Complexities of Landslide Moving Path: A Review and Perspective
-
摘要:
滑坡运动路径具有普遍的复杂性,体现为侧散、转向、分叉、交织、聚合与并联等复杂行为.滑坡运动路径复杂性增大了滑坡危险性.因而,滑坡危险性评估对滑坡运动路径复杂度的量化和概率分布研究提出了需求.系统地梳理和总结了滑坡运动路径复杂度的研究现状,指出了相关研究所面临的关键问题,并进行了未来研究展望.总体上,当前关于滑坡运动路径复杂行为的研究,主要面临量化研究稀缺、概率分布研究欠缺的问题.具体表现在:现有滑坡运动路径的剖面线概化方法难以处理多路径复杂行为;现有零星的指标不能满足滑坡运动路径复杂度的系统性科学量化;滑坡运动路径复杂度概率分布的分布函数不明、主控因素不清.进一步,针对待解决的关键问题,本文在研究展望中提出:主要通过分段单路径化方案,实现滑坡运动多路径复杂行为的剖面线概化;构建基于剖面线的滑坡运动路径复杂度的量化指标体系,突破量化难题;基于大量滑坡实例数据,确定滑坡运动路径复杂度概率分布的分布函数、查清其主控因素;最终,实现滑坡运动路径复杂度概率分布的预测建模,支撑滑坡危险性及风险定量评估.
Abstract:Landslide is generally characterized by complex moving paths, reflected by behaviors including spreading, turning, splitting, braiding, coalescence and connection.The complexity of landslide moving path increases landslide risk.Therefore, researches on the quantifications and probability distributions of the complexities of landslide moving paths are required for landslide hazard assessment.In this paper it systematically reviews current researches on the complexities of landslide moving paths, points out key problems faced by relevant researches, and proposed perspectives for future researches.Generally, both the quantifications and probabilistic distributions of the complexities of landslide moving paths are inadequate.Specifically, the current profile abstraction method for landslide moving path is not applicable to multi-path complex behaviors; existing indices cannot systematically and scientifically quantify the complexities of landslide moving paths; the probability distribution functions of the complexities of landslide moving paths and their major constraining factors are not clear.Further, for solving the above problems, in this paper it suggests in the prospects: (1) to realize profile abstractions of multi-path complex behaviors mainly by transforming multi-paths into single-paths section by section; (2) to systematically quantify the complexities of landslide moving paths by developing a profile based index system; (3) to find out the probability distribution functions of the complexities of landslide moving paths and their major constraining factors by comprehensively analyzing data of landslide cases from various sources; and finally to develop prediction models for the probability distributions of the complexities of landslide moving paths, and further give a scientific support for quantitative landslide hazard and risk assessments in practice.
-
Key words:
- landslide /
- moving path /
- complexity /
- probability distribution /
- profile /
- engineering geology
-
图 1 滑坡运动路径的6种基本复杂行为示意图(改自Schaefer et al., 2021)
Fig. 1. Sketches showing the 6 fundamental complex behaviors of landslide moving paths (modified from Schaefer et al., 2021)
图 2 滑坡运动路径的6种基本复杂行为的典型案例
a.福建南平强降雨触发滑坡群;b.汶川地震触发滑坡群(改自Yin et al., 2009)
Fig. 2. Typical cases of the 6 fundamental complex behaviors of landslide moving paths
表 1 滑坡运动路径研究文献中国知网(CNKI)数据库中文主题检索词
Table 1. Chinese searching keywords for literatures about researches on landslide moving paths in China National Knowledge Infrastructure (CNKI)
主题检索词1 主题检索词2 主题检索词3 滑坡 运动 路径 泥石流 滑动 轨迹 碎屑流 流动 N.A. N.A. 运移 N.A. 表 2 滑坡运动路径研究文献Web of Science数据库英文主题检索词
Table 2. English searching keywords for literatures about researches on landslide moving paths in Web of Science
主题检索词1 主题检索词2 “landslide” “landslide path” “debris flow” “mo* path” (i.e., moving path, movement path, motion path) “rock avalanche” “*out path” (i.e., runout path, run-out path) “debris avalanche” “slid* path” (i.e., slide path, sliding path) N.A. “flow* path” (i.e., flow path, flowing path) 注:使用“route”替换“path”进行检索几乎不返回结果. -
[1] Bessette-Kirton, E. K., Coe, J. A., Schulz, W. H., et al., 2020. Mobility Characteristics of Debris Slides and Flows Triggered by Hurricane Maria in Puerto Rico. Landslides, 17(12): 2795-2809. https://doi.org/10.1007/s10346-020-01445-z [2] Brideau, M. A., Stead, D., Millard, T. H., et al., 2019. Field Characterisation and Numerical Modelling of Debris Avalanche Runout on Vancouver Island, British Columbia, Canada. Landslides, 16(5): 875-891. https://doi.org/10.1007/s10346-019-01141-7 [3] Brunetti, M. T., Guzzetti, F., Cardinali, M., et al., 2014. Analysis of a New Geomorphological Inventory of Landslides in Valles Marineris, Mars. Earth and Planetary Science Letters, 405: 156-168. https://doi.org/10.1016/j.epsl.2014.08.025 [4] Brunetti, M. T., Guzzetti, F., Rossi, M., 2009. Probability Distributions of Landslide Volumes. Nonlinear Processes in Geophysics, 16(2): 179-188. https://doi.org/10.5194/npg-16-179-2009 [5] Bui, D. T., Tuan, T. A., Klempe, H., et al., 2016. Spatial Prediction Models for Shallow Landslide Hazards: A Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree. Landslides, 13(2): 361-378. https://doi.org/10.1007/s10346-015-0557-6 [6] Chae, B. G., Wu, Y. H., Liu, K. F., et al., 2020. Simulation of Debris-Flow Runout near a Construction Site in Korea. Applied Sciences, 10(17): 6079. https://doi.org/10.3390/app10176079 [7] Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract). [8] Chen, C. Y., 2009. Sedimentary Impacts from Landslides in the Tachia River Basin, Taiwan. Geomorphology, 105(3-4): 355-365. https://doi.org/10.1016/j.geomorph.2008.10.009 [9] Criss, R. E., Yao, W. M., Li, C. D., et al., 2020. A Predictive, Two-Parameter Model for the Movement of Reservoir Landslides. Journal of Earth Science, 31(6): 1051-1057. https://doi.org/10.1007/s12583-020-1331-9 [10] Cruden, D, M., 1991. A Simple Definition of a Landslide. Bulletin of the International Association of Engineering Geology, 43(1): 27-29. https://doi.org/10.1007/bf02590167 [11] Cruden, D, M., Varnes, D. J., 1996. Landslide Types and Processes. In: Turner, A. K., Schuster, R. L., eds., Landslides Investigation and Mitigation. National Academy Press, Washington, D. C., 36-75. [12] Cruden, D., Lan, H. X., 2015. Using the Working Classification of Landslides to Assess the Danger from a Natural Slope. In: Lollino, G., ed., Engineering Geology for Society and Territory. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-09057-3_1 [13] Cuomo, S., Cascini, L., Pastor, M., et al., 2017. Modelling the Propagation of Debris Avalanches in Presence of Obstacles. In: Mikoš, M., ed., Advancing Culture of Living with Landslides. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-53487-9_55 [14] Dai, F. C., Lee, C. F., 2001. Frequency-Volume Relation and Prediction of Rainfall-Induced Landslides. Engineering Geology, 59(3-4): 253-266. https://doi.org/10.1016/s0013-7952(00)00077-6 [15] Dai, Z. L., Huang, Y., Cheng, H. L., et al., 2014.3D Numerical Modeling Using Smoothed Particle Hydrodynamics of Flow-Like Landslide Propagation Triggered by the 2008 Wenchuan Earthquake. Engineering Geology, 180: 21-33. https://doi.org/10.1016/j.enggeo.2014.03.018 [16] D'Ambrosio, D., Di Gregorio, S., Iovine, G., et al., 2003. First Simulations of the Sarno Debris Flows through Cellular Automata Modelling. Geomorphology, 54(1-2): 91-117. https://doi.org/10.1016/s0169-555x(03)00058-8 [17] Das, I., Stein, A., Kerle, N., et al., 2011. Probabilistic Landslide Hazard Assessment Using Homogeneous Susceptible Units (HSU) along a National Highway Corridor in the Northern Himalayas, India. Landslides, 8(3): 293-308. https://doi.org/10.1007/s10346-011-0257-9 [18] Dormann, C. F., Elith, J., Bacher, S., et al., 2013. Collinearity: A Review of Methods to Deal with it and a Simulation Study Evaluating Their Performance. Ecography, 36(1): 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x [19] Du, J., Yin, K. L., Wang, J. J., 2015. Simulation of Three-Dimensional Movement of Landslide-Debris Flow Based on Finite Volume Method. Chinese Journal of Rock Mechanics and Engineering, 34(3): 480-488(in Chinese with English abstract). [20] Dufresne, A., Prager, C., Bösmeier, A., 2016. Insights into Rock Avalanche Emplacement Processes from Detailed Morpho-Lithological Studies of the Tschirgant Deposit (Tyrol, Austria). Earth Surface Processes and Landforms, 41(5): 587-602. https://doi.org/10.1002/esp.3847 [21] Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 [22] Fan, X. Y., Zhang, R. X., Hu, X. B., 2020. Study on the Influence of Valley Topographic Parameter on the Moving Distance of Landslide. Journal of Geomechanics, 26(1): 106-114(in Chinese with English abstract). [23] Froude, M. J., Petley, D. N., 2018. Global Fatal Landslide Occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8): 2161-2181. https://doi.org/10.5194/nhess-18-2161-2018 [24] Gao, L., Zhang, L. M., Chen, H. X., et al., 2021. Topography and Geology Effects on Travel Distances of Natural Terrain Landslides: Evidence from a Large Multi-Temporal Landslide Inventory in Hong Kong. Engineering Geology, 292: 106266. https://doi.org/10.1016/j.enggeo.2021.106266 [25] Gao, Y., Yin, Y. P., Li, B., et al., 2017. Characteristics and Numerical Runout Modeling of the Heavy Rainfall-Induced Catastrophic Landslide-Debris Flow at Sanxicun, Dujiangyan, China, Following the Wenchuan Ms 8.0 Earthquake. Landslides, 14(4): 1361-1374. https://doi.org/10.1007/s10346-016-0793-4 [26] Gariano, S. L., Guzzetti, F., 2016. Landslides in a Changing Climate. Earth-Science Reviews, 162: 227-252. https://doi.org/10.1016/j.earscirev.2016.08.011 [27] Ghosh, S., van Westen, C. J., Carranza, E. J. M., et al., 2012. Generating Event-Based Landslide Maps in a Data-Scarce Himalayan Environment for Estimating Temporal and Magnitude Probabilities. Engineering Geology, 128: 49-62. https://doi.org/10.1016/j.enggeo.2011.03.016 [28] Golovko, D., Roessner, S., Behling, R., et al., 2017. Automated Derivation and Spatio-Temporal Analysis of Landslide Properties in Southern Kyrgyzstan. Natural Hazards, 85(3): 1461-1488. https://doi.org/10.1007/s11069-016-2636-y [29] Guo, C. W., Huang, Y. D., Yao, L. K., et al., 2017. Size and Spatial Distribution of Landslides Induced by the 2015 Gorkha Earthquake in the Bhote Koshi River Watershed. Journal of Mountain Science, 14(10): 1938-1950. https://doi.org/10.1007/s11629-016-4140-y [30] Guo, J., Yi, S. J., Yin, Y. Z., et al., 2020. The Effect of Topography on Landslide Kinematics: A Case Study of the Jichang Town Landslide in Guizhou, China. Landslides, 17(4): 959-973. https://doi.org/10.1007/s10346-019-01339-9 [31] Guzzetti, F., Ardizzone, F., Cardinali, M., et al., 2008. Distribution of Landslides in the Upper Tiber River Basin, Central Italy. Geomorphology, 96(1-2): 105-122. https://doi.org/10.1016/j.geomorph.2007.07.015 [32] Guzzetti, F., Reichenbach, P., Cardinali, M., et al., 2005. Probabilistic Landslide Hazard Assessment at the Basin Scale. Geomorphology, 72(1-4): 272-299. https://doi.org/10.1016/j.geomorph.2005.06.002 [33] Haque, U., da Silva, P. F., Devoli, G., et al., 2019. The Human Cost of Global Warming: Deadly Landslides and Their Triggers (1995—2014). The Science of the Total Environment, 682: 673-684. https://doi.org/10.1016/j.scitotenv.2019.03.415 [34] He, X. L., Xu, C., Qi, W. W., et al., 2021. Landslides Triggered by the 2020 Qiaojia Mw 5.1 Earthquake, Yunnan, China: Distribution, Influence Factors and Tectonic Significance. Journal of Earth Science, 32(5): 1056-1068. https://doi.org/10.1007/s12583-021-1492-1 [35] Hu, R. L., Fan, L. F., Wang, S. S., et al., 2013. Theory and Method for Landslide Risk Assessment-Current Status and Future Development. Journal of Engineering Geology, 21(1): 76-84(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2013.01.009 [36] Hu, X. B., Fan, X. Y., Ma, X., 2019. Energy Consumption Evaluation of High-Speed and Long-Distance Landslide in Accelerated Motion. Yangtze River, 50(2): 191-196(in Chinese with English abstract). [37] Hu, Y. X., Liu, X. R., Jiang, Y., et al., 2011. Three-Parameter Inverse-Gamma Probability Distribution Model of Incomplete Landslide Inventory. Journal of Central South University (Science and Technology), 42(10): 3176-3181(in Chinese with English abstract). [38] Huang, D., Li, Y. Q., Song, Y. X., et al., 2019. Insights into the Catastrophic Xinmo Rock Avalanche in Maoxian County, China: Combined Effects of Historical Earthquakes and Landslide Amplification. Engineering Geology, 258: 105158. https://doi.org/10.1016/j.enggeo.2019.105158 [39] Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw 6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583-021-1433-z [40] Hungr, O., Evans, S. G., Bovis, M. J., et al., 2001. A Review of the Classification of Landslides of the Flow Type. Environmental and Engineering Geoscience, 7(3): 221-238. https://doi.org/10.2113/gseegeosci.7.3.221 [41] Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y [42] Hungr, O., McDougall, S., Wise, M., et al., 2008. Magnitude-Frequency Relationships of Debris Flows and Debris Avalanches in Relation to Slope Relief. Geomorphology, 96(3-4): 355-365. https://doi.org/10.1016/j.geomorph.2007.03.020 [43] Hurst, M. D., Ellis, M. A., Royse, K. R., et al., 2013. Controls on the Magnitude-Frequency Scaling of an Inventory of Secular Landslides. Earth Surface Dynamics, 1(1): 67-78. https://doi.org/10.5194/esurf-1-67-2013 [44] Imaizumi, F., Masui, T., Yokota, Y., et al., 2019. Initiation and Runout Characteristics of Debris Flow Surges in Ohya Landslide Scar, Japan. Geomorphology, 339: 58-69. https://doi.org/10.1016/j.geomorph.2019.04.026 [45] Iwahashi, J., Watanabe, S., Furuya, T., 2003. Mean Slope-Angle Frequency Distribution and Size Frequency Distribution of Landslide Masses in Higashikubiki Area, Japan. Geomorphology, 50(4): 349-364. https://doi.org/10.1016/s0169-555x(02)00222-2 [46] Jaiswal, P., van Westen, C. J., Jetten, V., 2010. Quantitative Landslide Hazard Assessment along a Transportation Corridor in Southern India. Engineering Geology, 116(3): 236-250. https://doi.org/10.1016/j.enggeo.2010.09.005 [47] Kattel, P., Kafle, J., Fischer, J. T., et al., 2018. Interaction of Two-Phase Debris Flow with Obstacles. Engineering Geology, 242: 197-217. https://doi.org/10.1016/j.enggeo.2018.05.023 [48] Lan, H. X., Derek Martin, C., Lim, C. H., 2007. Rockfall Analyst: A GIS Extension for Three-Dimensional and Spatially Distributed Rockfall Hazard Modeling. Computers & Geosciences, 33(2): 262-279. https://doi.org/10.1016/j.cageo.2006.05.013 [49] Lan, H. X., Li, L. P., Wu, Y. M., 2015. Stochasticity of Rockfall Tracjectory Revealed by a Field Experiment Repeated on a Single Sample. In: Lollino, G., ed., Engineering Geology for Society and Territory. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-09057-3_304 [50] Lan, H. X., Li, L. P., Zhang, Y. S., et al., 2013. Risk Assessment of Debris Flow in Yushu Seismic Area in China: A Perspective for the Reconstruction. Natural Hazards and Earth System Sciences, 13(11): 2957-2968. https://doi.org/10.5194/nhess-13-2957-2013 [51] Lan, H. X., Martin, C. D., Zhou, C. H., 2008. Estimating the Size and Travel Distance of Klapperhorn Mountain Debris Flows for Risk Analysis along Railway, Canada. International Journal of Sediment Research, 23(3): 275-282. https://doi.org/10.1016/s1001-6279(08)60025-6 [52] Lan, H. X., Martin, C. D., Zhou, C. H., et al., 2010. Rockfall Hazard Analysis Using LiDAR and Spatial Modeling. Geomorphology, 118(1-2): 213-223. https://doi.org/10.1016/j.geomorph.2010.01.002 [53] Lan, H. X., Wu, F. Q., Zhou, C. H., et al., 2002. Analysis on Susceptibility of GIS Based Landslide Triggering Factors in Yunnan Xiaojiang Watershed. Chinese Journal of Rock Mechanics and Engineering, 21(10): 1500-1506(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.10.014 [54] Lan, H. X., Xiao, R. H., Yan, F. Z., et al., 2016. The Geological Engineering Conditions Analysis for Sichuan-Tibet Interconnection Project. Journal of Engineering Geology, 24(Suppl.): 375-385(in Chinese with English abstract). [55] Lan, H. X., Zhang, N., Li, L. P., et al., 2021. Risk Analysis of Major Engineering Geological Hazards for Sichuan-Tibet Railway in the Phase of Feasibility Study. Journal of Engineering Geology, 29(2): 326-341(in Chinese with English abstract). [56] Lan, H. X., Zhou, C. H., Wang, L. J., et al., 2004. Landslide Hazard Spatial Analysis and Prediction Using GIS in the Xiaojiang Watershed, Yunnan, China. Engineering Geology, 76(1-2): 109-128. https://doi.org/10.1016/j.enggeo.2004.06.009 [57] Li, L. P., Lan, H. X., 2015. Probabilistic Modeling of Rockfall Trajectories: A Review. Bulletin of Engineering Geology and the Environment, 74(4): 1163-1176. https://doi.org/10.1007/s10064-015-0718-9 [58] Li, L. P., Lan, H. X., Guo, C. B., et al., 2017. A Modified Frequency Ratio Method for Landslide Susceptibility Assessment. Landslides, 14(2): 727-741. https://doi.org/10.1007/s10346-016-0771-x [59] Li, L. P., Lan, H. X., Guo, C. B., et al., 2017. Geohazard Susceptibility Assessment along the Sichuan-Tibet Railway and Its Adjacent Area Using an Improved Frequency Ratio Method. Geoscience, 31(5): 911-929(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.004 [60] Li, L. P., Lan, H. X., Strom, A., 2020. Automatic Generation of Landslide Profile for Complementing Landslide Inventory. Geomatics, Natural Hazards and Risk, 11(1): 1000-1030. https://doi.org/10.1080/19475705.2020.1766578 [61] Li, L. P., Lan, H. X., Wu, Y. M., 2014. The Volume-to-Surface-Area Ratio Constrains the Rollover of the Power Law Distribution for Landslide Size. The European Physical Journal Plus, 129(5): 89. https://doi.org/10.1140/epjp/i2014-14089-y [62] Li, L. P., Lan, H. X., Wu, Y. M., 2016. How Sample Size can Effect Landslide Size Distribution. Geoenvironmental Disasters, 3: 18. https://doi.org/10.1186/s40677-016-0052-y [63] Li, Q. Q., Huang, D., Pei, S. F., et al., 2021. Using Physical Model Experiments for Hazards Assessment of Rainfall-Induced Debris Landslides. Journal of Earth Science, 32(5): 1113-1128. https://doi.org/10.1007/s12583-020-1398-3 [64] Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29(6): 687-711. https://doi.org/10.1002/esp.1064 [65] McDougall, S., 2017.2014 Canadian Geotechnical Colloquium: Landslide Runout Analysis—Current Practice and Challenges. Canadian Geotechnical Journal, 54(5): 605-620. https://doi.org/10.1139/cgj-2016-0104 [66] Michelini, T., Bettella, F., D'Agostino, V., 2017. Field Investigations of the Interaction between Debris Flows and Forest Vegetation in Two Alpine Fans. Geomorphology, 279: 150-164. https://doi.org/10.1016/j.geomorph.2016.09.029 [67] Nicoletti, P. G., Sorriso-Valvo, M., 1991. Geomorphic Controls of the Shape and Mobility of Rock Avalanches. Geological Society of America Bulletin, 103(10): 1365-1373. https://doi.org/10.1130/0016-7606(1991)1031365:gcotsa>2.3.co;2 doi: 10.1130/0016-7606(1991)1031365:gcotsa>2.3.co;2 [68] Peng, L., Xu, S. N., Peng, J. H., 2014. Research on Development Characteristics and Size of Landslides in the Three Gorges Area. Geoscience, 28(5): 1077-1086(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2014.05.025 [69] Qiu, H. J., Cui, P., Hu, S., et al., 2016. Size-Frequency Distribution of Landslides in Different Landforms on the Loess Plateau of Northern Shaanxi. Earth Science, 41(2): 343-350(in Chinese with English abstract). [70] Qiu, H. J., Cui, P., Regmi, A. D., et al., 2018. The Effects of Slope Length and Slope Gradient on the Size Distributions of Loess Slides: Field Observations and Simulations. Geomorphology, 300: 69-76. https://doi.org/10.1016/j.geomorph.2017.10.020 [71] Rana, K., Ozturk, U., Malik, N., 2021. Landslide Geometry Reveals Its Trigger. Geophysical Research Letters, 48(4): e2020GL090848. https://doi.org/10.1029/2020gl090848 [72] Schaefer, L. N., Santi, P. M., Duron, T. C., 2021. Debris Flow Behavior during the September 2013 Rainstorm Event in the Colorado Front Range, USA. Landslides, 18(5): 1585-1595. https://doi.org/10.1007/s10346-020-01590-5 [73] Schneider, D., Huggel, C., Haeberli, W., et al., 2011. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948-1966. https://doi.org/10.1002/esp.2218 [74] Stark, C. P., Hovius, N., 2001. The Characterization of Landslide Size Distributions. Geophysical Research Letters, 28(6): 1091-1094. https://doi.org/10.1029/2000gl008527 [75] Tang, C. X., van Westen, C. J., Tanyaş, H., et al., 2016. Analysing Post-Earthquake Landslide Activity Using Multi-Temporal Landslide Inventories near the Epicentral Area of the 2008 Wenchuan Earthquake. Natural Hazards and Earth System Sciences, 16(12): 2641-2655. https://doi.org/10.5194/nhess-16-2641-2016 [76] Tanyaş, H. K., van Westen, C. J., Allstadt, K. E., et al., 2017. Presentation and Analysis of a Worldwide Database of Earthquake-Induced Landslide Inventories. Journal of Geophysical Research: Earth Surface, 122(10): 1991-2015. https://doi.org/10.1002/2017jf004236 [77] Tsuchida, T., Moriwaki, T., Nakai, S., et al., 2019. Investigation and Consideration on Landslide Zoning of Multiple Slope Failures and Debris Flows of 2014 Disaster in Hiroshima, Japan. Soils and Foundations, 59(4): 1085-1102. https://doi.org/10.1016/j.sandf.2018.12.012 [78] Varnes, D. J., 1958. Landslide Types and Processes. In: Eckel, E. B., ed., Landslides and Engineering Practice. NAS-NRC Publication 544, Washington, D. C. . [79] Varnes, D. J., 1978. Slope Movement Types and Processes. In: Schuster, R. L., Krizek, R. J., eds., Landslides, Analysis and Control. National Academy of Sciences, Washington, D. C. . [80] Wang, L. J., Ma, C., Miao, L., 2020. Morphological and Depositional Characteristics of Slope Debris Flow. Journal of Natural Disasters, 29(6): 98-106(in Chinese with English abstract). [81] Wang, Y. F., Xu, Q., Cheng, Q. G., et al., 2016. Experimental Study on the Propagation and Deposit Features of Rock Avalanche along 3D Complex Topography. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1776-1791(in Chinese with English abstract). [82] Wu, Y. M., Lan, H. X., Gao, X., et al., 2014. Rainfall Threshold of Storm-Induced Landslides in Typhoon Areas: A Case Study of Fujian Province. Journal of Engineering Geology, 22(2): 255-262(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2014.02.015 [83] Xing, A. G., Xu, Q., Gan, J. J., 2015. On Characteristics and Dynamic Analysis of the Niumian Valley Rock Avalanche Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Environmental Earth Sciences, 73(7): 3387-3401. https://doi.org/10.1007/s12665-014-3626-6 [84] Xing, A. G., Xu, Q., Zhu, Y. Q., et al., 2016. The August 27, 2014, Rock Avalanche and Related Impulse Water Waves in Fuquan, Guizhou, China. Landslides, 13(2): 411-422. https://doi.org/10.1007/s10346-016-0679-5 [85] Xing, A. G., Yuan, X. Y., Xu, Q., et al., 2017. Characteristics and Numerical Runout Modelling of a Catastrophic Rock Avalanche Triggered by the Wenchuan Earthquake in the Wenjia Valley, Mianzhu, Sichuan, China. Landslides, 14(1): 83-98. https://doi.org/10.1007/s10346-016-0707-5 [86] Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441-461. https://doi.org/10.1007/s10346-013-0404-6 [87] Xu, Q., Huang, R. Q., 1997. Power Law between Volume and Frequency of Geological Hazards. Journal of Chengdu University of Technology, 24(Suppl.): 91-96(in Chinese with English abstract). [88] Yao, L. K., Huang, Y. D., Yang, Q. H., 2010. The Self-Organized Criticality of Landslids Triggered by Earthquake. Journal of Sichuan University (Engineering Science Edition), 42(5): 33-43(in Chinese with English abstract). [89] Yin, Y. P., Wang, F. W., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139-152. https://doi.org/10.1007/s10346-009-0148-5 [90] Yin, Y. P., Xing, A. G., Wang, G. H., et al., 2017. Experimental and Numerical Investigations of a Catastrophic Long-Runout Landslide in Zhenxiong, Yunnan, Southwestern China. Landslides, 14(2): 649-659. https://doi.org/10.1007/s10346-016-0729-z [91] Zhan, W. W., Huang, R. Q., Pei, X. J., et al., 2017. Empirical Prediction Model for Movement Distance of Gully-Type Rock Avalanches. Journal of Engineering Geology, 25(1): 154-163(in Chinese with English abstract). [92] Zhang, T., Yang, Z. H., Zhang, Y. S., et al., 2019. An Analysis of the Entrainment of the Xinmo High-Position Landslide in Maoxian County, Sichuan. Hydrogeology & Engineering Geology, 46(3): 138-145(in Chinese with English abstract). [93] Zhang, Y. X., Lan, H. X., Li, L. P., et al., 2019. Combining Statistical Model and Physical Model for Refined Assessment of Geological Disaster—A Case Study of Longshan Community in Fujian Province. Journal of Engineering Geology, 27(3): 608-622. (in Chinese with English abstract). [94] Zhao, J., Ouyang, C. J., Ni, S. D., et al., 2020. Analysis of the 2017 June Maoxian Landslide Processes with Force Histories from Seismological Inversion and Terrain Features. Geophysical Journal International, 222(3): 1965-1976. https://doi.org/10.1093/gji/ggaa269 [95] Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876(in Chinese with English abstract). [96] Zhou, L., Fan, X. M., Xu, Q., et al., 2019. Numerical Simulation and Hazard Prediction on Movement Process Characteristics of Baige Landslide in Jinsha River. Journal of Engineering Geology, 27(6): 1395-1404(in Chinese with English abstract). [97] Zhou, S. H., Fang, L. G., Liu, B. C., 2015. Slope Unit-Based Distribution Analysis of Landslides Triggered by the April 20, 2013, Ms 7.0 Lushan Earthquake. Arabian Journal of Geosciences, 8(10): 7855-7868. https://doi.org/10.1007/s12517-015-1835-2 [98] Zhuang, J. Q., Cui, P., Hu, K. H., et al., 2010. Characteristics of Earthquake-Triggered Landslides and Post-Earthquake Debris Flows in Beichuan County. Journal of Mountain Science, 7(3): 246-254. https://doi.org/10.1007/s11629-010-2016-0 [99] 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012024.htm [100] 杜娟, 殷坤龙, 王佳佳, 2015. 基于有限体积法的滑坡-碎屑流三维运动过程模拟分析. 岩石力学与工程学报, 34(3): 480-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503006.htm [101] 樊晓一, 张睿骁, 胡晓波, 2020. 沟谷地形参数对滑坡运动距离的影响研究. 地质力学学报, 26(1): 106-114. [102] 胡瑞林, 范林峰, 王珊珊, 等, 2013. 滑坡风险评价的理论与方法研究. 工程地质学报, 21(1): 76-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201301013.htm [103] 胡晓波, 樊晓一, 马新, 2019. 高速远程滑坡加速运动过程能量消耗评判研究. 人民长江, 50(2): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201902034.htm [104] 胡元鑫, 刘新荣, 蒋洋, 等, 2011. 非完整滑坡编目三参数反Gamma概率分布模型. 中南大学学报(自然科学版), 42(10): 3176-3181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201110048.htm [105] 兰恒星, 伍法权, 周成虎, 等, 2002. 基于GIS的云南小江流域滑坡因子敏感性分析. 岩石力学与工程学报, 21(10): 1500-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200210015.htm [106] 兰恒星, 肖锐铧, 严福章, 等, 2016. 川藏联网工程地质条件分析. 工程地质学报, 24(增刊): 375-385. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201610001057.htm [107] 兰恒星, 张宁, 李郎平, 等, 2021. 川藏铁路可研阶段重大工程地质风险分析. 工程地质学报, 29(2): 326-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102004.htm [108] 李郎平, 兰恒星, 郭长宝, 等, 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价. 现代地质, 31(5): 911-929. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201705004.htm [109] 彭令, 徐素宁, 彭军还, 2014. 三峡库区滑坡规模与发育特征研究. 现代地质, 28(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201405026.htm [110] 邱海军, 崔鹏, 胡胜, 等, 2016. 陕北黄土高原不同地貌类型区黄土滑坡频率分布. 地球科学, 41(2): 343-350. doi: 10.3799/dqkx.2016.026 [111] 王丽娟, 马超, 苗绿, 2020. 坡面泥石流形态和堆积特征研究. 自然灾害学报, 29(6): 98-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202006010.htm [112] 王玉峰, 许强, 程谦恭, 等, 2016. 复杂三维地形条件下滑坡-碎屑流运动与堆积特征物理模拟实验研究. 岩石力学与工程学报, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm [113] 伍宇明, 兰恒星, 高星, 等, 2014. 台风暴雨型滑坡降雨阈值曲线研究——以福建地区为例. 工程地质学报, 22(2): 255-262. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201402014.htm [114] 许强, 黄润秋, 1997. 地质灾害发生频率的幂律规则. 成都理工大学学报(自然科学版), 24(增刊): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG7S1.013.htm [115] 姚令侃, 黄艺丹, 杨庆华, 2010. 地震触发崩塌滑坡自组织临界性研究. 四川大学学报(工程科学版), 42(5): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005007.htm [116] 詹威威, 黄润秋, 裴向军, 等, 2017. 沟道型滑坡-碎屑流运动距离经验预测模型研究. 工程地质学报, 25(1): 154-163. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701021.htm [117] 张涛, 杨志华, 张永双, 等, 2019. 四川茂县新磨村高位滑坡铲刮作用分析. 水文地质工程地质, 46(3): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903019.htm [118] 仉义星, 兰恒星, 李郎平, 等, 2019. 综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例. 工程地质学报, 27(3): 608-622. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903020.htm [119] 周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071 [120] 周礼, 范宣梅, 许强, 等, 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究. 工程地质学报, 27(6): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906022.htm