• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义

    陈浩 郑有业 余泽章 林毅斌 易建洲 蒋宗洋 田梦虎 庞北

    陈浩, 郑有业, 余泽章, 林毅斌, 易建洲, 蒋宗洋, 田梦虎, 庞北, 2022. 西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义. 地球科学, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
    引用本文: 陈浩, 郑有业, 余泽章, 林毅斌, 易建洲, 蒋宗洋, 田梦虎, 庞北, 2022. 西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义. 地球科学, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
    Chen Hao, Zheng Youye, Yu Zezhang, Lin Yibin, Yi Jianzhou, Jiang Zongyang, Tian Menghu, Pang Bei, 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230
    Citation: Chen Hao, Zheng Youye, Yu Zezhang, Lin Yibin, Yi Jianzhou, Jiang Zongyang, Tian Menghu, Pang Bei, 2022. Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218. doi: 10.3799/dqkx.2021.230

    西藏打加错银(多金属)矿床含矿岩石成因及其找矿意义

    doi: 10.3799/dqkx.2021.230
    基金项目: 

    中国地质调查局项目 DD20190147-05

    国家自然科学基金项目 42072109

    中央高校基本科研业务专项 2652019060

    详细信息
      作者简介:

      陈浩(1987-),男,工程师,硕士,主要从事矿床学与矿床地球化学研究.ORCID:0000-0003-1293-0638.E-mail:haoch@cugb.edu.cn

      通讯作者:

      郑有业,教授,主要从事矿产勘查和区域成矿研究,E-mail:zhyouye@163.com

    • 中图分类号: P611;P6112;P618

    Petrogenesis and Prospecting Significance of Ore-Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet

    • 摘要: 打加错银多金属矿床是在冈底斯成矿带西段新发现的首例以银为主的多金属矿床.为了查明该矿床成岩成矿时限、含矿岩石成因及成矿意义,对该矿区出露的含矿(次)火山岩(流纹质晶屑凝灰岩与流纹斑岩)开展了锆石U-Pb年代学、微量元素及Hf同位素、全岩地球化学、辉钼矿Re-Os年代学等分析.研究表明,含矿(次)火山岩形成时代为66.6~67.4 Ma,晚期辉钼矿同位素Re-Os模式年龄为61.0±0.8 Ma,结合含矿地质体的矿化特征、石英-黄铁矿-辉钼矿脉与含矿流纹斑岩的穿插关系等,证实打加错矿区存在两期成矿作用,即早期形成的强硅化(次)火山岩型和矽卡岩型银多金属成矿作用及晚期石英脉型银多金属成矿作用,成矿时限介于66.6~61.0 Ma,构成了与(次)火山期后热液相关的浅成低温热液成矿系统;(次)火山岩地球化学数据表明其属高钾钙碱性-钾玄岩系列,具准铝质-过铝质特征,富集轻稀土元素和大离子亲石元素(K、Rb、Pb)、亏损重稀土元素和高场强元素(Nb、Ta、Ti),锆石Ti的平均温度为712 ℃,εHft)值均为负值(-16.5~-3.6)且TDMC为1.2~2.1 Ga;成矿岩石具低氧逸度和贫含水性特征,属于典型S型花岗岩,源于中-古元古代古拉萨地壳的部分熔融,并与中拉萨地体发育的银铅锌矿床成矿岩体特征一致,而与南拉萨地体中爆发的、与Ⅰ型花岗岩相关的铜多金属矿化明显不同,据此揭示出南拉萨地体也与中拉萨地体一样具有与S型花岗岩相关的成矿潜力,这对丰富南拉萨地体的成矿类型及促进该类型矿床的进一步找矿新发现具有重要的理论及现实意义.

       

    • 图  1  青藏高原大陆格架(a)和拉萨地体铅锌(银)矿床(67~56 Ma)及岩体分布(b)

      修改自Zhu et al.(2011)Hou et al.(2015)刘洪等(2021);年龄数据引自1.亚贵拉(徐净,2017);2.勒青拉(马旺等,2015);3.纳如松多(纪现华,2013);4.斯弄多(付燕刚等,2017);5.查个勒(高顺宝等,2012);6.龙根(Gao et al., 2020);7.北纳(Liu et al., 2019);8.打加错(本文)

      Fig.  1.  Tectonic framework of the Himalayan-Tibetan plateau (a) and distribution of Pb-Zn-(Ag) ore deposits (67-56 Ma) and igneous rocks in Lhasa terrane (b)

      图  2  打加错银多金属矿床地质图

      Fig.  2.  Geological map of the Dajiacuo Ag-Pb-Zn deposit

      图  3  打加错矿床流纹质晶屑凝灰岩(a、b、e)、矽卡岩(a、c、f)、流纹斑岩(a、d、g)地表典型露头、手标本及显微照片

      Tfss.流纹质晶屑凝灰岩;λπ.流纹斑岩;SK.矽卡岩;Py.黄铁矿;Ep.绿帘石;Qtz.石英;Fl.萤石;Grt.石榴子石;Pl.斜长石

      Fig.  3.  Typical surface outcrops, hand specimens and micrographs of rhyolite crystal tuff (a, b, e), skarn (a, c, f), rhyolitic porphyry (a, d, g) in Dajiacuo deposit

      图  4  打加错矿床典型矿石及脉石矿物(a~f)手标本及(g~l)显微照片

      a~c.黄铁矿或闪锌矿呈星点状分布于石榴子石矽卡岩、透辉石矽卡岩及绿帘石矽卡岩中;d.块状铅锌矿样品;e.浸染状铅锌矿样品;f.流纹斑岩中后期的含黄铁矿-辉钼矿石英脉;g,h.石榴子石呈环带结构与透辉石共生,且被方解石交代;i,j.方铅矿被辉银矿、闪锌矿、黝铜矿、黄铜矿交代;k,l.黄铜矿与闪锌矿呈固溶体结构,磁黄铁矿交代闪锌矿;Grt.石榴子石;Di.透辉石;Ep.绿帘石;Qtz.石英;Cal.方解石;Mo.辉钼矿;Py.黄铁矿;Po.磁黄铁矿;Gn.方铅矿;Lm.褐铁矿;Sph.闪锌矿;Cpy.黄铜矿;Aeg.辉银矿;Ttr.黝铜矿

      Fig.  4.  Representative hand specimen photos (a-f) and photomicrographs (g-l) of ore and gangue minerals from the Dajiacuo Ag polymetallic deposit

      图  5  打加错矿区成矿(次)火山岩锆石典型阴极发光图像、U-Pb谐和图及加权平均值图(a~c)和球粒陨石标准化稀土元素配分模式图(d~f)

      标准化值据Sun and McDonough(1989);红圈代表锆石微量元素测试位置;黄圈代表锆石Hf同位素测试位置

      Fig.  5.  Representative cathodoluminescence images, U-Pb concordia ages and weighted average ages (a-c), and chondrite-normalized REE pattems of zircon grains from ore-forming rocks in Dajiacuo area (d-f)

      图  6  打加错及中拉萨地体铅锌银矿床成矿岩体

      a.(K2O + Na2O)vs. SiO2(据Middlemost,1994);b.SiO2 vs. K2O(据Roberts and Clemens, 1993);c.A/NK vs. A/CNK(据Maniar and Piccoli, 1989);d.(Zr+ Nb+ Ce +Y)vs.(K2O +Na2O)/CaO(据Whalen et al., 1987);e.Zr-SiO2(据Jung and Pfänder,2007);f.La/Sm vs. La;g.(La/Yb)N vs. La;h.球粒陨石标准化稀土配分模式;i.原始地幔标准化微量元素蜘蛛图解;标准化值据Sun and McDonough(1989);中拉萨地体铅锌银成矿岩体与高分异花岗岩的值源于Gao et al.(2020)

      Fig.  6.  Ore-forming rocks of the Dajiacuo and other Pb-Zn-Ag deposit in the central Lhasa subterrane

      图  7  打加错矿床和中拉萨地体铅锌银矿床的成矿岩体的锆石εHf(t)值vs. U-Pb年龄图解(a)和锆石二阶段模式年龄直方图(b)

      古拉萨结晶基底据Zhu et al.(2011)

      Fig.  7.  plots of εHf(t) values vs. U-Pb ages (a) and histograms of TDMc model ages (b) of zircons from the magmatic rocks from the Dajiacuo deposit and other Pb-Zn-Ag depsoits in the central Lhasa subterane

      图  8  打加错成矿(次)火山岩及锆石Fe2O3/FeO vs. SiO2 (a),Ce4+/Ce3+ vs. Eu/Eu*(b),Eu/Eu* vs. Hf (c),10 000×(Eu/Eu*)/Y vs. (Ce/Nd)/Y (d)图解

      a.岩体数据来源与图 1相同.磁铁矿系列和钛铁矿系列花岗岩类的判别线来自Blevin(2004);b~c.中拉萨地体银铅锌多金属矿床和南拉萨地体斑岩铜矿床的数据来自姜军胜(2018)

      Fig.  8.  Fe2O3/FeO vs. SiO2 (a), Ce4+/Ce3+ vs. Eu/Eu* (b), Eu/Eu* vs. Hf (c), 10 000×(Eu/Eu*)/Y vs. (Ce/Nd)/Y (d) diagrams from ore-forming rocks and zircons of the Dajiacuo deposit

      表  1  打加错矿区成矿(次)火山岩锆石LA-ICP-MS U-Pb年龄数据

      Table  1.   LA-ICP-MS zircon U-Pb isotopic analyses for the samples of ore-forming rocks in Dajiacuo deposit

      测点 Pb Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
      DJCB0107-03 1.26 43.6 98.8 0.44 0.047 0 0.007 0 0.067 9 0.010 8 0.010 4 0.000 3 50.1 322 66.7 10.3 66.6 1.7
      DJCB0107-04 3.17 322 200 1.61 0.053 9 0.008 4 0.068 8 0.005 7 0.010 3 0.000 2 369 315 67.5 5.4 66.0 1.4
      DJCB0107-05 1.22 46.6 98.8 0.47 0.052 0 0.006 5 0.068 3 0.005 5 0.010 4 0.000 3 287 263 67.1 5.2 66.7 1.8
      DJCB0107-06 2.28 105 187 0.56 0.047 8 0.004 1 0.067 1 0.005 2 0.010 4 0.000 2 100 183 65.9 4.9 66.6 1.2
      DJCB0107-07 3.26 168 261 0.64 0.050 4 0.004 3 0.068 9 0.005 3 0.010 3 0.000 2 213 196 67.6 5.1 66.0 1.2
      DJCB0107-08 1.32 53.8 108 0.50 0.051 9 0.006 0 0.067 6 0.006 7 0.010 4 0.000 3 280 248 66.4 6.4 66.7 2.0
      DJCB0107-09 1.80 88.2 132 0.67 0.054 5 0.011 3 0.068 1 0.007 7 0.010 4 0.000 3 394 806 66.9 7.3 66.9 1.8
      DJCB0107-10 1.38 58.4 111 0.52 0.049 2 0.004 4 0.068 6 0.005 5 0.010 4 0.000 3 167 200 67.4 5.2 66.8 1.6
      DJCB0107-11 1.63 62.3 138 0.45 0.050 4 0.004 4 0.070 1 0.005 5 0.010 4 0.000 3 217 33 68.8 5.2 66.6 1.7
      DJCB0107-12 2.66 166 195 0.85 0.049 2 0.004 9 0.067 9 0.006 3 0.010 5 0.000 2 167 209 66.7 6.0 67.0 1.3
      DJCB0107-13 2.26 217 143 1.52 0.046 1 0.007 4 0.074 7 0.015 5 0.010 4 0.000 3 400 -50 73.2 14.7 66.9 1.8
      DJCB0107-14 2.07 85.8 166 0.52 0.049 9 0.004 5 0.068 1 0.004 9 0.010 4 0.000 3 191 200 66.9 4.6 66.9 1.6
      DJCB0107-15 2.46 103 196 0.52 0.048 7 0.003 9 0.070 2 0.005 5 0.010 4 0.000 2 132 191 68.9 5.3 66.9 1.3
      DJCB0107-16 0.96 41.7 72.1 0.58 0.050 5 0.006 6 0.070 4 0.007 5 0.010 4 0.000 3 220 278 69.0 7.1 66.6 2.1
      DJCB0107-18 1.52 61.7 126 0.49 0.051 4 0.006 5 0.070 4 0.007 9 0.010 4 0.000 3 261 263 69.1 7.5 66.6 1.7
      DJCB0107-20 2.26 92.9 172 0.54 0.050 6 0.005 8 0.069 5 0.007 9 0.010 3 0.000 2 233 244 68.2 7.5 66.0 1.3
      DJCB0107-21 2.71 127 213 0.60 0.046 1 0.003 7 0.065 4 0.004 8 0.010 4 0.000 2 400 -213 64.4 4.5 66.9 1.3
      DJCB0107-22 1.70 68.3 130 0.53 0.049 7 0.007 9 0.070 6 0.011 1 0.010 6 0.000 3 189 328 69.3 10.5 68.0 2.0
      DJCB0107-23 2.74 124 215 0.58 0.050 8 0.005 0 0.066 7 0.005 7 0.010 3 0.000 3 232 211 65.6 5.4 66.2 1.7
      DJCB0107-24 1.36 52.1 108 0.48 0.049 6 0.007 1 0.067 5 0.009 0 0.010 4 0.000 3 189 291 66.3 8.6 66.5 1.9
      DJCB0107-25 1.51 60.0 122 0.49 0.051 1 0.006 7 0.065 3 0.007 7 0.010 1 0.000 3 243 278 64.3 7.3 64.9 1.7
      DJCB0109-01 3.91 226 297 0.76 0.048 8 0.001 9 0.067 9 0.002 8 0.010 2 0.000 3 139 93 66.7 2.6 65.5 2.0
      DJCB0109-02 26.55 1 094 2081 0.53 0.047 1 0.000 7 0.070 1 0.001 8 0.010 8 0.000 2 53.8 35.2 68.8 1.7 69.1 1.3
      DJCB0109-04 3.83 244 276 0.89 0.047 3 0.002 0 0.066 9 0.003 0 0.010 3 0.000 2 64.9 100.0 65.7 2.8 66.3 1.1
      DJCB0109-05 8.24 381 626 0.61 0.046 9 0.001 5 0.066 9 0.002 2 0.010 4 0.000 1 42.7 74.1 65.7 2.1 66.5 0.8
      DJCB0109-06 4.03 195 302 0.65 0.047 2 0.001 9 0.067 3 0.002 8 0.010 4 0.000 1 61.2 92.6 66.2 2.6 66.4 0.9
      DJCB0109-09 12.36 831 819 1.01 0.046 1 0.001 2 0.068 0 0.001 8 0.010 8 0.000 2 400 -335 66.8 1.7 69.0 1.0
      DJCB0109-10 4.78 314 338 0.93 0.048 1 0.001 9 0.068 8 0.002 7 0.010 4 0.000 2 106 93 67.6 2.6 67.0 1.1
      DJCB0109-13 8.24 575 572 1.01 0.047 1 0.001 4 0.067 8 0.002 0 0.010 5 0.000 1 53.8 70.4 66.6 1.9 67.2 0.8
      DJCB0109-15 3.18 117 247 0.48 0.047 2 0.001 8 0.068 3 0.002 5 0.010 6 0.000 2 57.5 92.6 67.1 2.4 68.2 1.1
      DJCB0109-16 3.73 198 278 0.71 0.046 9 0.001 7 0.066 3 0.002 6 0.010 2 0.000 2 55.7 72.2 65.2 2.5 65.7 1.0
      DJCB0109-19 5.89 523 405 1.29 0.047 6 0.002 2 0.067 1 0.003 2 0.010 3 0.000 2 76.0 113.0 65.9 3.1 66.0 1.1
      DJCB0109-21 3.46 177 241 0.73 0.047 9 0.002 4 0.069 0 0.003 3 0.010 6 0.000 2 100 109 67.8 3.1 67.8 1.1
      DJCB0109-22 3.14 161 236 0.68 0.047 8 0.002 7 0.066 6 0.003 4 0.010 3 0.000 2 100 120 65.5 3.3 66.1 1.1
      DJCB0406-01 5.58 428 401 1.07 0.046 8 0.002 9 0.066 9 0.003 9 0.010 5 0.000 2 39.0 150 65.8 3.7 67.5 1.1
      DJCB0406-02 5.97 250 493 0.51 0.046 8 0.002 7 0.067 1 0.003 8 0.010 5 0.000 2 39.0 133 66.0 3.6 67.2 1.0
      DJCB0406-03 3.07 163 240 0.68 0.047 9 0.004 1 0.066 0 0.005 0 0.010 5 0.000 2 94.5 193 64.9 4.8 67.5 1.5
      DJCB0406-04 4.99 286 381 0.75 0.046 5 0.003 7 0.066 4 0.004 9 0.010 3 0.000 2 33.4 178 65.3 4.7 66.1 1.1
      DJCB0406-05 2.92 161 217 0.74 0.049 7 0.004 9 0.069 3 0.006 7 0.010 5 0.000 2 189 209 68.1 6.4 67.6 1.5
      DJCB0406-06 4.01 211 297 0.71 0.048 5 0.003 4 0.069 5 0.004 4 0.010 7 0.000 2 124 159 68.2 4.1 68.6 1.2
      DJCB0406-07 2.19 139 165 0.85 0.049 1 0.005 4 0.066 9 0.006 2 0.010 2 0.000 3 150 241 65.7 5.9 65.6 1.7
      DJCB0406-08 2.99 141 236 0.60 0.049 3 0.004 2 0.071 3 0.005 8 0.010 7 0.000 2 161 193 69.9 5.5 68.6 1.4
      DJCB0406-09 3.06 174 236 0.74 0.048 8 0.004 6 0.068 1 0.005 9 0.010 3 0.000 2 139 207 66.9 5.6 66.3 1.3
      DJCB0406-10 3.39 188 275 0.68 0.048 4 0.004 5 0.068 3 0.005 7 0.010 4 0.000 2 117 207 67.1 5.5 66.4 1.4
      DJCB0406-11 4.28 248 332 0.75 0.049 0 0.004 2 0.069 1 0.005 5 0.010 4 0.000 2 146 198 67.8 5.3 66.6 1.1
      DJCB0406-12 2.24 154 181 0.85 0.052 8 0.007 8 0.065 2 0.009 4 0.010 3 0.000 4 320 313 64.2 9.0 65.9 2.7
      DJCB0406-13 1.38 86.7 109 0.79 0.055 0 0.007 8 0.068 2 0.009 7 0.010 3 0.000 4 413 322 67.0 9.3 66.3 2.5
      DJCB0406-14 1.86 109 142 0.77 0.049 9 0.006 3 0.070 7 0.007 7 0.010 7 0.000 3 191 270 69.4 7.3 68.4 1.7
      DJCB0406-15 1.89 106 148 0.71 0.046 8 0.005 3 0.064 9 0.007 1 0.010 4 0.000 3 39.0 261 63.9 6.8 67.0 2.0
      DJCB0406-17 3.33 175 252 0.69 0.046 9 0.004 1 0.066 4 0.005 1 0.010 6 0.000 2 42.7 196 65.3 4.8 67.9 1.4
      DJCB0406-18 2.46 116 193 0.60 0.048 4 0.004 5 0.068 1 0.005 5 0.010 4 0.000 2 120 204 66.9 5.2 66.5 1.4
      DJCB0406-19 4.00 257 313 0.82 0.048 8 0.004 1 0.069 1 0.005 5 0.010 5 0.000 2 139 189 67.8 5.2 67.0 1.3
      DJCB0406-20 3.55 176 275 0.64 0.046 1 0.004 3 0.067 4 0.005 3 0.010 9 0.000 2 400 -187 66.3 5.0 69.9 1.2
      DJCB0406-21 7.24 420 556 0.75 0.047 5 0.002 7 0.069 7 0.003 9 0.010 6 0.000 2 76.0 135 68.4 3.7 68.2 1.1
      DJCB0406-23 3.56 212 265 0.80 0.049 8 0.004 5 0.071 6 0.005 8 0.010 5 0.000 2 187 196 70.2 5.5 67.1 1.6
      DJCB0406-24 6.06 412 443 0.93 0.046 1 0.003 7 0.067 5 0.005 0 0.010 7 0.000 2 400 -213 66.3 4.7 68.3 1.6
      DJCB0406-25 3.73 219 286 0.77 0.049 0 0.004 7 0.068 9 0.006 5 0.010 5 0.000 3 146 220 67.7 6.2 67.1 2.0
      下载: 导出CSV

      表  2  打加错矿区辉钼矿Re-Os同位素分析结果

      Table  2.   Molybdenite Re-Os isotopic analyses in Dajiacuo deposit

      样号 百分含量(%) Re(10-6 ± 187Re(10-9 ± 187Os(10-9 ± 模式年龄(Ma)
      DJCB-TR3 0.007 84 5.41 0.06 3 403.13 35.47 3.46 0.04 61.0±0.8
      下载: 导出CSV

      表  3  打加错矿区含矿流纹质晶屑凝灰岩锆石Hf同位素特征

      Table  3.   LA-ICP-MS zircon Hf isotopic analyses for the samples of ore-forming rocks in Dajiacuo deposit

      样号 age (Ma) 176Yb/177Hf error 176Lu/177Hf error 176Hf/177Hf error εHf(t) TDMC fs
      DJCB0107-5 66.7 0.020 655 0.000 179 0.000 702 0.000 007 0.282 543 0.000 017 -6.7 1 563 -0.98
      DJCB0107-6 66.6 0.031 642 0.000 819 0.001 069 0.000 026 0.282 501 0.000 016 -8.2 1 658 -0.97
      DJCB0107-8 66.7 0.022 153 0.000 120 0.000 742 0.000 004 0.282 509 0.000 019 -7.9 1 639 -0.98
      DJCB0107-9 66.9 0.037 507 0.000 289 0.001 261 0.000 010 0.282 265 0.000 026 -16.5 2 186 -0.96
      DJCB0107-10 66.8 0.027 435 0.000 178 0.000 933 0.000 005 0.282 501 0.000 017 -8.2 1 658 -0.97
      DJCB0107-12 67.0 0.037 163 0.001 184 0.001 252 0.000 037 0.282 629 0.000 019 -3.6 1 369 -0.96
      DJCB0107-15 66.9 0.027 389 0.000 131 0.000 913 0.000 003 0.282 493 0.000 017 -8.4 1 675 -0.97
      DJCB0107-16 66.6 0.031 307 0.001 063 0.001 052 0.000 038 0.282 418 0.000 020 -11.1 1 844 -0.97
      DJCB0107-18 66.6 0.030 738 0.000 200 0.001 084 0.000 006 0.282 517 0.000 020 -7.6 1 622 -0.97
      DJCB0107-19 66.2 0.022 534 0.000 278 0.000 750 0.000 012 0.282 529 0.000 017 -7.2 1 595 -0.98
      DJCB0107-20 66.0 0.045 592 0.001 020 0.001 626 0.000 049 0.282 480 0.000 024 -9.0 1 707 -0.95
      DJCB0107-21 66.9 0.040 366 0.001 012 0.001 443 0.000 047 0.282 475 0.000 022 -9.1 1 716 -0.96
      DJCB0107-23 66.2 0.019 259 0.000 275 0.000 673 0.000 011 0.282 510 0.000 017 -7.8 1 637 -0.98
      DJCB0107-25 64.9 0.032 330 0.000 281 0.001 069 0.000 012 0.282 440 0.000 020 -10.4 1 796 -0.97
      下载: 导出CSV

      表  4  打加错矿区成矿岩体锆石微量元素(10-6)及参数计算结果

      Table  4.   Results of trace elemental analyses and parameters of zircon grains from the ore-forming rocks in Dajiacuo deposit

      样品 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Ti Hf T(℃) Ce4+/ Ce3+ lgf$ {}_{{\mathrm{O}}_{2}} $
      DJCB0107-03 1.28 5.74 0.49 2.92 2.47 0.35 13.54 4.58 59.81 23.22 107.44 23.22 216.61 45.03 725.73 4.59 7 597 721 6.35 -21.87
      DJCB0107-04 0.01 45.55 0.13 1.98 4.45 2.13 28.4 9.79 126.27 51.96 247.15 53.9 515.65 112.27 1 720.24 10.2 7 647 798 78.08 -9.2
      DJCB0107-05 0 3.31 0.01 0.44 1.62 0.19 9.87 3.46 47.43 19.1 86.25 18.11 169.76 34.45 585.5 3 8 735 685 20.34 -19.86
      DJCB0107-06 0 5.95 0.03 0.97 2.23 0.39 17.8 6.13 77.75 30.09 139.72 28.81 267.88 54.68 940.09 5.18 9 307 732 18.19 -17.69
      DJCB0107-07 0 7.37 0.06 1.02 2.78 0.32 18.33 7.14 89.25 34.94 159.1 32.24 293.48 58.74 1 071.42 0.98 8 841 600 20.09 -25.2
      DJCB0107-08 0.01 2.92 0.07 1.38 2.88 0.43 19.22 6.42 79.72 30.59 137.85 29.02 266.58 55.77 943.61 4.07 8 051 711 5.14 -23.1
      DJCB0107-09 3.29 12.7 1.11 6.74 5.4 0.68 26.22 8.89 106.89 41.31 183.83 37.03 332.43 67.97 1 257.45 4.62 8 894 722 4.88 -22.67
      DJCB0107-10 0.4 5.1 0.18 1.22 1.89 0.32 12.44 4.56 57 22.66 105.84 22.1 207.43 43.34 704.01 5.98 9 027 745 13.51 -18.07
      DJCB0107-11 0.01 4.38 0.04 0.38 2.28 0.31 13.75 5.65 71.33 29 135.69 28.98 273.32 58.21 891.65 4.92 9 108 727 30.94 -16.02
      DJCB0107-12 0.02 14.8 0.11 2.06 3.66 0.98 21.24 7.01 90.28 35.96 168.24 35.56 333.45 70.96 1 136.02 5.64 8 372 740 21.96 -16.62
      DJCB0107-13 0.06 29.76 0.19 3.24 6 2.27 29.64 9.5 109.87 42.97 196.65 42.6 408.04 89.31 1 380.68 6.2 8 887 749 24.58 -15.77
      DJCB0107-14 0.01 4.61 0.06 0.94 2.58 0.41 18.54 6.59 83.32 33.28 152.73 32.27 293.43 61.9 1 012.36 3.06 8 950 686 13.91 -21.12
      DJCB0107-15 0 4.69 0.07 0.93 2.73 0.3 17.46 5.83 75.32 28.95 132.79 27.07 248.97 50.78 878.27 4.18 9 379 713 12.61 -19.98
      DJCB0107-16 0.03 3.91 0.01 0.98 2.08 0.35 12.16 4.65 58.93 22.58 102.92 21.34 198.09 40.48 676.13 5.89 9 811 744 11.13 -18.8
      DJCB0107-18 0.12 3.73 0.06 1.05 1.9 0.33 13.76 4.96 64.43 25.39 115.51 23.98 220.7 45.52 746.97 6.65 8 371 755 10.92 -18.3
      DJCB0107-20 0 5.8 0.03 0.73 2.26 0.35 16.61 6.18 79.37 30.71 144 30.08 277.81 58.09 943.85 3.72 9 330 703 23.32 -18.36
      DJCB0107-21 0 6.91 0.05 0.92 2.43 0.37 16.86 6.55 86.32 34.48 157.95 33.12 305.65 62.55 1 035.03 4.78 9 905 725 23.54 -17.15
      DJCB0107-22 0.02 3.82 0.05 0.95 2.5 0.29 14.02 5.3 66.53 26.28 118.95 25.35 233.52 47.58 765.09 5.48 7 741 737 10.74 -19.27
      DJCB0107-23 0.34 7.77 0.15 1.37 2.26 0.34 17.75 5.99 77.69 30.44 137.88 28.24 261.38 53.16 908.56 5.55 9 792 739 17.84 -17.43
      DJCB0107-24 0 3.95 0.02 0.53 2.01 0.25 10.97 4.04 50.29 19.81 90.17 19.6 179.8 37.46 592.53 4.47 8 978 719 18.71 -18.28
      DJCB0107-25 0 3.65 0.05 0.88 2.29 0.35 14.88 5.04 66.51 25.77 119.05 24.46 231.14 48.39 771.4 4.77 8 932 725 11.24 -19.76
      DJCB0109-01 0 10.27 0.07 0.99 3.06 0.27 27.22 9.51 123.51 50.61 236.7 56.89 553.99 95.72 1 435.95 0.51 10 551 558 44.88 -25.3
      DJCB0109-02 4.43 31.05 1.49 10.78 5.91 0.39 39.08 15.03 208.9 81.53 370.59 89.43 923.54 142.64 2 327.17 3.13 12 537 688 17.2 -20.25
      DJCB0109-04 0.05 18.96 0.04 1.52 3.4 0.9 18.87 7.1 89.58 34.96 158.62 39.39 416.02 65.45 1 021.68 5.27 9 728 734 51.17 -13.85
      DJCB0109-05 2.01 19.98 0.46 3.23 3.54 0.4 18.65 7.77 98.02 43.63 197.69 49.05 535.79 85.93 1 232.60 1.5 11 207 630 34.82 -21.19
      DJCB0109-06 5.77 28.4 1.67 5.86 2.87 0.64 15.63 5.73 69.72 28.1 134.16 35.28 376.92 62.01 841.72 1.91 10 417 649 29.96 -20.59
      DJCB0109-09 0.51 93.4 0.29 2.53 4.88 1.27 30.72 12.43 167.41 70.82 333.7 86.11 988.57 161.39 2 077.09 5.14 11 496 731 211.98 -8.69
      DJCB0109-10 3.36 24.91 0.85 4.62 3.47 0.9 17.21 7.29 90.5 35.13 167.75 38.51 395.55 68.64 1 035.42 6.31 10 322 751 28.45 -15.15
      DJCB0109-13 2.77 29.82 0.71 4.81 4.21 0.59 24.63 8.47 111.31 44.17 199.3 46.31 476.61 79.16 1 256.20 2.59 11 163 672 29.85 -19.18
      DJCB0109-15 0.02 11.12 0.05 0.84 1.5 0.2 11.67 5.37 70.45 30.71 152.47 38.46 413.58 68.62 907.65 3.54 11 473 699 86.81 -13.77
      DJCB0109-16 0.84 10.04 0.2 2.32 3.18 0.28 24.21 8.93 107.13 42.97 187.52 42.08 407.39 65.18 1 159.07 3.29 11 463 692 17.74 -19.92
      DJCB0109-19 0 17.95 0.22 2.33 6.26 0.88 39.29 14.38 179.43 66.32 288.93 63.64 597.42 95.71 1 814.38 5.64 8 748 740 24.36 -16.24
      DJCB0109-21 1.09 19.59 0.61 3.22 4.68 1.06 22.09 9.38 116.44 44.42 195.32 46.35 461.34 71.21 1 235.81 5.46 10 101 737 24.5 -16.38
      DJCB0109-22 0.02 14.02 0.11 1.08 4.73 1.09 26 10.13 124.85 48.87 219.08 51.23 514.37 80.45 1 345.62 10.2 8 743 798 42.06 -11.45
      DJCB0406-01 0.06 31.93 0.13 1.92 4.05 1.2 21.28 7.9 101.72 40.82 195.45 45 434.73 97.25 1 231.02 4.9 10 492 727 67.54 -13.18
      DJCB0406-02 0 13.06 0.03 0.66 2.21 0.32 16.52 5.65 78.86 32.87 158.21 35.41 327.33 70.35 955.1 3.53 11 951 698 78.95 -14.14
      DJCB0406-03 0.03 16.72 0.05 0.91 2.58 0.44 13.74 5.21 67.19 28.35 135.41 30.95 298.17 67.2 814.97 5.79 10 927 742 73.19 -12.08
      DJCB0406-04 0.02 32.43 0.07 1.39 2.77 0.9 20.63 7.72 99.96 44.81 228.73 53.83 530.44 121.91 1 361.13 3.26 10 259 691 126.12 -12.78
      DJCB0406-05 0.09 20.27 0.11 1.58 3.02 0.93 16.8 5.83 75.33 33.35 164.47 39.17 390.4 91.84 997.41 8.57 9 965 780 60.59 -10.94
      DJCB0406-06 0.02 19.41 0.06 1.02 2.41 0.59 13.51 5.2 64.96 27.68 136 31.55 310.58 72.71 820.24 4.09 11 034 711 84.22 -13.2
      DJCB0406-07 13.55 42.54 4 19.65 6.16 0.4 18.45 5.3 66.82 26.98 124.65 27.21 257.97 57.67 739.87 2.24 9 533 661 8.57 -24.25
      DJCB0406-08 0.2 14.6 0.1 0.72 1.81 0.41 10.07 3.77 48.18 20.67 100.86 23.23 225.79 50.81 590.61 1.51 11 776 631 86.56 -17.8
      DJCB0406-09 0 15.91 0.08 1.44 2.59 0.7 15.64 5.96 74.44 30.72 146.07 32.83 320.46 71.09 894.88 8.17 10 224 776 47.97 -12.02
      DJCB0406-10 0 16.61 0.06 0.95 2.08 0.5 12.8 4.79 61.51 26.46 122.54 27.88 271.15 61.2 742.82 2.46 11 358 668 75.59 -15.99
      DJCB0406-11 0 23.35 0.03 0.85 2.3 0.7 14.06 5.01 67.27 27.4 137.84 31.29 308.52 69.87 804.27 2.05 11 315 654 116.88 -15.24
      DJCB0406-12 0.05 10.33 0.04 1.16 2.05 0.29 16.08 5.61 74.89 31.05 141.66 31.08 280.35 62.96 827.95 3.71 9 290 703 38.19 -16.58
      DJCB0406-13 0 10.32 0.02 0.63 1.9 0.3 11.97 4.12 50.68 21.47 103.35 23.02 217.8 49.36 595.88 3.11 9 520 688 60.44 -15.72
      DJCB0406-14 0.04 12 0.13 1.79 4.26 0.84 22.16 7.33 90.12 35.45 164.3 34.12 301.35 64.62 963.44 8.31 9 677 777 19.67 -15.18
      DJCB0406-15 0 12.28 0.1 0.95 2.77 0.79 16.08 5.69 75.95 30.61 145.93 31.62 303.06 68.32 877.33 7.08 10 001 762 47.77 -12.71
      DJCB0406-17 0.01 17.46 0.1 1.62 2.62 0.85 17.81 6.67 86.82 36.65 179.59 41.18 391.76 90.28 1 050.94 6.21 9 726 749 53.03 -12.95
      DJCB0406-18 0.01 12.23 0.08 1.3 2.53 0.51 14.53 5.01 66.37 28.3 135.14 30.18 292.09 65.3 798.21 2.1 11 733 656 39.72 -19.11
      DJCB0406-19 0.03 16.43 0.05 1.2 2.31 0.68 15.32 6.25 80.7 34.43 170 38.66 382.68 87.43 1 007.15 4.99 11 153 729 69.35 -12.98
      DJCB0406-20 0.51 18.23 0.17 1.65 2.01 0.55 16.44 5.68 71.53 30.93 152.15 34.92 332.32 75.21 889.05 1.84 11325 646 58.28 -18.32
      DJCB0406-21 4.02 33.08 1.14 5.11 3.78 0.69 17.1 6.67 85.75 35.32 176.96 40.43 401.21 88.6 1 054.99 3.2 12368 690 34.49 -17.66
      DJCB0406-23 0.02 14.46 0.15 2.38 5.04 1.09 30.16 10.08 120.62 47.72 212.01 43.94 403.4 84.91 1 302.22 4.57 9 629 721 18.43 -18.23
      DJCB0406-24 2.24 40.66 0.65 4.65 5.21 1.29 27.95 10.1 130.74 54.73 266.89 60.47 586.84 132.19 1 596.06 4.21 10 790 714 42.22 -15.62
      DJCB0406-25 0 17.67 0.05 1.2 3.13 0.58 16 5.88 70.48 29.19 139.8 30.84 297.32 65.98 828.47 6.35 11 006 751 52.79 -12.86
      下载: 导出CSV
    • [1] Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-Rich Ore Systems. Resource Geology, 54(3): 241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
      [2] Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006
      [3] Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
      [4] Dilles, J. H., Kent, A. J. R., Wooden, J. L., et al., 2015. Zircon Compositional Evidence for Sulfur-Degassing from Ore-Forming Arc Magmas. Economic Geology, 110(1): 241-251. https://doi.org/10.2113/econgeo.110.1.241
      [5] Dou, X. F., Chen, X., Zheng, Y. Y., et al., 2020. The Newly Discovered Cambrian Gabbro-Diorite in Bange, Tibet and Their Tectonic Implications. Earth Science, 45(6): 2091-2102(in Chinese with English abstract).
      [6] Du, A. D., Qu, W. J., Li, C., et al., 2009. A Review on the Development of Re-Os Isotopic Dating Methods and Techniques. Rock and Mineral Analysis, 28(3): 288-304(in Chinese with English abstract).
      [7] Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      [8] Fu, Y, G., Hu, G, Y., Tang, J, X., et al., 2017. Low-Sulfidation Epithermal Ag-Pb-Zn Deposit in Sinongduo, Tibet: Tracer Application of Si-H-O Stable Isotope Geochemistry. Acta Geologica Sinica, 91(4): 836-848(in Chinese with English abstract).
      [9] Gao, S. B., Chen, X., Cheng, S. S., et al., 2020. Syn-Collisional Magmatism at the Longgen Pb-Zn Deposit, Western Nyainqentanglha Belt, Tibet: Petrogenesis and Implications for Regional Polymetallic Metallogeny. Ore Geology Reviews, 126: 103730. https://doi.org/10.1016/j.oregeorev.2020.103730
      [10] Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb-Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929
      [11] Gao, S. B., Zheng, Y. Y., Jiang, X. J., et al., 2020. Discovery, Genesis and Significances of First Siver-Tin Polymetal Deposit in Western Gangdese Belt. Earth Science, 45(12): 4463-4480(in Chinese with English abstract).
      [12] Gao, S. B., Zheng, Y. Y., Tian, K., et al., 2021. Geochronology of Magmatic Intrusions and Mineralization of Lunggar Iron Deposit in Tibet and Its Implications for Regional Multi-Stage Iron Mineralization: Geochemistry, Zircon U-Pb and Phlogopite Ar-Ar Isotopic Dating Constraints. Earth Science, 46(6): 1941-1959(in Chinese with English abstract).
      [13] Gao, S. B., Zheng, Y. Y., Tian, L. M., et al., 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science, 37(3): 507-514(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.057
      [14] Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      [15] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4): 229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      [16] Ji, X. H., 2013. Study on Geology, Geochemistry and Genesis of Narusongduo Lead-Zinc Deposit, Tibet (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [17] Jiang, J. S., 2018. Genesis of Polymetallic Deposits and Propspecting Potential in the Linzizong Area, Western Gangdese Belt, Tibet (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [18] Jiang, X. J., Chen, X., Gao, S. B., et al., 2020. A New Discovery of Ag-Pb-Zn Mineralization via Modern Portable Analytical Technology and Stream Sediment Data Processing Methods in Dajiacuo Area, Western Tibet (China). Journal of Earth Science, 31(4): 668-682. https://doi.org/10.1007/s12583-020-1323-9
      [19] Jung, S., Pfänder, J. A., 2007. Source Composition and Melting Temperatures of Orogenic Granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry. European Journal of Mineralogy, 19(6): 859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774
      [20] Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      [21] Li, G. M., Pan, G. T., Wang, G. M., et al., 2004. Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 22-27(in Chinese with English abstract).
      [22] Liu, J., Zheng, Y. Y., Gao, S. B., et al., 2019. Zircon U-Pb Dating, Geochemistry, and Sr-Nd-Pb-Hf Isotopes of the Subvolcanic Intrusion from Beina Pb-Zn-(Ag) Deposit in the Southern Lhasa Terrane, Tibet: Implications for Petrogenesis and Mineralization. Geological Journal, 54(4): 2064-2083. https://doi.org/10.1002/gj.3284
      [23] Liu, H., Huang, H. X., Zhang, L. K., et al., 2021. Luerma, a Newly Discovered Late Triassic Porphyry Copper-Gold Ore-Spot in the Western Gangdise Metallogenic Belt, Tibet. Sedimentary Geology and Tethyan Geology, 41(4): 599-611(in Chinese with English abstract).
      [24] Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      [25] Lu, Y. F., 2004. GeoKit: A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 28-33(in Chinese with English abstract).
      [26] Lu, Y. J., Loucks, R. R., Fiorentini, M. L., et al., 2015. Fluid Flux Melting Generated Postcollisional High Sr/Y Copper Ore-Forming Water-Rich Magmas in Tibet. Geology, 43(7): 583-586. https://doi.org/10.1130/g36734.1
      [27] Lei, W. Y., Shi, G. H., Liu, Y. X., 2013. Research Progress on Trace Element Characteristics of Zircons of Different Origins. Earth Science Frontiers, 20 (4): 273-284(in Chinese with English abstract).
      [28] Li, Y., Audétat, A., 2015. Effects of Temperature, Silicate Melt Composition, and Oxygen Fugacity on the Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Silicate Melt. Geochimica et Cosmochimica Acta, 162: 25-45. https://doi.org/10.1016/j.gca.2015.04.036
      [29] Ma, W., Yang, Z. S., Hou, Z. Q., et al., 2015. Zircon U-Pb Dating and Geochemical Characteristics of Metallogenetic Rock from the Lietinggang-Leqingla Fe-Cu-Pb-Zn Deposit in Tibet. Acta Geologica Sinica, 89(9): 1655-1672(in Chinese with English abstract).
      [30] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      [31] Mao, J. W., Xie, G. Q., Bierlein, F., et al., 2008. Tectonic Implications from Re-Os Dating of Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626. https://doi.org/10.1016/j.gca.2008.06.027
      [32] Mao, J. W., Zhang, Z. C., Zhang, Z. H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818. https://doi.org/10.1016/s0016-7037(99)00165-9
      [33] Meinert, L. D., Dipple, G. M., Nicolescuet, S., 2005. Wold Skarn Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., eds., Economic Geology, 100th Anniversary Volume. Society of Economic Geologists, U. S. A., 299-336. https://doi.org/10.5382/av100
      [34] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [35] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      [36] Robb, M. S., Taylor, B., Goodliffe, A. M., 2005. Re-Examination of the Magnetic Lineations of the Gascoyne and Cuvier Abyssal Plains, off NW Australia. Geophysical Journal International, 163(1): 42-55. https://doi.org/10.1111/j.1365-246x.2005.02727.x
      [37] Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825. https://doi.org/10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2
      [38] Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry (Second Edition), 4: 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      [39] Selby, D., Creaser, R. A., 2004. Macroscale NTIMS and Microscale LA-MC-ICP-MS Re-Os Isotopic Analysis of Molybdenite: Testing Spatial Restrictions for Reliable Re-Os Age Determinations, and Implications for the Decoupling of Re and Os within Molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897-3908. https://doi.org/10.1016/j.gca.2004.03.022
      [40] Selby, D., Creaser, R. A., Stein, H. J., et al., 2007. Assessment of the 187Re Decay Constant by Cross Calibration of Re-Os Molybdenite and U-Pb Zircon Chronometers in Magmatic Ore Systems. Geochimica et Cosmochimica Acta, 71(8): 1999-2013. https://doi.org/10.1016/j.gca.2007.01.008
      [41] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      [42] Smythe, D. J., Brenan, J. M., 2016. Magmatic Oxygen Fugacity Estimated Using Zircon-Melt Partitioning of Cerium. Earth and Planetary Science Letters, 453: 260-266. https://doi.org/10.1016/j.epsl.2016.08.013
      [43] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [44] Sun, W. D., Huang, R. F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      [45] Palinkaš, S., Peltekovski, Z., Tasev, G., et al., 2018. The Role of Magmatic and Hydrothermal Fluids in the Formation of the Sasa Pb-Zn-Ag Skarn Deposit, Republic of Macedonia. Geosciences, 8(12): 444. https://doi.org/10.3390/geosciences8120444
      [46] Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480: 79-82. https://doi.org/10.1038/nature10655
      [47] Wang, R., Richards, J. P., Hou, Z. Q., et al., 2014a. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo±Au Mineralization. Economic Geology, 109(7): 1943-1965. https://doi.org/10.2113/econgeo.109.7.1943
      [48] Wang, R., Richards, J. P., Hou, Z., et al., 2014b. Increased Magmatic Water Content: The Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 109(5): 1315-1339. https://doi.org/10.2113/econgeo.109.5.1315
      [49] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      [50] Wu, G. B., Liu, J. M., Zeng, Q. D., et al., 2014. Occurrences of Silver in the Shuangjianzishan Pb-Zn-Ag Deposit and Its Implications for Mineral Processing. Earth Science Frontiers, 21(5): 105-115(in Chinese with English abstract).
      [51] Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023
      [52] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      [53] Xu, J., 2017. Metallogenic Mechanism and Model of the Paleogene Fe-Cu-Pb-Zn Skarn Deposits in Nyainqentanglha, Tibet (Dissertation). China University of Geosciences, Wuhan, 68-174(in Chinese with English abstract).
      [54] Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021a. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract).
      [55] Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021b. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(6): 1909-1940(in Chinese with English abstract).
      [56] Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2015. Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt. Journal of Asian Earth Sciences, 103: 23-39. https://doi.org/10.1016/j.jseaes.2014.11.036
      [57] Zheng, Y. Y., Sun, X., Tian, L. M., et al., 2014. Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1): 108-118(in Chinese with English abstract).
      [58] Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [59] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [60] Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031
      [61] 豆孝芳, 陈鑫, 郑有业, 等, 2020. 西藏班戈寒武纪辉长闪长岩体的发现及其构造意义. 地球科学, 45(6): 2091-2102. doi: 10.3799/dqkx.2019.247
      [62] 杜安道, 屈文俊, 李超, 等, 2009. 铼-锇同位素定年方法及分析测试技术的进展. 岩矿测试, 28(3): 288-304. doi: 10.3969/j.issn.0254-5357.2009.03.019
      [63] 付燕刚, 胡古月, 唐菊兴, 等, 2017. 西藏斯弄多低硫化型浅成低温热液Ag-Pb-Zn矿床: Si-H-O同位素的示踪应用. 地质学报, 91(4): 836-848. doi: 10.3969/j.issn.0001-5717.2017.04.010
      [64] 高顺宝, 郑有业, 姜晓佳, 等, 2020. 冈底斯西段首例银锡多金属矿床的发现、成因及意义. 地球科学, 45(12): 4463-4480. doi: 10.3799/dqkx.2020.262
      [65] 高顺宝, 郑有业, 田坎, 等, 2021. 西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示: 地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束. 地球科学, 46(6): 1941-1959. doi: 10.3799/dqkx.2020.216
      [66] 高顺宝, 郑有业, 田立明, 等, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学, 37(3): 507-514. doi: 10.3799/dqkx.2012.057
      [67] 纪现华, 2013. 西藏纳如松多铅锌矿床地质地球化学特征与成因机制研究(硕士学位论文). 北京: 中国地质大学.
      [68] 姜军胜, 2018. 冈底斯西段林子宗群火山岩区多金属矿床成因及找矿潜力(博士学位论文). 武汉: 中国地质大学.
      [69] 李光明, 潘桂棠, 王高明, 等, 2004. 西藏冈底斯成矿带矿产资源远景评价与展望. 成都理工大学学报(自然科学版), 31(1): 22-27. doi: 10.3969/j.issn.1671-9727.2004.01.004
      [70] 刘洪, 黄瀚霄, 张林奎, 等, 2021. 西藏冈底斯成矿带西段鲁尔玛晚三叠世斑岩型铜(金)矿点的发现及意义. 沉积与特提斯地质, 41(4): 599-611. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202104010.htm
      [71] 路远发, 2004. GeoKit: 一个用VBA构建的地球化学工具软件包. 地球化学, 33(5): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
      [72] 雷玮琰, 施光海, 刘迎新, 2013. 不同成因锆石的微量元素特征研究进展. 地学前缘, 20(4): 273-284. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304028.htm
      [73] 马旺, 杨竹森, 侯增谦, 等, 2015. 西藏列廷冈-勒青拉Fe-Cu-Pb-Zn矿区成矿岩体锆石U-Pb年代学与岩石地球化学特征. 地质学报, 89(9): 1655-1672. doi: 10.3969/j.issn.0001-5717.2015.09.009
      [74] 吴冠斌, 刘建明, 曾庆栋, 等, 2014. 内蒙古双尖子山铅锌银矿床银的赋存状态及其指示意义. 地学前缘, 21(5): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405012.htm
      [75] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [76] 徐净, 2017. 西藏念青唐古拉古近纪矽卡岩型铁铜铅锌矿床成因机制与成矿模式(博士学位论文). 武汉: 中国地质大学, 68-174.
      [77] 郑有业, 孙祥, 田立明, 等, 2014. 北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代. 大地构造与成矿学, 38(1): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201401010.htm
      [78] 郑有业, 次琼, 高顺宝, 等, 2021a. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103033.htm
      [79] 郑有业, 吴松, 次琼, 等, 2021b. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  283
    • HTML全文浏览量:  66
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-28
    • 刊出日期:  2022-06-25

    目录

      /

      返回文章
      返回