Microstructure of Low-Rank Coal after Supercritical CO2 and Water Treatment. Fuel, 279: 118493. doi: 10.1016/j.fuel.2020.118493 [72] Staib, G., Sakurovs, R., Gray, E. M. A., 2015a. Dispersive Diffusion of Gases in Coals. Part I: Model Development. Fuel, 143: 612-619. doi: 10.1016/j.fuel.2014.11.086 [73] Staib, G., Sakurovs, R., Gray, E. M. A., 2015b. Dispersive Diffusion of Gases in Coals. Part Ⅱ: An Assessment of Previously Proposed Physical Mechanisms of Diffusion in Coal. Fuel, 143: 620-629. doi: 10.1016/j.fuel.2014.11.087 [74] Su, E. L., Liang, Y. P., Chang, X. Y., et al., 2020. Effects of Cyclic Saturation of Supercritical CO2 on the Pore Structures and Mechanical Properties of Bituminous Coal: An Experimental Study. Journal of CO2 Utilization, 40: 101208. doi: 10.1016/j.jcou.2020.101208 [75] Su, E. L., Liang, Y. P., Zou, Q. L., 2021. Structures and Fractal Characteristics of Pores in Long-Flame Coal after Cyclical Supercritical CO2 Treatment. Fuel, 286: 119305. doi: 10.1016/j.fuel.2020.119305 [76] Viete, D. R., Ranjith, P. G., 2005. The Effect of CO2 on the Geomechanical and Permeability Behaviour of Brown Coal: Implications for Coal Seam CO2 Sequestration. International Journal of Coal Geology, 66(3): 204-216. https://doi.org/10.1016/j.coal.2005.09.002 [77] Wang, K., Du, F., Wang, G. D., 2017. The Influence of Methane and CO2 Adsorption on the Functional Groups of Coals: Insights from a Fourier Transform Infrared Investigation. Journal of Natural Gas Science and Engineering, 45: 358-367. doi: 10.1016/j.jngse.2017.06.003 [78] Wang, Q.Q., 2016. Effects of Supercritical Carbon Dioxide Fluid on Physicochemical Properties and Adsorption Properties of Coal (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese). [79] Wang, R., Wang, Q. Z., Niu, Q. H., et al., 2019a. CO2 Adsorption and Swelling of Coal under Constrained Conditions and Their Stage-Change Relationship. Journal of Natural Gas Science and Engineering, 76(C): 103205. https://doi.org/10.1016/j.jngse.2020.103205 [80] Wang, Z. Z., Fu, X. H., Pan, J. N., et al., 2019b. The Fracture Anisotropic Evolution of Different Ranking Coals in Shanxi Province, China. Journal of Petroleum Science and Engineering, 182: 106281. doi: 10.1016/j.petrol.2019.106281 [81] Wang, S. G., Elsworth, D., Liu, J. S., 2013. Mechanical Behavior of Methane Infiltrated Coal: The Roles of Gas Desorption, Stress Level and Loading Rate. Rock Mechanics and Rock Engineering, 46(5): 945-958. https://doi.org/10.1007/s00603-012-0324-0 [82] Wang, T., Sang, S.X., Liu, S.Q., et al., 2018. Experiment Study on the Chemical Structure Changes of Different Rank Coals under Action of Supercritical Carbon Dioxide and Water. Coal Geology & Exploration, 46(5): 60-65 (in Chinese). [83] Wen, H., Li, Z.B., Wang, X., et al., 2017. Characteristics of Coal Porous Structure Damage Subjected to Liquid Carbon Dioxide Cooling. Journal of Xi'an University of Science and Technology, 37(2): 149-153 (in Chinese with English abstract). [84] Wu, D., Liu, X.Y., Sun, K.M., et al., 2015. Research on Mechanical Properties and Permeability of Gas-Containing Coal Injected with CO2. China Safety Science Journal, 25(11): 106-110 (in Chinese with English abstract). [85] Yan, H., Zhang, J. X., Zhou, N., et al., 2020a. Application of Hybrid Artificial Intelligence Model to Predict Coal Strength Alteration during CO2 Geological Sequestration in Coal Seams. The Science of the Total Environment, 711: 135029. https://doi.org/10.1016/j.scitotenv.2019.135029 [86] Yan, J. W., Meng, Z. P., Zhang, K., et al., 2020b. Pore Distribution Characteristics of Various Rank Coals Matrix and Their Influences on Gas Adsorption. Journal of Petroleum Science and Engineering, 189(Prepublish): 107041. https://doi.org/10.1016/j.petrol.2020.107041 [87] Yu, H. Y., Zhang, Y. H., Lebedev, M., et al., 2018. Nanoscale Geomechanical Properties of Western Australian Coal. Journal of Petroleum Science and Engineering, 162: 736-746. https://doi.org/10.1016/j.petrol.2017.11.001 [88] Zagorščak, R., Thomas, H. R., 2018. Effects of Subcritical and Supercritical CO2 Sorption on Deformation and Failure of High-Rank Coals. International Journal of Coal Geology, 199: 113-123. https://doi.org/10.1016/j.coal.2018.10.002 [89] Zhang, C., Zhou, S.X., Chen, K., et al., 2019. Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition. Earth Science, 44(11): 3773-3782 (in Chinese with English abstract). [90] Zhang, G. L., Ranjith, P. G., Wu, B. S., et al., 2019a. Synchrotron X-Ray Tomographic Characterization of Microstructural Evolution in Coal due to Supercritical CO2 Injection at In-Situ Conditions. Fuel, 255: 115696. doi: 10.1016/j.fuel.2019.115696 [91] Zhang, K., Sang, S. X., Liu, C. J., et al., 2019b. Experimental Study the Influences of Geochemical Reaction on Coal Structure during the CO2 Geological Storage in Deep Coal Seam. Journal of Petroleum Science and Engineering, 178: 1006-1017. doi: 10.1016/j.petrol.2019.03.082 [92] Zhang, X. G., Ranjith, P. G., Lu, Y. Y., et al., 2019c. Experimental Investigation of the Influence of CO2 and Water Adsorption on Mechanics of Coal under Confining Pressure. International Journal of Coal Geology, 209: 117-129. https://doi.org/10.1016/j.coal.2019.04.004 [93] Zhang, X. G., Ranjith, P. G., Ranathunga, A. S., et al., 2019d. Variation of Mechanical Properties of Bituminous Coal under CO2 and H2O Saturation. Journal of Natural Gas Science and Engineering, 61: 158-168. https://doi.org/10.1016/j.jngse.2018.11.010 [94] Zhang, K. Z., Cheng, Y. P., Li, W., et al., 2017a. Influence of Supercritical CO2 on Pore Structure and Functional Groups of Coal: Implications for CO2 Sequestration. Journal of Natural Gas Science and Engineering, 40: 288-298. https://doi.org/10.1016/j.jngse.2017.02.031 [95] Zhang, Y. H., Zhang, Z. K., Sarmadivaleh, M., et al., 2017b. Micro-Scale Fracturing Mechanisms in Coal Induced by Adsorption of Supercritical CO2. International Journal of Coal Geology, 175: 40-50. https://doi.org/10.1016/j.coal.2017.04.002 [96] Zhang, Y. H., Lebedev, M., Al-Yaseri, A., et al., 2018. Nanoscale Rock Mechanical Property Changes in Heterogeneous Coal after Water Adsorption. Fuel, 218: 23-32. https://doi.org/10.1016/j.fuel.2018.01.006 [97] Zhang, Y. H., Lebedev, M., Sarmadivaleh, M., et al., 2016. Swelling‐Induced Changes in Coal Microstructure due to Supercritical CO2 Injection. Geophysical Research Letters, 43: 9077-9083. doi: 10.1002/2016GL070654 [98] Zhao, J., Zhao, J.F., Ren, K.X., et al., 2021. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217-3229 (in Chinese with English abstract). [99] Zhou, J.P., Tian, S.F., Xian, X.F., et al., 2019. Analysis on Fault-Reactivation for CO2 Sequestration in Unminable Coal Seams. Chinese Journal of Underground Space and Engineering, 15(5): 1362-1369 (in Chinese with English abstract). [100] Zhou, L., 2014. Deformation and Fracture Evolution of CO2 Sequestrated Coal/Cap Rock (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [101] Zhou, W., Gao, K., Xue, S., et al., 2020. Experimental Study of the Effects of Gas Adsorption on the Mechanical Properties of Coal. Fuel, 281: 118745. doi: 10.1016/j.fuel.2020.118745 [102] Zhou, X. Z., Sang, S. X., Niu, Q. H., et al., 2021. Changes of Multiscale Surface Morphology and Pore Structure of Mudstone Associated with Supercritical CO2-Water Exposure at Different Times. Energy & Fuels, 35(5): 4212-4223. [103] Zhu, N., Cao, Y., Xi, K., et al., 2021. Multisourced CO2 Injection in Fan Delta Conglomerates and Its Influence on Reservoir Quality: Evidence from Carbonate Cements of the Baikouquan Formation of Mahu Sag, Junggar Basin, Northwestern China. Journal of Earth Science, 32(4): 901-918. doi: 10.1007/s12583-020-1360-4 [104] 白冰, 2008. CO2煤层封存流动-力学理论及场地力学稳定性数值模拟方法(博士学位论文). 武汉: 中国科学院武汉岩土力学研究所. [105] 陈德飞, 2014. 气体吸附对煤岩渗流及力学性质的影响(硕士学位论文). 成都: 西南石油大学. [106] 陈润, 秦勇, 2012. 超临界CO2与煤中矿物的流固耦合及其地质意义. 煤炭科学技术, 40(10): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201210005.htm [107] 崔聪, 李宏艳, 刘永茜, 等, 2018. 真三轴条件下等效围压对煤岩力学特性影响试验研究. 煤炭科学技术, 46(5): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201805008.htm [108] 杜锋, 王公达, 蒋一峰, 等, 2015. 高压甲烷与二氧化碳吸附对煤体官能团特性的影响研究. 矿业安全与环保, 42(5): 1-4, 9. doi: 10.3969/j.issn.1008-4495.2015.05.001 [109] 杜秋浩, 刘晓丽, 王维民, 等, 2019. 超临界CO2-水-煤相互作用后冲击载荷下煤的动态响应. 煤炭学报, 44(11): 3453-3462. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201911018.htm [110] 杜艺, 2018. ScCO2注入煤层矿物地球化学及其储层结构响应的实验研究(博士学位论文). 徐州: 中国矿业大学. [111] 杜艺, 桑树勋, 王文峰, 2018. 超临界CO2注入煤岩地球化学效应研究评述. 煤炭科学技术, 46(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201803002.htm [112] 杜玉昆, 庞飞, 陈科, 等, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221 [113] 冯夏庭, 1994. 岩石力学智能化的研究思路. 岩石力学与工程学报, 13(3): 205-208. doi: 10.3321/j.issn:1000-6915.1994.03.003 [114] 韩思杰, 桑树勋, 2020. 煤岩超临界CO2吸附机理及表征模型研究进展. 煤炭科学技术, 48(1): 227-238. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202001029.htm [115] 何立国, 杨栋, 2021. 超临界CO2对煤体力学特性劣化影响研究. 矿业研究与开发, 41(2): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202102016.htm [116] 贺伟, 2018. 不同煤阶煤体吸附储存CO2膨胀变形特性试验研究(硕士学位论文). 太原: 太原理工大学. [117] 贾金龙, 2016. 超临界CO2注入无烟煤储层煤岩应力应变效应的实验模拟研究(博士学位论文). 徐州: 中国矿业大学. [118] 姜仁霞, 于洪观, 王力, 2016. 基于煤层封存CO2的煤中有机质超临界CO2萃取试验装置的建立. 煤炭学报, 41(3): 680-686. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603021.htm [119] 李松, 汤达祯, 许浩, 等, 2016. 深部煤层气储层地质研究进展. 地学前缘, 23(3): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603003.htm [120] 刘长江, 桑树勋, Wang, G. X., 等, 2010. 模拟CO2埋藏不同煤级煤孔隙结构变化实验研究. 中国矿业大学学报, 39(4): 496-503. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201004005.htm [121] 牛庆合, 2019. 超临界CO2注入无烟煤力学响应机理与可注性试验研究(博士学位论文). 徐州: 中国矿业大学. [122] 牛庆合, 曹丽文, 周效志, 2018. CO2注入对煤储层应力应变与渗透率影响的实验研究. 煤田地质与勘探, 46(5): 43-48. doi: 10.3969/j.issn.1001-1986.2018.05.007 [123] 戚灵灵, 彭信山, 王兆丰, 等, 2015. 基于COMSOL模拟的无烟煤合理吸附平衡时间研究. 煤矿安全, 46(3): 51-53, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201503014.htm [124] 任京伟, 王涛, 陈雨雷, 等, 2020. CO2矿化研究现状及应用潜力. 地球科学, 45(7): 2413-2425. doi: 10.3799/dqkx.2020.027 [125] 桑树勋, 2018. 二氧化碳地质存储与煤层气强化开发有效性研究述评. 煤田地质与勘探, 46(5): 1-9. doi: 10.3969/j.issn.1001-1986.2018.05.001 [126] 桑树勋, 刘世奇, 王文峰, 2020. 深部煤层CO2地质存储与煤层气强化开发有效性理论及评价. 北京: 科学出版社. [127] 王倩倩, 2016. 超临界二氧化碳流体对煤体理化性质及吸附性能的作用规律(硕士学位论文). 昆明: 昆明理工大学. [128] 王恬, 桑树勋, 刘世奇, 等, 2018. ScCO2-H2O作用下不同煤级煤化学结构变化的实验研究. 煤田地质与勘探, 46(5): 60-65. doi: 10.3969/j.issn.1001-1986.2018.05.010 [129] 文虎, 李珍宝, 王旭, 等, 2017. 液态CO2溶浸作用下煤体孔隙结构损伤特性研究. 西安科技大学学报, 37(2): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201702001.htm [130] 吴迪, 刘雪莹, 孙可明, 等, 2015. 含CH4煤岩注CO2后力学性能及渗透性能试验研究. 中国安全科学学报, 25(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201511020.htm [131] 张臣, 周世新, 陈科, 等, 2019. 高压条件下CO2对页岩微观孔隙结构影响及其在页岩中的吸附特征. 地球科学, 44(11): 3773-3782. doi: 10.3799/dqkx.2019.107 [132] 赵健, 赵俊峰, 任康绪, 等, 2021. 许必锋巴西桑托斯盆地CO2区域分布及主控因素. 地球科学, 46(9): 3217-3229. doi: 10.3799/dqkx.2020.359 [133] 周军平, 田时锋, 鲜学福, 等, 2019. 不可采煤层CO2封存断层活化机制分析. 地下空间与工程学报, 15(5): 1362-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905011.htm [134] 朱立, 2014. CO2地下封存煤/盖层变形和破裂演化特征研究(博士学位论文). 徐州: 中国矿业大学.