Application Study on High Precision Aeromagnetic Survey in Weilasituo, Inner Mongolia, China
-
摘要: 维拉斯托地区位于大兴安岭成矿带内,区域内构造发育丰富,成矿条件优越,继续找矿的潜力巨大.采取向上延拓、小波分析、边界识别等技术对维拉斯托地区的航磁数据进行处理,结合已有地质资料,进一步完善了维拉斯托地区的地质构造,梳理出维拉斯托、拜仁达坝矿床的形成过程.通过航磁异常视磁化率成像反演结果提取出维拉斯托北侧地下的隐伏岩体信息.结果表明:(1)维拉斯托地区的北东向左行剪切性质断裂破碎带整体控制了该区的岩浆活动和矿体运移,同时该断裂带也是东南负磁异常与西北正磁异常之间的磁性过渡带,因此已知矿点与研究区构造分布、磁性强弱分布密切相关.磁异常反演结果显示维拉斯托北侧地下深部可能存在隐伏岩体.据此,本文划分了3处成矿远景区,可为后续找矿工作提供一定参考.(2)向上延拓与小波分析结果显示白音查干-达青牧场断裂(F1)和助力可河断裂(F2)形成时间早、向地下延伸深,是控制维拉斯托地区岩浆活动和构造发育的主断裂.结合倾斜角法等边界识别结果,对研究区内断裂与磁性岩体分布进行了较为精细的拟定,共识别出14条断裂与11处磁性岩体,根据其形成与分布发现维拉斯托是研究区的成矿中心,来自深部的成矿流体经F1与F2在维拉斯托附近上升富集,再由西向东,沿中部北东向断裂破碎带(F3、F4、F5、F6、F7、F10等)运移至拜仁达坝,最终逐渐形成大兴安岭地区两个典型的多金属矿床.Abstract: Weilasituo area is located in the metallogenic belt of the Great Xing'an Range (SGXR). With abundant structures and favorable mineralization conditions, there is great potential for continued prospecting. In this paper, aeromagnetic data of Weilasituo area were processed by means of upward continuation, wavelet analysis and boundary recognition techniques. Combined with the existing geological data, the geological structure of Weilasituo area is further improved, and the formation process of Weilasituo and Bairendaba deposit is sorted out. The information of concealed pluton in the north of Weilasituo is extracted from aeromagnetic anomaly apparent magnetic susceptibility imaging inversion results. The results show follows : (1) The NE-to-left shear fracture zone in the central Weilasituo region controls the magmatic activity and ore body migration in the region as a whole. At the same time, the fault zone is also the magnetic transition zone between the negative magnetic anomaly area in the southeast and the positive magnetic anomaly area in the northwest. So the known ore points are closely related to the structure distribution and magnetic strength distribution in the study area. Magnetic anomaly inversion results show that there may be larger hidden ore body deep underground in the north of Weilasituo. Accordingly, in this paper it divides three metallogenic prospect areas, providing certain reference for subsequent prospecting work. (2) The results of upward continuation and wavelet analysis show that Baiyinchagan-Daqingmuchang fault (F1) and Zhulikehe fault (F2) formed early and extended deep underground. It is the main fault controlling magmatic activity and tectonic development in the Weilasituo area. Combined with the results of boundary identification such as tilt angle method, the distribution of fracture and magnetic rock mass in the study area has been elaborated. Fourteen faults and eleven magnetic rocks are identified in the fracture zone. According to its formation and distribution, it is found that Weilasituo is the metallogenic center of the study area. The ore-forming fluids from deep earth rise and enrich near Weilasituo through faults F1 and F2. Then, from west to east, it migrates along the NE fault fracture zone (F3, F4, F5, F6, F7, F10, etc) to Bairendaba. Finally, two typical polymetallic deposits in the Great Xing'an Range (SGXR) area gradually formed.
-
Key words:
- aeromagnetic /
- wavelet analysis /
- edge detection /
- metallogenic model /
- geophysics
-
图 1 中亚造山带地质简图(a,修自周振华等,2019;Jahn et al., 2000), 维拉斯托研究区地质简图(b,修自祝新友等,2016;张天福等,2019;付旭等,2020)
Fig. 1. Geological map of Central Asian orogenic belt (a, modified from Zhou et al., 2019; Jahn et al., 2000), simplified geological map of Weilasituo research area (b, modified from Zhu et al., 2016; Zhang et al., 2019; Fu et al., 2020)
表 1 维拉斯托地区历年研究工作及成果
Table 1. Research work and results in the Weilasituo area over the years
时间(年) 单位 完成工作 研究成果 1959 内蒙古地质局呼幅队 1:100万地质填图 初步划分了区域内的地层、构造、岩浆岩 1966 河北省煤管局第一普
查队在矿区南部双山煤矿附近进行了煤田普查工作 对区域内侏罗系地层进行进一步划分 1975-1977 内蒙古自治区区域地质测量队 1:20万西乌珠穆沁旗幅区域地质调查 进一步整理地层,划分岩浆岩到期次,并发现萤石、铜、水晶等多处矿点,提交《西乌珠穆沁旗幅区域地质调查报告》 1986-1991 地矿部第二综合物探
大队开展了1:20万水系沉积物测量 圈出组合异常6 000余个,提交《内蒙古东部大兴安岭中南段综合物化探总结报告》 1993-1996 地矿部第一综合物探
大队1:20万区域化探扫面工作 提交了奥果木尔苏木和西乌珠穆沁旗幅地球化学图说明书 1999-2000 内蒙古自治区第九地质矿产勘查开发院 500 m2的1:5万化探普查 提交了《西乌旗米生庙-维拉斯托一带化探普查地质报告》,圈出多处Ag、Pb、Zn、Cu、Au、W、Sb综合异常 2001-2007 内蒙古自治区第九地质矿产勘查开发院 先后在拜仁达坝、维拉斯托进行勘查 发现工业矿体,估算铅+锌+铜金属量近400万t,银4 000多t 2011 内蒙古地质勘查有限责任公司 在维拉斯托矿区西侧开展钨多金属矿勘查 估算WO3约600 t 2013-2015 内蒙古地质勘查有限责任公司 在维拉斯托铜锌多金属矿外围进行地质详查 发现锡多金属矿,估算储量约9万t,提交了《维拉斯托矿区锡多金属矿勘探报告》 2017-2018 内蒙古地质勘查有限责任公司 继续在成矿区进行详查 发现我国北方首个大型锂多金属矿,同时伴生有Zn、Cu、Ag、Mo等组分,备案资源储量Li2O 68.83万t -
[1] Alarifi, S. S., Kellogg, J. N., Ibrahim, E., 2020. Corrigendum to "Gravity, Aeromagnetic and Electromagnetic Study of the Gold and Pyrite Mineralized Zones in the Haile Mine Area, Kershaw, South Carolina". Journal of Applied Geophysics, 178: 117-129. https://doi.org/10.1016/j.jappgeo.2020.104044 [2] Betts, P. G., Giles, D., Lister, G. S., 2004. Aeromagnetic Patterns of Half-Graben and Basin Inversion: Implications for Sediment-Hosted Massive Sulfide Pb-Zn-Ag Exploration. Journal of Structural Geology, 26(6-7): 1137-1156. https://doi.org/10.1016/j.jsg.2003.11.020 [3] Fan, Z. Y., Qiu, H. Y., Fu, X., et al., 2017. Discovery and Exploration of Weilasituo Large Porphyry-Type Tin-Polymetal Deposit in Inner Mongolia and Its Geological Significances. Gold Science and Technology, 25(1): 9-17(in Chinese with English abstract). [4] Fu, X., Lü, G. X., Kou, L. M., et al., 2020. Research on the Zoning and Distribution of Ore-Bearing Tectono-Deformation-Lithofacies Belt in the Weilasituo Li-Sn Polymetallic Deposit, Inner Mongolia. Geological Bulletin of China, 39(11): 1752-1758(in Chinese with English abstract). [5] Galdeano, A., Courtillot, V., Borgne, E. L., et al., 1974. An Aeromagnetic Survey of the Southwest of the Western Mediterranean: Description and Tectonic Implications. Earth and Planetary Science Letters, 23(3): 323-336. https://doi.org/10.1016/0012-821x(74)90122-8 [6] Gao, X., Zhou, Z. H., Breiter, K., et al., 2019. Ore-Formation Mechanism of the Weilasituo Tin-Polymetallic Deposit, NE China: Constraints from Bulk-Rock and Mica Chemistry, He-Ar Isotopes, and Re-Os Dating. Ore Geology Reviews, (109): 163-183. https://doi.org/10.1016/j.oregeorev.2019.04.007 [7] Guan, Z. N., 2005. Geomagnetic Field and Magnetic Exploration. Geological Publish House, Beijing(in Chinese). [8] He, J. S., Wen, P. L., Xiao, B., et al., 1997. Application of Wavelet Analysis in Geophysical Prospecting. The Chinese Journal of Nonferrous Metals, 7(4): 17-22(in Chinese with English abstract). [9] Hu, G. Z., Teng, J. W., Ruan, X. M., et al., 2014. Magnetic Anomaly Characteristics and Crystalline Basement Variation of the Qinling Orogenic Belt and Its Adjacent Areas. Chinese Journal of Geophysics, 57(2): 556-571(in Chinese with English abstract). [10] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 [11] Jiang, S. H., Nie, F. J., Liu, Y. F., et al., 2010. Sulfur and Lead Isotopic Compositions of Bairendaba and Weilasituo Silver-Polymetallic Deposits, Inner Mongolia. Mineral Deposits, 29(1): 101-112(in Chinese with English abstract). [12] Li, S. L., Meng, X. H., Fan, Z. G., et al., 2007. Application of Fine Gravity and Magnetic Data Processing and Interpretation in the Prospecting of Crisis Mines. Earth Science, 32(4): 559-563(in Chinese with English abstract). [13] Liu, Y. F., 2009. Metallogenic Study of Bairendaba Ag Polymetallic Deposit in Hexigten Banner, Inner Mongolia (Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [14] Liu, Y. F., Fan, Z. Y., Jiang, H., et al., 2014. Genesis of the Weilasituo-Bairendaba Porphyry-Hydrothermal Vein Type System in Inner Mongolia, China. Acta Geologica Sinica, 88(12): 2373-2385(in Chinese with English abstract). [15] Liu, T. Y., 1993. The Analysis of Gravitational and Magnetic Field Features in Tectonic Evolution of Songliao Basin. Earth Science, 18(4): 489-496, 527(in Chinese with English abstract). [16] Meng, Y. S., Yang, L. Q., Zhang, R. Z., et al., 2016. Application of Integrated Geophysical Methods to the Prospecting for Concealed Hydrothermal Vein-Type Orebodies beneath Quaternary Sediments: A Case Study of the Northern Area of the Weilasituo Copper Polymetallic Deposit. Acta Geoscientica Sinica, 37(6): 745-755(in Chinese with English abstract). [17] Mei, W., Lü, X. B., Tang, R. K., et al., 2015. Ore-Forming Fluid and Its Evolution of Bairendaba-Weilasituo Deposits in West Slope of Southern Great Xing'an Range. Earth Science, 40(1): 145-162(in Chinese with English abstract). [18] Mei, W., Lü, X. B., Wang, X. D., et al., 2020. Alteration, Mineralization and Genesis of Huanggang Skarn Iron-Tin Polymetallic Deposit, Southern Great Xing'an Range. Earth Science, 45(12): 4428-4445(in Chinese with English abstract). [19] Mao, J. W., Xie, G. Q., Zhang, Z. H., et al. 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 169-188(in Chinese with English abstract). [20] Ouyang, H. G., 2013. Metallogenesis of Bairendaba-Weilasituo Silver Polytmetallic Deposit and Its Geodynamic Setting, in the Southern Segment of Great Xing'an Range, NE China (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [21] Sengor, A. M. C., Natalin, B. A., Burtman, V. S., 1993. The Altaid Tectonic Collage Evolution and Paleozoic Crustal Growth in Eurasia. Nature, (364): 299-307. https://doi.org/10.1038/364299a0 [22] Shi, G. H., Liu, D. Y., Zhang, F. Q., et al., 2003. SHRIMP U-Pb Zircon Geochronology and Its Implications on the Xilin Gol Complex, Inner Mongolia, China. Chinese Science Bulletin, 48(20): 2189-2192. https://doi.org/10.1007/bf02901768 [23] Tang, J. T., Song, S. G., He, J. S., 1994. Multiresolution Analysis and Gravity and Magnetic Anomaly Recognition and Stratification Extraction. The Chinese Journal of Nonferrous Metals, 4(3): 6-15(in Chinese with English abstract). [24] Tomurtogoo, O., Windley, B. F., Kroner, A., et al., 2005. Zircon Age and Occurrence of the Adaatsag Ophiolite and Muron Shear Zone, Central Mongolia: Constraints on the Evolution of the Mongol-Okhotsk Ocean, Suture and Orogen. Journal of the Geological Society, 162(1): 125-134. https://doi.org/10.1144/0016-764903-146 [25] Wang, J., Meng, X. H., 2019. An Aeromagnetic Investigation of the Dapai Deposit in Fujian Province, South China: Structural and Mining Implications. Ore Geology Reviews, (112): 103061. https://doi.org/10.1016/j.oregeorev.2019.103061 [26] Wang, F. X., Bagas, L., Jiang, S. H., et al., 2017. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 80: 1206-1229. https://doi.org/10.1016/j.oregeorev.2016.09.021 [27] Wang, Z. L., Deng, Y. M., Meng, Y. S., et al., 2019. The Application of Integrated Geophysical Prospecting Method to the Prospecting for Concealed Orebodies in the Northern Area of the Weilasituo Copper Polymetallic Deposit. Geophysical and Geochemical Exploration, 43(5): 958-965(in Chinese with English abstract). [28] Wu, J. M., Wu, L., Hu, J., 2019. Application of Wavelet Analysis on Data Processing of Geophysics and Geochemical Profile. Mineral Resources and Geology, 33(2): 325-329(in Chinese with English abstract). [29] Xiao, F., Wang, Z. H., 2017. Geological Interpretation of Bouguer Gravity and Aeromagnetic Data from the Gobi-Desert Covered Area, Eastern Tianshan, China: Implications for Porphyry Cu-Mo Polymetallic Deposits Exploration. Ore Geology Reviews, (80): 1042-1055. https://doi.org/10.1016/j.oregeorev.2016.08.034 [30] Xiao, W. J., Li, S. Z., Santosh, M., et al., 2012. Orogenic Belts in Central Asia: Correlations and Connections. Journal of Asian Earth Sciences, (49): 1-6. https://doi.org/10.1016/j.jseaes.2012.03.001 [31] Ye, T. Z., Lü, Z. C., Pang, Z. S., et al., 2016. Theory and Method of Prospecting Prediction in Exploration Area (General). Geological Publish House, Beijing(in Chinese). [32] Zhang, H., Ma, J. X., Quan, H., 1999. The Dynamic Background of Mesozoic Volcanic Activity in Northern Part of Daxing'anling Mountains. Journal of Precious Metallic Geology, 8 (1): 56-64(in Chinese with English abstract). [33] Zhang, H. L., Liu, T. Y., 2009. The Magnetic Field Data Processing and Interpretation Methods Based on Wavelet Analysis. Geophysical and Geochemical Exploration, 33(6): 686-690(in Chinese with English abstract). [34] Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436(in Chinese with English abstract). [35] Zhang, T. F., Guo, S., Xin, H. T., et al., 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn-(Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xing'an Range, China. Earth Science, 44(1): 248-267(in Chinese with English abstract). [36] Zhang, X. D., Meng, X. H., Chen, Z. X., et al., 2018. Comprehensive Study of the Geological and Geophysical Characteristics of the Metallogenic Belt in Southwest Fujian: A Case Study in the Yongding-Dapai Polymetallic Ore Deposit. Chinese Journal of Geophysics, 61(4): 1588-1595(in Chinese with English abstract). [37] Zhang, Y. D., Gong, H. L., Liu, J. C., et al., 2014. The Ore-Prospecting Effect of Aeromagnetic Anomalies in the Zhongguan Iron Deposit, Hebei Province. Geophysical and Geochemical Exploration, 38(4): 629-634(in Chinese with English abstract). [38] Zhang, Z. Y., Wang, S. M., Zhu, W., et al., 2019. The Geophysical Field Characteristics of Langshan Metallogenic Belt in Inner Mongolia. Earth Science, 44(9): 3147-3156(in Chinese with English abstract). [39] Zhou, Z. H., Gao, X., Ouyang, H. G., et al., 2019. Formation Mechanism and Intrinsic Genetic Relationship between Tin-Tungsten-Lithium Mineralization and Peripheral Lead-Zinc-Silver-Copper Mineralization: Exemplified by Weilasituo Tin-Tungsten-Lithium Polymetallic Deposit, Inner Mongolia. Mineral Deposits, 38(5): 1004-1022(in Chinese with English abstract). [40] Zhu, X. Y., Liu, X., Huang, X. K., et al., 2017. Characteristics of Ore-Controlling Structures of Vein-Type Sn Polymetallic Deposit in the Southern Area of the Da Hinggan Mountains, Inner Mongolia. Mineral Exploration, 8(6): 919-926(in Chinese with English abstract). [41] Zhu, X. Y., Zhang, Z. H., Fu, X., et al., 2016. Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia. Geology in China, 43(1): 188-208(in Chinese with English abstract). [42] 樊志勇, 邱慧远, 付旭, 等, 2017. 内蒙古维拉斯托大型斑岩型锡多金属找矿勘查及启示. 黄金科学技术, 25(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201701003.htm [43] 付旭, 吕古贤, 寇利民, 等, 2020. 内蒙古维拉斯托锂锡多金属矿含矿构造变形岩相分带和分布. 地质通报, 39(11): 1752-1758. doi: 10.12097/j.issn.1671-2552.2020.11.007 [44] 管志宁, 2005. 地磁场与磁力勘探. 北京: 地质出版社. [45] 何继善, 温佩琳, 肖兵, 等, 1997. 小波分析在地球物理勘探中的应用. 中国有色金属学报, 7(4): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ704.003.htm [46] 胡国泽, 滕吉文, 阮小敏, 等, 2014. 秦岭造山带和邻域磁异常特征及结晶基底变异分析. 地球物理学报, 57(2): 556-571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201402020.htm [47] 江思宏, 聂凤军, 刘翼飞, 等, 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 29(1): 101-112. doi: 10.3969/j.issn.0258-7106.2010.01.010 [48] 李淑玲, 孟小红, 范正国, 等, 2007. 危机矿山重磁资料精细处理与解释: 以湖北省大冶铁矿为例. 地球科学, 32 (4): 559-563. doi: 10.3321/j.issn:1000-2383.2007.04.020 [49] 刘天佑, 1993. 松辽盆地构造演化的重磁场特征分析. 地球科学, 18(4): 489-496, 527. http://www.earth-science.net/article/id/53 [50] 刘翼飞, 2009. 内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究(硕士学位论文). 北京: 中国地质科学院. [51] 刘翼飞, 樊志勇, 蒋胡灿, 等, 2014. 内蒙古维拉斯托-拜仁达坝斑岩-热液脉状成矿体系研究. 地质学报, 88(12): 2373-2385. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412016.htm [52] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [53] 梅微, 吕新彪, 唐然坤, 等, 2015. 大兴安岭南段西坡拜仁达坝-维拉斯托矿床成矿流体特征及其演化. 地球科学, 40(1): 145-162. doi: 10.3799/dqkx.2015.010 [54] 梅微, 吕新彪, 王祥东, 等, 2020. 大兴安岭南段黄岗矽卡岩型铁锡多金属矿床蚀变矿化特征及其成因. 地球科学, 45(12): 4428-4445. doi: 10.3799/dqkx.2020.298 [55] 孟银生, 杨立强, 张瑞忠, 等, 2016. 第四系覆盖区深部热液脉型矿体综合地球物理方法定位预测: 内蒙古维拉斯托矿区北侧隐伏矿体勘查例析. 地球学报, 37(6): 745-755. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201606009.htm [56] 欧阳荷根, 2013. 大兴安岭南段拜仁达坝-维拉斯托银多金属矿床成矿作用及动力学背景(博士学位论文). 北京: 中国地质大学. [57] 汤井田, 宋守根, 何继善, 1994. 多分辨分析和重磁异常的识别与分层次提取. 中国有色金属学报, 4(3): 6-15. doi: 10.3321/j.issn:1004-0609.1994.03.002 [58] 王振亮, 邓友茂, 孟银生, 等, 2019. 综合物探方法在维拉斯托铜多金属矿床北侧寻找隐伏矿体的应用. 物探与化探, 43(5): 958-965. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201905004.htm [59] 吴冀明, 吴磊, 胡江, 2019. 小波分析在物化探剖面数据处理中的应用. 矿产与地质, 33(2): 325-329. doi: 10.3969/j.issn.1001-5663.2019.02.019 [60] 叶天竺, 吕志成, 庞振山, 等, 2016. 勘查区找矿预测理论与方法(总论). 北京: 地质出版社. [61] 张恒磊, 刘天佑, 2009. 基于小波分析的磁测数据处理流程及解释方法. 物探与化探, 33(6): 686-690. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200906017.htm [62] 张宏, 马俊孝, 权恒, 等, 1999. 大兴安岭北段中生代火山岩形成的动力学环境. 贵金属地质, 8(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD901.012.htm [63] 张森琦, 李旭峰, 宋健, 等, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094 [64] 张天福, 郭硕, 辛后田, 等, 2019. 大兴安岭南段维拉斯托高分异花岗岩体的成因与演化及其对Sn-(Li-Rb-Nb-Ta)多金属成矿作用的制约. 地球科学, 44(1): 248-267. doi: 10.3799/dqkx.2018.246 [65] 张兴东, 孟小红, 陈召曦, 等, 2018. 闽西南多金属成矿带地质地球物理特征综合研究——以永定大排多金属矿区为例. 地球物理学报, 61(4): 1588-1595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804032.htm [66] 张亚东, 龚红蕾, 刘俊长, 等, 2014. 依据航磁异常寻找中关铁矿的效果. 物探与化探, 38(4): 629-634. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201404001.htm [67] 张振宇, 王书民, 朱威, 等, 2019. 内蒙狼山成矿带地球物理场特征. 地球科学, 44(9): 3147-3156. doi: 10.3799/dqkx.2017.601 [68] 周振华, 高旭, 欧阳荷根, 等, 2019. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制——以内蒙古维拉斯托锡钨锂多金属矿床为例. 矿床地质, 38(5): 1004-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905004.htm [69] 祝新友, 刘新, 黄行凯, 等, 2017. 大兴安岭南麓地区脉型锡多金属矿床的控矿构造特征. 矿产勘查, 8(6): 919-926. doi: 10.3969/j.issn.1674-7801.2017.06.002 [70] 祝新友, 张志辉, 付旭, 等, 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征. 中国地质, 43(1): 188-208. doi: 10.3969/j.issn.1000-3657.2016.01.014