• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    交代岩石圈地幔与金成矿作用

    汪在聪 王焰 汪翔 程怀 许喆

    汪在聪, 王焰, 汪翔, 程怀, 许喆, 2021. 交代岩石圈地幔与金成矿作用. 地球科学, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221
    引用本文: 汪在聪, 王焰, 汪翔, 程怀, 许喆, 2021. 交代岩石圈地幔与金成矿作用. 地球科学, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221
    Wang Zaicong, Wang Christina Yan, Wang Xiang, Cheng Huai, Xu Zhe, 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221
    Citation: Wang Zaicong, Wang Christina Yan, Wang Xiang, Cheng Huai, Xu Zhe, 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221

    交代岩石圈地幔与金成矿作用

    doi: 10.3799/dqkx.2021.221
    基金项目: 

    国家重点研发计划“深地资源勘查开采”重点专项项目 2016YFC0600103

    国家自然科学基金项目 41722302

    国家自然科学基金项目 41673027

    详细信息
      作者简介:

      汪在聪(1985-), 教授, 主要研究方向: 亲铁亲铜元素地球化学, 行星增生与壳幔演化.ORCID: 0000-0002-3584-1673.E-mail: zaicongwang@cug.edu.cn

    • 中图分类号: P581

    Metasomatized Lithospheric Mantle and Gold Mineralization

    • 摘要: 交代岩石圈地幔与大型金矿床之间的成因联系受到越来越多的关注.研究成矿金属在地幔源区的富集程度和幔源岩浆中的金含量,以及金从地幔源区释放、迁移并大规模富集成矿的机制和过程可以帮助我们更好地认识交代岩石圈地幔对金富集成矿的重要作用.金是高度亲铜元素,同时还具有流体活动性,在地幔岩浆作用、岩浆热液演化和富集成矿等诸多过程中的行为较为复杂.主要从金的地球化学行为出发,通过梳理金在各类地幔岩石和幔源岩浆中的分布,以及岩浆热液中金的主要行为及其受控因素,探讨交代岩石圈地幔对巨量金成矿的关键控制机制.主要认识包括:(1)交代岩石圈地幔可能是形成大规模热液型金矿床的重要源区,但金在源区的异常富集可能并不是成矿的必要条件;(2)地幔交代组分(特别是挥发分)有助于金从地幔源区中有效释放、并通过跨岩石圈尺度的深大断裂迁移富集;(3)富挥发分的岩浆热液中金的富集沉淀过程远比一个富金的地幔源区对大规模金成矿作用的贡献更大.因此,深刻理解岩石圈地幔长期演化过程中金在地幔交代和岩浆-热液演化过程中的行为与富集机制是解析大型金矿床成因的关键.

       

    • 图  1  俯冲循环和地幔交代控制的金成矿构造模式

      不同类型(富)金矿床的形成均与汇聚板块边缘俯冲相关的构造体制和交代岩石圈地幔部分熔融形成的岩浆/流体有关, 修改自Groves et al.(2021)

      Fig.  1.  Schematic diagram of gold mineralization controlled by subduction structure and mantle metasomatism

      图  2  Au在硅酸盐溶体中的溶解度以及在不同物相间的分配系数

      a.高温高压实验结果表明硅酸盐熔体中的Au主要受控于还原性S含量.当氧逸度过高时, S将转化为硫酸盐而失去对Au的控制作用; 数据引自Botcharnikov et al.(2011); Jégo and Pichavant(2012); Zajacz et al.(2013); Botcharnikov et al.(2013); Li et al.(2019a); b.天然样品及实验测定的Au在不同物相间的分配系数, 由于温度、压力、氧逸度以及熔/流体成分等条件的变化, Au在各相之间的分配系数变化非常大.数据引自Ulrich et al.(1999); Simon et al.(2005); Williams-Jones and Heinrich(2005); Simon et al.(2007); Seo et al.(2009); Botcharnikov et al.(2011); Frank et al.(2011); Botcharnikov et al.(2013); Li and Audétat(2013); Zajacz et al.(2013); Li et al.(2019a)

      Fig.  2.  The solubility of Au in silicate melts and partition coefficients of Au between different phases

      图  3  热液中Au的主要络合状态示意

      a.图中显示在特定造山型变质流体中Au的主要络合形式(黄铁矿-磁黄铁矿-磁铁矿矿物缓冲对, 3% NaCl, pH: 5~6条件下), 该图主要用于指示热液中溶解的Au主要和还原性S络合, 在高温热液体系中Au还会与Cl络合.需要注意的是, S、Cl和Au的络合状态以及Au溶解度会随温度、压力、氧逸度或含S或Cl相浓度的改变而显著变化.该图修改自Pokrovski et al.(2015); b.热液体系中Au的不同络合物的示意图, Au主要受控于还原性S, 而硫酸根(SO42-)对金没有控制作用.Au可与Cl和OH有一定程度的络合

      Fig.  3.  Schematic diagram of speciation of gold in hydrothermal fluids

      图  4  地幔橄榄岩、幔源熔体(a)以及地幔硫化物(b)中亲铜元素含量的典型分布

      上地幔主要以饱满的二辉橄榄岩为主, 具有与原始地幔类似的亲铜元素特征.由于部分熔融作用, 不相容的亲铜元素会进入到岩浆中, 造成方辉橄榄岩以及残余的硫化物中相对亏损这些不相容亲铜元素(如Pd、Au和S等); 相反, 地幔来源的熔体及结晶产物(如辉石岩和洋中脊玄武岩)以及熔体交代形成的粒间硫化物则表现出相对富集不相容亲铜元素的特征.地幔橄榄岩、地幔辉石岩以及洋中脊玄武岩数据引自Fischer-Gödde et al.(2011), Wang and Becker(2015), 硫化物数据引自Tassara et al.(2018)

      Fig.  4.  Typical patterns of chalcophile element contents in mantle peridotites, magmas (a) and sulfides (b)

      图  5  岩浆演化过程中岩浆岩Au元素含量(a)和Au/Pd(N)比值(b)随MgO降低的变化趋势

      岩浆达到硫化物饱和会造成残余熔体的Au含量下降, 但由于Au相对于Pd在硫化物中更不相容, 残余熔体的Au/Pd比值会逐渐升高.科马提岩数据引用自Brügmann et al.(1987), Hofmann et al.(2017); 岛弧玄武质岩浆岩数据引用自Park et al.(2013, 2015); 洋中脊玄武岩数据引自Jenner and O’Neill(2012).图b黑色虚线代表原始地幔Au/Pd(N)比值据McDonough and Sun(1995)

      Fig.  5.  The variations of Au contents (a) and Au/Pd(N) ratios (b) of magmas with decreasing MgO content during magmatic differentiation

      图  6  全球地幔岩的Au含量(a)和Au/Pd(N)比值(b)箱型图

      图中显示全球地幔岩石及幔源岩浆的Au含量普遍在1~2 ng/g, 引用数据见正文参考文献.所有数据均剔除了Au含量大于100 ng/g的极端异常值; 箱内显示出平均值(叉线)和中值(横线)

      Fig.  6.  The Au contents (a) and Au/Pd(N) ratios (b) of global mantle rocks and magmas

      图  7  全球地幔岩石及幔源岩浆的Au含量频率分布直方图

      箭头指示引用数据的最大值, 数据来源与图 6一致

      Fig.  7.  The frequency distribution histograms of Au contents in global mantle rocks and magmas

      图  8  全球地幔岩石Au含量和Au/Pd(N)比值与Al2O3含量(a, b)和Ba/Nb比值(c, d)

      地幔橄榄岩的Au含量理论上与地幔的饱满程度相关(Al2O3), 但地幔岩石的Au含量和Au/Pd比值总体上并没有随着Al2O3和Ba/Nb的升高而显著升高, 暗示地幔交代过程中Au的加入非常有限.数据来源和图 6一致, 其中原始地幔值来源于McDonough and Sun(1995)

      Fig.  8.  The Al2O3 (a, b), Ba/Nb (c, d) vs. Au and Au/Pd(N) ratios for global mantle rocks

      图  9  地幔部分熔融程度与硅酸盐熔体Au含量的模拟结果

      Au在地幔部分熔融过程中主要受控于岩浆硫化物饱和时的S含量(SCSS), 随着氧逸度和水含量升高, 硅酸盐熔体的SCSS会升高(假设为1 200、1 600和2 300 μg/g), 同时Au在硫化物与硅酸岩熔体中的分配系数则显著降低(假设为1 000和200)(Botcharnikov et al., 2011).模拟假设地幔源区的Au含量为0.5, 1和1.5 ng/g, S含量为180 μg/g, 地幔硫化物含量为0.06%, 部分熔融模型引自Lee et al.(2012).其中Au在地幔初始部分熔融时, 主要表现为轻微不相容性, 而当地幔硫化物完全耗尽时, 主要表现为强不相容性.部分熔融模拟显示地幔在相对氧化和富水的条件下, 即使源区不富集Au(0.5~1.5 ng/g), 也能够形成富Au的岩浆(~1~16 ng/g), 该图修改自Wang et al. (2022)

      Fig.  9.  Fractional mantle melting models: primary melt Au contents as a function of degree of melting and SCSS in melts

      图  10  交代岩石圈地幔控制大规模金成矿的模式

      长期的地幔交代会使一部分Au以及大量挥发分进入亏损的岩石圈地幔(< 0.5 ng/g), 但这并不会造成地幔Au的异常富集(< 0.5~2 ng/g).在交代地幔部分熔融条件下, 幔源富水岩浆能够有效迁移源区的易熔组分, 促使Au和挥发分(H2O、S、Cl、C等)在岩浆中的初步富集.富含挥发分的幔源岩浆沿着跨岩石圈尺度的深大薄弱构造向上迁移, Au随着出溶的挥发分进入岩浆热液中.这些成矿热液携带着幔源Au和挥发分沿着次级断裂进一步迁移, 并由于流体不混溶、沸腾脱气等作用而发生Au的高效沉淀, 最终形成大规模、高品位的金矿床

      Fig.  10.  The schematic cartoon of large-scale gold mineralization controlled by metasomatized lithospheric mantle

      图  11  巴布亚新几内亚利希尔岛Ladolam大型金矿床(> 1300 t)的区域构造背景(a)和成矿热液的钻孔取样示意(b)

      该图修改自McInnes et al.(1999); Simmons and Brown(2006).该金矿的成矿流体具有和下部交代岩石圈地幔一致的Os同位素组成, 指示成矿金属和流体主要来自交代的岩石圈地幔源区(McInnes et al., 1999).然而, 强烈交代的地幔橄榄岩包体和矿体下部1 km处成矿流体钻孔样品显示, 其下伏的交代岩石圈地幔源区(< 1 ng/g)以及成矿岩浆热液(~ 16 ng/g)并不异常富集金(McInnes et al., 1999; Simmons and Brown, 2006).这意味着Au在交代岩石圈地幔源区以及成矿热液中的显著富集并不是形成大规模金矿床的必要条件, 而Au在热液中的高效迁移和沉淀可能更为关键.巨大的交代地幔源区保证了充足的Au和热液.其中橘黄色椭球体代表Ladolam金矿集区.b图为全球不同地区地热流体钻孔样品Au含量.这些热液金含量整体与Ladolam大型金矿成矿热液的Au含量相当, 数据来源于Chambefort and Stefánsson (2020)

      Fig.  11.  Schematic diagram of geological settings (a) and down-hole sampling of geothermal fluids (b) of the Ladolam gold deposits, Lihir Island, Papua New Guinea

      表  1  Au在硅酸盐熔体中的含量和与硫化物之间的分配系数

      Table  1.   Experiment-determined Au contents in silicate melts and the partition coefficients between sulfide melts/monosulfide solid solution and silicate melts

      实验熔体成分 温度(℃) 压力(GPa) 氧逸度ΔFMQ 硫逸度logf$ {}_{{\mathrm{S}}_{2}} $ 硅酸盐熔体S含量(10-6) 硅酸盐熔体Au含量(10-6) 硫化物熔体/硅酸盐熔体(DAu) 单硫化物固溶体/硅酸盐熔体(DAu) 参考文献
      含水玄武质熔体 1 175~1 300 1.5~2.5 -3.1~0.9 -2.4~2.0 1 500~14 400 0.02~1.08 790~4 070 60~360 Li and Audétat, 2012
      含水玄武质熔体 1 200 1.5 -2.1~1.6 -1.1~2.1 < 100~15 900 0.6~15.4 7 522~15 339 50~72 Li and Audétat, 2013
      玄武质安山岩-流纹岩 950~1 050 0.5~3.0 -1.7~2.7 -2.17~2.08 48~5 536 0.012~55.300 10~14 194 Li et al., 2019a
      玄武质-安山质熔体 1 050 0.2 -0.70~3.16 -0.69 ~1.97 390~6 020 0.23~7.97 110~278 Botcharnikov et al., 2013
      玄武质熔体 1 050~1 200 0.2 0.1~1.3 1 200~6 110 0.22~13.04 ~2 205 ~170 Botcharnikov et al., 2011
      玄武质-流纹质熔体 800~1 030 0.2 0 -3.03~-1.74 115~670 0.06~4.30 Zajacz et al., 2013
      闪长岩-英安岩熔体 1 000~1 090 0.4 -1.0~3.2 1.00~2.03 548~957 1.21~4.25 Jégo et al., 2010
      闪长岩-英安岩熔体 995~1 000 0.4 -0.6~4.1 -3.76~3.16 256~2 442 0.25~5.16 Jégo and Pichavant, 2012
      闪长岩-英安岩熔体 950~1 000 0.9~1.4 0~0.8 0.55~3.84 261~3 865 0.07~47 Jégo et al., 2016
      下载: 导出CSV

      表  2  Au在流体-气相-硅酸盐熔体之间的分配系数

      Table  2.   Partition coefficients of Au between silicate melts-fluids-vapors

      实验初始物质 温度(℃) 压力(MPa) 气相/流体 气相/熔体 流体/熔体 参考文献
      DAu
      花岗质熔体 323~492 9~48 0.28~14 Seo et al., 2009
      花岗质熔体 710 110~145 0.14~0.72 8~72 56~100 Simon et al., 2005
      花岗质熔体 800 100 0.07~0.58 70~160 20~2 400 Frank et al., 2011
      花岗质熔体 800 120 6~50 Simon et al., 2007
      花岗质熔体 375~680 1~37 Williams-Jones and Heinrich, 2005
      下载: 导出CSV
    • [1] Ackerman, L., Polák, L., Magna, T., et al., 2019. Highly Siderophile Element Geochemistry and Re-Os Isotopic Systematics of Carbonatites: Insights from Tamil Nadu, India. Earth and Planetary Science Letters, 520: 175-187. https://doi.org/10.1016/j.epsl.2019.05.035
      [2] Alard, O., Griffin, W.L., Lorand, J.P., et al., 2000. Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407: 891-894. https://doi.org/10.1038/35038049
      [3] Alard, O., Lorand, J.P., Reisberg, L., et al., 2011. Volatile-Rich Metasomatism in Montferrier Xenoliths (Southern France): Implications for the Abundances of Chalcophile and Highly Siderophile Elements in the Subcontinental Mantle. Journal of Petrology, 52(10): 2009-2045. https://doi.org/10.1093/petrology/egr038
      [4] Audétat, A., Edmonds, M., 2020. Magmatic-Hydrothermal Fluids. Elements, 16(6): 401-406. https://doi.org/10.2138/gselements.16.6.401
      [5] Audétat, A., Simon, A.C., 2012. Magmatic Controls on Porphyry Copper Genesis. Geology and Genesis. In: Hedenquist, J.W., Harris, M., Camus, F., eds., Geology and Genesis of Major Copper Deposits and Districts of the World. A Tribute to Richard H. Sillitoe. Society of Economic Geologists, 16: 553-572.
      [6] Aulbach, S., Giuliani, A., Fiorentini, M.L., et al., 2021. Siderophile and Chalcophile Elements in Spinels, Sulphides and Native Ni in Strongly Metasomatised Xenoliths from the Bultfontein Kimberlite (South Africa). Lithos, 380-381: 105880. https://doi.org/10.1016/j.lithos.2020.105880
      [7] Aulbach, S., Mungall, J.E., Pearson, D.G., 2016. Distribution and Processing of Highly Siderophile Elements in Cratonic Mantle Lithosphere. Reviews in Mineralogy and Geochemistry, 81(1): 239-304. https://doi.org/10.2138/rmg.2016.81.5
      [8] Aulbach, S., Stachel, T., Seitz, H.M., et al., 2012. Chalcophile and Siderophile Elements in Sulphide Inclusions in Eclogitic Diamonds and Metal Cycling in a Paleoproterozoic Subduction Zone. Geochimica et Cosmochimica Acta, 93: 278-299. https://doi.org/10.1016/j.gca.2012.04.027
      [9] Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., et al., 2006. Fractionation of the Noble Metals by Physical Processes. Contributions to Mineralogy and Petrology, 152(6): 667-684. https://doi.org/10.1007/s00410-006-0126-z
      [10] Barnes, S.J., Mungall, J.E., Maier, W.D., 2015. Platinum Group Elements in Mantle Melts and Mantle Samples. Lithos, 232: 395-417. https://doi.org/10.1016/j.lithos.2015.07.007
      [11] Becker, H., Dale, C.W., 2016. Re-Pt-Os Isotopic and Highly Siderophile Element Behavior in Oceanic and Continental Mantle Tectonites. Reviews in Mineralogy and Geochemistry, 81(1): 369-440. https://doi.org/10.2138/rmg.2016.81.7
      [12] Becker, H., Horan, M.F., Walker, R.J., et al., 2006. Highly Siderophile Element Composition of the Earth's Primitive Upper Mantle: Constraints from New Data on Peridotite Massifs and Xenoliths. Geochimica et Cosmochimica Acta, 70(17): 4528-4550. https://doi.org/10.1016/j.gca.2006.06.004
      [13] Blanks, D.E., Holwell, D.A., Fiorentini, M.L., et al., 2020. Fluxing of Mantle Carbon as a Physical Agent for Metallogenic Fertilization of the Crust. Nature Communications, 11(1): 4342. https://doi.org/10.1038/s41467-020-18157-6
      [14] Botcharnikov, R.E., Holtz, F., Mungall, J.E., et al., 2013. Behavior of Gold in a Magma at Sulfide-Sulfate Transition: Revisited. American Mineralogist, 98(8-9): 1459-1464. https://doi.org/10.2138/am.2013.4502
      [15] Botcharnikov, R.E., Linnen, R.L., Wilke, M., et al., 2011. High Gold Concentrations in Sulphide-Bearing Magma under Oxidizing Conditions. Nature Geoscience, 4(2): 112-115. https://doi.org/10.1038/ngeo1042
      [16] Brenan, J.M., 2015. Se-Te Fractionation by Sulfide-Silicate Melt Partitioning: Implications for the Composition of Mantle-Derived Magmas and Their Melting Residues. Earth and Planetary Science Letters, 422: 45-57. https://doi.org/10.1016/j.epsl.2015.04.011
      [17] Brenan, J.M., Bennett, N.R., Zajacz, Z., 2016. Experimental Results on Fractionation of the Highly Siderophile Elements (HSE) at Variable Pressures and Temperatures during Planetary and Magmatic Differentiation. Reviews in Mineralogy and Geochemistry, 81(1): 1-87. https://doi.org/10.2138/rmg.2016.81.1
      [18] Brügmann, G.E., Arndt, N.T., Hofmann, A.W., et al., 1987. Noble Metal Abundances in Komatiite Suites from Alexo, Ontario and Gorgona Island, Colombia. Geochimica et Cosmochimica Acta, 51(8): 2159-2169. https://doi.org/10.1016/0016-7037(87)90265-1
      [19] Burness, S., Smart, K.A., Tappe, S., et al., 2020. Sulphur-Rich Mantle Metasomatism of Kaapvaal Craton Eclogites and Its Role in Redox-Controlled Platinum Group Element Mobility. Chemical Geology, 542: 119476. https://doi.org/10.1016/j.chemgeo.2020.119476
      [20] Burrows, D.R., Spooner, E.T.C., 1989. Relationships between Archean Gold Quartz Vein-Shear Zone Mineralization and Igneous Intrusions in the Val D'or and Timmins Areas, Abitibi Subprovince, Canada. In: Keays, R.R., Ramsay, W.R.H., Groves, D.I., eds., The Geology of Gold Deposits: The Perspective in 1988. Society of Economic Geologists. McLean, Va, U.S.A. . https://doi.org/
      [21] Cai, R.H., Liu, J.G., Pearson, D.G., et al., 2021. Oxidation of the Deep Big Mantle Wedge by Recycled Carbonates: Constraints from Highly Siderophile Elements and Osmium Isotopes. Geochimica et Cosmochimica Acta, 295: 207-223. https://doi.org/10.1016/j.gca.2020.12.019
      [22] Campbell, I.H., Griffiths, R.W., 1992. The Changing Nature of Mantle Hotspots through Time: Implications for the Chemical Evolution of the Mantle. The Journal of Geology, 100(5): 497-523. https://doi.org/10.1086/629605
      [23] Cawood, P., Fryer, B.J., 1994. Noble Metal Abundances in Backarc Basin Basalts (Lau Basin, Southwest Pacific). Proceedings of the Ocean Drilling Program. Scientific Results, 135: 595-602. https://doi.org/10.2973/odp.proc.sr.135.137.1994
      [24] Chambefort, I., Stefánsson, A., 2020. Fluids in Geothermal Systems. Elements, 16(6): 407-411. https://doi.org/10.2138/gselements.16.6.407
      [25] Chang, J., Audétat, A., Li, J.W., 2021. Tectono-Magmatic Controls on Decratonic Gold Deposits. Contributions to Mineralogy and Petrology, 176(9): 69. https://doi.org/10.1007/s00410-021-01824-2
      [26] Chen, Y., Su, B., Guo, S., 2015. The Dabie-Sulu Orogenic Peridotites: Progress and Key Issues. Science China: Earth Sciences, 58(10): 1679-1699. https://doi.org/10.1007/s11430-015-5148-9
      [27] Chen, Y.J., Pirajno, F., Lai, Y., et al., 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Province, Esatern China. Acta Petrologica Sinica, 20(4): 907-922(in Chinese with English abstract).
      [28] Cheng, H., Wang, Z.C., Chen, K., et al., 2019. High-Precision Determination of Gold Mass Fractions in Geological Reference Materials by Internal Standardisation. Geostandards and Geoanalytical Research, 43(4): 663-680. https://doi.org/10.1111/ggr.12284
      [29] Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7(1): 43-46. https://doi.org/10.1038/ngeo2028
      [30] Chiaradia, M., 2020a. Gold Endowments of Porphyry Deposits Controlled by Precipitation Efficiency. Nature Communications, 11(1): 248. https://doi.org/10.1038/s41467-019-14113-1
      [31] Chiaradia, M., 2020b. How Much Water in Basaltic Melts Parental to Porphyry Copper Deposits? Frontiers in Earth Science, 8: 138. https://doi.org/10.3389/feart.2020.00138
      [32] Choi, E., Fiorentini, M.L., Hughes, H.S.R., et al., 2020. Platinum-Group Element and Au Geochemistry of Late Archean to Proterozoic Calc-Alkaline and Alkaline Magmas in the Yilgarn Craton, Western Australia. Lithos, 374-375: 105716. https://doi.org/10.1016/j.lithos.2020.105716
      [33] Chowdhury, P., Dasgupta, R., 2020. Sulfur Extraction via Carbonated Melts from Sulfide-Bearing Mantle Lithologies: Implications for Deep Sulfur Cycle and Mantle Redox. Geochimica et Cosmochimica Acta, 269: 376-397. https://doi.org/10.1016/j.gca.2019.11.002
      [34] Chowdhury, P., Dasgupta, R., Phelps, P.R., et al., 2021. Partitioning of Chalcophile and Highly Siderophile Elements (HSEs) between Sulfide and Carbonated Melt-Implications for HSE Systematics of Kimberlites, Carbonatites, and Melt Metasomatized Mantle Domains. Geochimica et Cosmochimica Acta, 305: 130-147. https://doi.org/10.1016/j.gca.2021.05.006
      [35] Christie, D.M., Carmichael, I.S.E., Langmuir, C.H., 1986. Oxidation States of Mid-Ocean Ridge Basalt Glasses. Earth and Planetary Science Letters, 79(3-4): 397-411. https://doi.org/10.1016/0012-821x(86)90195-0
      [36] Cooke, D.R., Hollings, P., Walshe, J.L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
      [37] Crossley, R.J., Evans, K.A., Evans, N.J., et al., 2020. Tracing Highly Siderophile Elements through Subduction: Insights from High-Pressure Serpentinites and 'Hybrid' Rocks from Alpine Corsica. Journal of Petrology, 61(2): egaa030. https://doi.org/10.1093/petrology/egaa030
      [38] Day, J.M.D., Pearson, D.G., MacPherson, C.G., et al., 2009. Pyroxenite-Rich Mantle Formed by Recycled Oceanic Lithosphere: Oxygen-Osmium Isotope Evidence from Canary Island Lavas. Geology, 37(6): 555-558. https://doi.org/10.1130/g25613a.1
      [39] Delpech, G., Lorand, J.P., Grégoire, M., et al., 2012. In-Situ Geochemistry of Sulfides in Highly Metasomatized Mantle Xenoliths from Kerguelen, Southern Indian Ocean. Lithos, 154: 296-314. https://doi.org/10.1016/j.lithos.2012.07.018
      [40] Deng, J., Liu, X.F., Wang, Q.F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking: Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11-12): 1379-1407. https://doi.org/10.1130/b31609.1
      [41] Deng, J., Yang, L.Q., Groves, D.I., et al., 2020a. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
      [42] Deng, J., Wang, Q.F., Gao, L., et al., 2020b. Differential Crustal Rotation and Its Control on Giant Ore Clusters along the Eastern Margin of Tibet. Geology, 49(4): 428-432. https://doi.org/10.1130/g47855.1
      [43] Deng, L. X, ,Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127(in Chinese with English abstract).
      [44] Dijkstra, A.H., Hatch, C., 2018. Mapping a Hidden Terrane Boundary in the Mantle Lithosphere with Lamprophyres. Nature Communications, 9(1): 3770. https://doi.org/10.1038/s41467-018-06253-7
      [45] Ding, S., Dasgupta, R., 2017. The Fate of Sulfide during Decompression Melting of Peridotite-Implications for Sulfur Inventory of the MORB-Source Depleted Upper Mantle. Earth and Planetary Science Letters, 459: 183-195. https://doi.org/10.1016/j.epsl.2016.11.020
      [46] Dongre, A., Tappe, S., 2019. Kimberlite and Carbonatite Dykes within the Premier Diatreme Root (Cullinan Diamond Mine, South Africa): New Insights to Mineralogical-Genetic Classifications and Magma CO2 Degassing. Lithos, 338-339: 155-173. https://doi.org/10.1016/j.lithos.2019.04.020
      [47] Downes, H., 2007. Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle: Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa. Lithos, 99(1-2): 1-24. https://doi.org/10.1016/j.lithos.2007.05.006
      [48] D'Souza, R.J., Canil, D., 2018. Effect of Alkalinity on Sulfur Concentration at Sulfide Saturation in Hydrous Basaltic Andesite to Shoshonite Melts at 1 270℃ and 1 GPa. American Mineralogist, 103(7): 1030-1043. https://doi.org/10.2138/am-2018-6404
      [49] Edmonds, M., Mather, T.A., 2017. Volcanic Sulfides and Outgassing. Elements, 13(2): 105-110. https://doi.org/10.2113/gselements.13.2.105
      [50] Evans, K.A., Elburg, M.A., Kamenetsky, V.S., 2012. Oxidation State of Subarc Mantle. Geology, 40(9): 783-786. https://doi.org/10.1130/g33037.1
      [51] Evans, K.A., Tomkins, A.G., Cliff, J., et al., 2014. Insights into Subduction Zone Sulfur Recycling from Isotopic Analysis of Eclogite-Hosted Sulfides. Chemical Geology, 365: 1-19. https://doi.org/10.1016/j.chemgeo.2013.11.026
      [52] Fan, H.R., Hu, F.F., Yang, J.H., et al., 2005. Fluid Evolution and Large-Scale Gold Metallogeny during Mesozoic Tectonic Transition in the Eastern Shandong Province. Acta Petrologica Sinica, 21(5): 1317-1328(in Chinese with English abstract).
      [53] Fan, H.R., Lan, T.G., Li, X.H., et al., 2021. Conditions and Processes Leading to Large-Scale Gold Deposition in the Jiaodong Province, Eastern China. Scientia Sinica (Terrae), 51(9): 1504-1523(in Chinese). doi: 10.1360/SSTe-2020-0335
      [54] Fischer-Gödde, M., Becker, H., Wombacher, F., 2011. Rhodium, Gold and Other Highly Siderophile Elements in Orogenic Peridotites and Peridotite Xenoliths. Chemical Geology, 280(3-4): 365-383. https://doi.org/10.1016/j.chemgeo.2010.11.024
      [55] Foley, S., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3-6): 435-453. https://doi.org/10.1016/0024-4937(92)90018-t
      [56] Fonseca, R.O.C., Campbell, I.H., O'Neill, H.S.C., et al., 2009. Solubility of Pt in Sulphide Mattes: Implications for the Genesis of PGE-Rich Horizons in Layered Intrusions. Geochimica et Cosmochimica Acta, 73(19): 5764-5777. https://doi.org/10.1016/j.gca.2009.06.038
      [57] Fonseca, R.O.C., Laurenz, V., Mallmann, G., et al., 2012. New Constraints on the Genesis and Long-Term Stability of Os-Rich Alloys in the Earth's Mantle. Geochimica et Cosmochimica Acta, 87: 227-242. https://doi.org/10.1016/j.gca.2012.04.002
      [58] Fortin, M.A., Riddle, J., Desjardins-Langlais, Y., et al., 2015. The Effect of Water on the Sulfur Concentration at Sulfide Saturation (SCSS) in Natural Melts. Geochimica et Cosmochimica Acta, 160: 100-116. https://doi.org/10.1016/j.gca.2015.03.022
      [59] Foustoukos, D.I., 2019. Hydrothermal Oxidation of Os. Geochimica et Cosmochimica Acta, 255: 237-246. https://doi.org/10.1016/j.gca.2019.04.019
      [60] Fox, N., Cooke, D.R., Harris, A.C., et al., 2015. Porphyry Au-Cu Mineralization Controlled by Reactivation of an Arc-Transverse Volcanosedimentary Subbasin. Geology, 43(9): 811-814. https://doi.org/10.1130/g36992.1
      [61] Frank, M.R., Candela, P.A., Piccoli, P.M., et al., 2002. Gold Solubility, Speciation, and Partitioning as a Function of HCl in the Brine-Silicate Melt-Metallic Gold System at 800℃ and 100 MPa. Geochimica et Cosmochimica Acta, 66(21): 3719-3732. https://doi.org/10.1016/s0016-7037(01)00900-0
      [62] Frank, M.R., Simon, A.C., Pettke, T., et al., 2011. Gold and Copper Partitioning in Magmatic-Hydrothermal Systems at 800℃ and 100 MPa. Geochimica et Cosmochimica Acta, 75(9): 2470-2482. https://doi.org/10.1016/j.gca.2011.02.012
      [63] Gan, T., Huang, Z.L., 2017. Platinum-Group Element and Re-Os Geochemistry of Lamprophyres in the Zhenyuan Gold Deposit, Yunnan Province, China: Implications for Petrogenesis and Mantle Evolution. Lithos, 282-283: 228-239. https://doi.org/10.1016/j.lithos.2017.03.018
      [64] Giuliani, A., Phillips, D., Fiorentini, M.L., et al., 2013. Mantle Oddities: A Sulphate Fluid Preserved in a MARID Xenolith from the Bultfontein Kimberlite (Kimberley, South Africa). Earth and Planetary Science Letters, 376: 74-86. https://doi.org/10.1016/j.epsl.2013.06.028
      [65] Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18(1-2): 1-75. https://doi.org/10.1016/s0169-1368(01)00016-6
      [66] Goldfarb, R.J., Santosh, M., 2014. The Dilemma of the Jiaodong Gold Deposits: Are They Unique? Geoscience Frontiers, 5(2): 139-153. https://doi.org/10.1016/j.gsf.2013.11.001
      [67] González-Jiménez, J.M., Tassara, S., Schettino, E., et al., 2020. Mineralogy of the HSE in the Subcontinental Lithospheric Mantle: An Interpretive Review. Lithos, 372-373: 105681. https://doi.org/10.1016/j.lithos.2020.105681
      [68] Griffin, W.L., Begg, G.C., O'Reilly, S.Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11): 905-910. https://doi.org/10.1038/ngeo1954
      [69] Griffin, W.L., O'Reilly, S.Y., Afonso, J.C., et al., 2008. The Composition and Evolution of Lithospheric Mantle: A Re-Evaluation and Its Tectonic Implications. Journal of Petrology, 50(7): 1185-1204. https://doi.org/10.1093/petrology/egn033
      [70] Grondahl, C., Zajacz, Z., 2017. Magmatic Controls on the Genesis of Porphyry Cu-Mo-Au Deposits: The Bingham Canyon Example. Earth and Planetary Science Letters, 480: 53-65. https://doi.org/10.1016/j.epsl.2017.09.036
      [71] Groves, D.I., Santosh, M., Deng, J., et al., 2020. A Holistic Model for the Origin of Orogenic Gold Deposits and Its Implications for Exploration. Mineralium Deposita, 55(2): 275-292. https://doi.org/10.1007/s00126-019-00877-5
      [72] Groves, D.I., Santosh, M., Zhang, L., et al., 2021. Subduction: The Recycling Engine Room for Global Metallogeny. Ore Geology Reviews, 134: 104130. https://doi.org/10.1016/j.oregeorev.2021.104130
      [73] Groves, D.I., Zhang, L., Santosh, M., 2019. Subduction, Mantle Metasomatism, and Gold: A Dynamic and Genetic Conjunction. GSA Bulletin, 132(7-8): 1419-1426. https://doi.org/10.1130/b35379.1
      [74] Hanley, J.J., Pettke, T., Mungall, J.E., et al., 2005. The Solubility of Platinum and Gold in NaCl Brines at 1.5 kbar, 600 to 800℃: A Laser Ablation ICP-MS Pilot Study of Synthetic Fluid Inclusions. Geochimica et Cosmochimica Acta, 69(10): 2593-2611. https://doi.org/10.1016/j.gca.2004.11.005
      [75] Hao, H.D., Campbell, I.H., Arculus, R.J., et al., 2021. Using Precious Metal Probes to Quantify Mid-Ocean Ridge Magmatic Processes. Earth and Planetary Science Letters, 553: 116603. https://doi.org/10.1016/j.epsl.2020.116603
      [76] Harte, B., Winterburn, P.A., Gurney, J.J., 1987. Metasomatic and Enrichment Phenomena in Garnet Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite, Lesotho. In: Menzies, H.C., ed., Mantle Metasomatism. Academic Press, London, 145-249.
      [77] Harvey, J., Warren, J.M., Shirey, S.B., 2016. Mantle Sulfides and Their Role in Re-Os and Pb Isotope Geochronology. Reviews in Mineralogy and Geochemistry, 81(1): 579-649. https://doi.org/10.2138/rmg.2016.81.10
      [78] Hayden, L.A., Watson, E.B., 2007. A Diffusion Mechanism for Core-Mantle Interaction. Nature, 450: 709-711. https://doi.org/10.1038/nature06380
      [79] He, D.T., Liu, Y.S., Moynier, F., et al., 2020. Platinum Group Element Mobilization in the Mantle Enhanced by Recycled Sedimentary Carbonate. Earth and Planetary Science Letters, 541: 116262. https://doi.org/10.1016/j.epsl.2020.116262
      [80] Heinrich, C.A., 2007. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65(1): 363-387. https://doi.org/10.2138/rmg.2007.65.11
      [81] Heinson, G.S., Direen, N.G., Gill, R.M., 2006. Magnetotelluric Evidence for a Deep-Crustal Mineralizing System beneath the Olympic Dam Iron Oxide Copper-Gold Deposit, Southern Australia. Geology, 34(7): 573-576. https://doi.org/10.1130/g22222.1
      [82] Hofmann, A., Pitcairn, I., Wilson, A., 2017. Gold Mobility during Palaeoarchaean Submarine Alteration. Earth and Planetary Science Letters, 462: 47-54. https://doi.org/10.1016/j.epsl.2017.01.008
      [83] Hofmann, A.W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385: 219-229. https://doi.org/10.1038/385219a0
      [84] Holwell, D.A., Fiorentini, M., McDonald, I., et al., 2019. A Metasomatized Lithospheric Mantle Control on the Metallogenic Signature of Post-Subduction Magmatism. Nature Communications, 10: 3511. https://doi.org/10.1038/s41467-019-11065-4
      [85] Hong, L.B., Xu, Y.G., Zhang, L., et al., 2020. Oxidized Late Mesozoic Subcontinental Lithospheric Mantle beneath the Eastern North China Craton: A Clue to Understanding Cratonic Destruction. Gondwana Research, 81: 230-239. https://doi.org/10.1016/j.gr.2019.11.012
      [86] Hou, Q., Yang, X.Y., Tang, J., et al., 2021. First Discovery of Gold in Kimberlite in Xuzhou, Northern Jiangsu Province. Solid Earth Sciences, 6(2): 246-248. https://doi.org/10.1016/j.sesci.2020.08.001
      [87] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: Ⅲ. Mineralization in Post-Collisional Extension Setting. Mineral Deposits, 25(6): 629-651(in Chinese with English abstract).
      [88] Hou, Z.Q., Zheng, Y.C., Geng, Y.S., 2015. Metallic Refertilization of Lithosphere along Cratonic Edges and Its Control on Au, Mo and REE Ore Systems. Mineral Deposits, 34(4): 641-674(in Chinese with English abstract).
      [89] Hronsky, J.M.A., Groves, D.I., Loucks, R.R., et al., 2012. A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 47(4): 339-358. https://doi.org/10.1007/s00126-012-0402-y
      [90] Jégo, S., Nakamura, M., Kimura, J.I., et al., 2016. Is Gold Solubility Subject to Pressure Variations in Ascending Arc Magmas? Geochimica et Cosmochimica Acta, 188: 224-243. https://doi.org/10.1016/j.gca.2016.05.034
      [91] Jégo, S., Pichavant, M., 2012. Gold Solubility in Arc Magmas: Experimental Determination of the Effect of Sulfur at 1 000℃ and 0.4 GPa. Geochimica et Cosmochimica Acta, 84: 560-592. https://doi.org/10.1016/j.gca.2012.01.027
      [92] Jégo, S., Pichavant, M., Mavrogenes, J.A., 2010. Controls on Gold Solubility in Arc Magmas: An Experimental Study at 1 000℃ and 4 kbar. Geochimica et Cosmochimica Acta, 74(7): 2165-2189. https://doi.org/10.1016/j.gca.2010.01.012
      [93] Jenner, F.E., Arculus, R.J., Mavrogenes, J.A., et al., 2012. Chalcophile Element Systematics in Volcanic Glasses from the Northwestern Lau Basin. Geochemistry, Geophysics, Geosystems, 13(6): Q06014. https://doi.org/10.1029/2012gc004088
      [94] Jenner, F.E., O'Neill, H.S.C., 2012. Analysis of 60 Elements in 616 Ocean Floor Basaltic Glasses. Geochemistry, Geophysics, Geosystems, 13(2): Q02005. https://doi.org/10.1029/2011gc004009
      [95] Jenner, F.E., O'Neill, H.S.C., Arculus, R.J., et al., 2010. The Magnetite Crisis in the Evolution of Arc-Related Magmas and the Initial Concentration of Au, Ag and Cu. Journal of Petrology, 51(12): 2445-2464. https://doi.org/10.1093/petrology/egq063
      [96] Jugo, P.J., 2009. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology, 37(5): 415-418. https://doi.org/10.1130/g25527a.1
      [97] Keays, R.R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1-3): 1-18. https://doi.org/10.1016/0024-4937(95)90003-9
      [98] Kelley, K.A., Cottrell, E., 2009. Water and the Oxidation State of Subduction Zone Magmas. Science, 325(5940): 605-607. https://doi.org/10.1126/science.1174156
      [99] Kiseeva, E.S., Fonseca, R.O.C., Smythe, D.J., 2017. Chalcophile Elements and Sulfides in the Upper Mantle. Elements, 13(2): 111-116. https://doi.org/10.2113/gselements.13.2.111
      [100] Le Roux, V., Bodinier, J.L., Tommasi, A., et al., 2007. The Lherz Spinel Lherzolite: Refertilized rather than Pristine Mantle. Earth and Planetary Science Letters, 259(3/4): 599-612. https://doi.org/10.1016/j.epsl.2007.05.026
      [101] Lee, C.T.A., Luffi, P., Chin, E.J., et al., 2012. Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation. Science, 336(6077): 64-68. https://doi.org/10.1126/science.1217313
      [102] Li, C., Yan, J., 2021. Geochemical, Mineralogy, and Sr-Nd-Pb Isotopic Compositions of the Gold-Related Lamprophyre in the Bengbu-Wuhe Area, Southeastern North China Craton: Implications for Gold Mineralization. Ore Geology Reviews, 132: 104050. https://doi.org/10.1016/j.oregeorev.2021.104050
      [103] Li, J.L., Schwarzenbach, E.M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11(1): 514. https://doi.org/10.1038/s41467-019-14110-4
      [104] Li, L., Santosh, M., Li, S.R., 2015. The 'Jiaodong Type' Gold Deposits: Characteristics, Origin and Prospecting. Ore Geology Reviews, 65: 589-611. https://doi.org/10.1016/j.oregeorev.2014.06.021
      [105] Li, X.H., Sun, X.S., 1995. Lamprophyre and Gold Mineralization: An Assessment of Observations and Theories. Geological Review, 41(3): 252-260(in Chinese with English abstract).
      [106] Li, Y., Audétat, A., 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, as, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions. Earth and Planetary Science Letters, 355-356: 327-340. https://doi.org/10.1016/j.epsl.2012.08.008
      [107] Li, Y., Audétat, A., 2013. Gold Solubility and Partitioning between Sulfide Liquid, Monosulfide Solid Solution and Hydrous Mantle Melts: Implications for the Formation of Au-Rich Magmas and Crust-Mantle Differentiation. Geochimica et Cosmochimica Acta, 118: 247-262. https://doi.org/10.1016/j.gca.2013.05.014
      [108] Li, Y., Feng, L., Kiseeva, E.S., et al., 2019a. An Essential Role for Sulfur in Sulfide-Silicate Melt Partitioning of Gold and Magmatic Gold Transport at Subduction Settings. Earth and Planetary Science Letters, 528: 115850. https://doi.org/10.1016/j.epsl.2019.115850
      [109] Li, H.J., Wang, Q.F., Groves, D.I., et al., 2019b. Alteration of Eocene Lamprophyres in the Zhenyuan Orogenic Gold Deposit, Yunnan Province, China: Composition and Evolution of Ore Fluids. Ore Geology Reviews, 107: 1068-1083. https://doi.org/10.1016/j.oregeorev.2019.03.032
      [110] Liang, Y.Y., Deng, J., Liu, X.F., et al., 2019. Water Contents of Early Cretaceous Mafic Dikes in the Jiaodong Peninsula, Eastern North China Craton: Insights into an Enriched Lithospheric Mantle Source Metasomatized by Paleo-Pacific Plate Subduction-Related Fluids. The Journal of Geology, 127(3): 343-362. https://doi.org/10.1086/702648
      [111] Liu, J.G., Cai, R.H., Pearson, D.G., et al., 2019. Thinning and Destruction of the Lithospheric Mantle Root beneath the North China Craton: A Review. Earth-Science Reviews, 196: 102873. https://doi.org/10.1016/j.earscirev.2019.05.017
      [112] Liu, X.C., Xu, T., Xiong, X.L., et al., 2021. Gold Solubility in Silicate Melts and Fluids: Advances from High-Pressure and High-Temperature Experiments. Scientia Sinica (Terrae), 51(9): 1477-1488(in Chinese). doi: 10.1360/SSTe-2020-0295
      [113] Liu, Y.H., Wang, Z.C., Xue, D.S., et al., 2020. An Improved Analytical Protocol for the Determination of Sub-Nanogram Gold in 1-2 g Rock Samples Using GFAAS after Polyurethane Foam Pretreatment. Atomic Spectroscopy, 41(3): 131-140. https://doi.org/10.46770/as.2020.03.006
      [114] Lorand, J.P., Alard, O., Luguet, A., 2010. Platinum-Group Element Micronuggets and Refertilization Process in Lherz Orogenic Peridotite (Northeastern Pyrenees, France). Earth and Planetary Science Letters, 289(1-2): 298-310. https://doi.org/10.1016/j.epsl.2009.11.017
      [115] Lorand, J.P., Luguet, A., 2016. Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled by Trace Minerals. Reviews in Mineralogy and Geochemistry, 81(1): 441-488. https://doi.org/10.2138/rmg.2016.81.08
      [116] Lorand, J.P., Luguet, A., Alard, O., 2013. Platinum-Group Element Systematics and Petrogenetic Processing of the Continental Upper Mantle: A Review. Lithos, 164-167: 2-21. https://doi.org/10.1016/j.lithos.2012.08.017
      [117] Lorand, J.P., Pont, S., Guttierez-Narbona, R., et al., 2021. Chalcophile-Siderophile Element Systematics and Regional-Scale Magmatic Percolation in the Ronda Peridotite Massif (Spain). Lithos, 380-381: 105901. https://doi.org/10.1016/j.lithos.2020.105901
      [118] Luhr, J.F., 1997. Extensional Tectonics and the Diverse Primitive Volcanic Rocks in the Western Mexican Volcanic Belt. The Canadian Mineralogist, 35(2): 473-500.
      [119] Ma, L., Jiang, S.Y., Hofmann, A.W., et al., 2014. Lithospheric and Asthenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton? Geochimica et Cosmochimica Acta, 124: 250-271. https://doi.org/10.1016/j.gca.2013.09.035
      [120] Maier, W.D., Barnes, S.J., Campbell, I.H., et al., 2009. Progressive Mixing of Meteoritic Veneer into the Early Earth's Deep Mantle. Nature, 460: 620-623. https://doi.org/10.1038/nature08205
      [121] Maier, W.D., Peltonen, P., McDonald, I., et al., 2012. The Concentration of Platinum-Group Elements and Gold in Southern African and Karelian Kimberlite-Hosted Mantle Xenoliths: Implications for the Noble Metal Content of the Earth's Mantle. Chemical Geology, 302-303: 119-135. https://doi.org/10.1016/j.chemgeo.2011.06.014
      [122] Mair, J.L., Farmer, G.L., Groves, D.I., et al., 2011. Petrogenesis of Postcollisional Magmatism at Scheelite Dome, Yukon, Canada: Evidence for a Lithospheric Mantle Source for Magmas Associated with Intrusion-Related Gold Systems. Economic Geology, 106(3): 451-480. https://doi.org/10.2113/econgeo.106.3.451
      [123] Mao, J.W., Wang, Y.T., Li, H.M., et al., 2008. The Relationship of Mantle-Derived Fluids to Gold Metallogenesis in the Jiaodong Peninsula: Evidence from D-O-C-S Isotope Systematics. Ore Geology Reviews, 33(3-4): 361-381. https://doi.org/10.1016/j.oregeorev.2007.01.003
      [124] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 11(1): 45-55(in Chinese with English abstract).
      [125] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1): 171-190(in Chinese with English abstract).
      [126] Maria, A.H., Luhr, J.F., 2008. Lamprophyres, Basanites, and Basalts of the Western Mexican Volcanic Belt: Volatile Contents and a Vein-Wallrock Melting Relationship. Journal of Petrology, 49(12): 2123-2156. https://doi.org/10.1093/petrology/egn060
      [127] Mathez, E.A., 1976. Sulfur Solubility and Magmatic Sulfides in Submarine Basalt Glass. Journal of Geophysical Research, 81(23): 4269-4276. https://doi.org/10.1029/jb081i023p04269
      [128] Mavrogenes, J.A., O'Neill, H.S.C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7-8): 1173-1180. https://doi.org/10.1016/s0016-7037(98)00289-0
      [129] McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      [130] McInnes, B.I.A., McBride, J.S., Evans, N.J., et al., 1999. Osmium Isotope Constraints on Ore Metal Recycling in Subduction Zones. Science, 286(5439): 512-516. https://doi.org/10.1126/science.286.5439.512
      [131] McLeish, D.F., Williams-Jones, A.E., Vasyukova, O.V., et al., 2021. Colloidal Transport and Flocculation are the Cause of the Hyperenrichment of Gold in Nature. Proceedings of the National Academy of Sciences, 118(20): e2100689118. https://doi.org/10.1073/pnas.2100689118
      [132] Mikucki, E.J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1-5): 307-321. https://doi.org/10.1016/s0169-1368(97)00025-5
      [133] Mills, S.E., Tomkins, A.G., Weinberg, R.F., et al., 2015. Anomalously Silver-Rich Vein-Hosted Mineralisation in Disseminated-Style Gold Deposits, Jiaodong Gold District, China. Ore Geology Reviews, 68: 127-141. https://doi.org/10.1016/j.oregeorev.2014.12.014
      [134] Moncada, D., Rimstidt, J.D., Bodnar, R.J., 2019. How to Form a Giant Epithermal Precious Metal Deposit: Relationships between Fluid Flow Rate, Metal Concentration of Ore-Forming Fluids, Duration of the Ore-Forming Process, and Ore Grade and Tonnage. Ore Geology Reviews, 113: 103066. https://doi.org/10.1016/j.oregeorev.2019.103066
      [135] Mueller, A.G., Hall, G.C., Nemchin, A.A., et al., 2007. Archean High-Mg Monzodiorite-Syenite, Epidote Skarn, and Biotite-Sericite Gold Lodes in the Granny Smith-Wallaby District, Australia: U-Pb and Re-Os Chronometry of Two Intrusion-Related Hydrothermal Systems. Mineralium Deposita, 43(3): 337-362. https://doi.org/10.1007/s00126-007-0164-0
      [136] Müller, D., Groves, D.I., 2019a. Direct Associations between Potassic Igneous Rocks and Copper-Gold Deposits on Craton Margins. In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham, 255-277. https://doi.org/10.1007/978-3-319-92979-8_7
      [137] Müller, D., Groves, D.I., 2019b. Indirect Associations between Lamprophyres and Gold-Copper Deposits. In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associated Gold-Copper Mineralization. Mineral Resource Reviews. Springer, Cham, 279-306. https://doi.org/10.1007/978-3-319-92979-8_8
      [138] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915. https://doi.org/10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2 doi: 10.1130/0091-7613(2002)0300915:rtmsma>2.0.co;2
      [139] Mungall, J.E., Brenan, J.M., 2014. Partitioning of Platinum-Group Elements and Au between Sulfide Liquid and Basalt and the Origins of Mantle-Crust Fractionation of the Chalcophile Elements. Geochimica et Cosmochimica Acta, 125: 265-289. https://doi.org/10.1016/j.gca.2013.10.002
      [140] Muntean, J.L., Cline, J.S., Simon, A.C., et al., 2011. Magmatic-Hydrothermal Origin of Nevada's Carlin-Type Gold Deposits. Nature Geoscience, 4(2): 122-127. https://doi.org/10.1038/ngeo1064
      [141] O'Reilly, S.Y., Griffin, W.L., 2013. Mantle Metasomatism. In: Harlov, D., Austrheim, H., eds., Metasomatism and the Chemical Transformation of Rock. Springer, Berlin, 471-533. https://doi.org/10.1007/978-3-642-28394-9_12
      [142] Park, J.W., Campbell, I.H., Arculus, R.J., 2013. Platinum-Alloy and Sulfur Saturation in an Arc-Related Basalt to Rhyolite Suite: Evidence from the Pual Ridge Lavas, the Eastern Manus Basin. Geochimica et Cosmochimica Acta, 101: 76-95. https://doi.org/10.1016/j.gca.2012.10.001
      [143] Park, J.W., Campbell, I.H., Chiaradia, M., et al., 2021. Crustal Magmatic Controls on the Formation of Porphyry Copper Deposits. Nature Reviews Earth & Environment, 2(8): 542-557. https://doi.org/10.1038/s43017-021-00182-8
      [144] Park, J.W., Campbell, I.H., Kim, J., et al., 2015. The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-Rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahi Lavas, Tonga Rear Arc. Journal of Petrology, 56(1): 59-81. https://doi.org/10.1093/petrology/egu071
      [145] Patten, C., Barnes, S.J., Mathez, E.A., et al., 2013. Partition Coefficients of Chalcophile Elements between Sulfide and Silicate Melts and the Early Crystallization History of Sulfide Liquid: LA-ICP-MS Analysis of MORB Sulfide Droplets. Chemical Geology, 358: 170-188. https://doi.org/10.1016/j.chemgeo.2013.08.040
      [146] Peach, C.L., Mathez, E.A., Keays, R.R., 1990. Sulfide Melt-Silicate Melt Distribution Coefficients for Noble Metals and Other Chalcophile Elements as Deduced from MORB: Implications for Partial Melting. Geochimica et Cosmochimica Acta, 54(12): 3379-3389. https://doi.org/10.1016/0016-7037(90)90292-s
      [147] Piquer, J., Sanchez-Alfaro, P., Pérez-Flores, P., 2021. A New Model for the Optimal Structural Context for Giant Porphyry Copper Deposit Formation. Geology, 49(5): 597-601. https://doi.org/10.1130/g48287.1
      [148] Pitcairn, I.K., 2013. Background Concentrations of Gold in Different Rock Types. Applied Earth Science, 120(1): 31-38. https://doi.org/10.1179/1743275811y.0000000021
      [149] Pitcairn, I.K., Leventis, N., Beaudoin, G., et al., 2021. A Metasedimentary Source of Gold in Archean Orogenic Gold Deposits. Geology, 49(7): 862-866. https://doi.org/10.1130/g48587.1
      [150] Pitcairn, I.K., Warwick, P.E., Milton, J.A., et al., 2006. Method for Ultra-Low-Level Analysis of Gold in Rocks. Analytical Chemistry, 78(4): 1290-1295. https://doi.org/10.1021/ac051861z
      [151] Pokrovski, G.S., Akinfiev, N.N., Borisova, A.Y., et al., 2014. Gold Speciation and Transport in Geological Fluids: Insights from Experiments and Physical-Chemical Modelling. Geological Society, London, Special Publications, 402(1): 9-70. https://doi.org/10.1144/sp402.4
      [152] Pokrovski, G.S., Borisova, A.Y., Bychkov, A.Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1): 165-218. https://doi.org/10.2138/rmg.2013.76.6
      [153] Pokrovski, G.S., Escoda, C., Blanchard, M., et al., 2021. An Arsenic-Driven Pump for Invisible Gold in Hydrothermal Systems. Geochemical Perspectives Letters, 17: 39-44. https://doi.org/10.7185/geochemlet.2112
      [154] Pokrovski, G.S., Kokh, M.A., Guillaume, D., et al., 2015. Sulfur Radical Species Form Gold Deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13484-13489. https://doi.org/10.1073/pnas.1506378112
      [155] Redwood, S.D., Rice, C.M., 1997. Petrogenesis of Miocene Basic Shoshonitic Lavas in the Bolivian Andes and Implications for Hydrothermal Gold, Silver and Tin Deposits. Journal of South American Earth Sciences, 10(3-4): 203-221. https://doi.org/10.1016/s0895-9811(97)00024-2
      [156] Rehkämper, M., Halliday, A.N., Fitton, J.G., et al., 1999. Ir, Ru, Pt, and Pd in Basalts and Komatiites: New Constraints for the Geochemical Behavior of the Platinum-Group Elements in the Mantle. Geochimica et Cosmochimica Acta, 63(22): 3915-3934. https://doi.org/10.1016/s0016-7037(99)00219-7
      [157] Rezeau, H., Jagoutz, O., 2020. The Importance of H2O in Arc Magmas for the Formation of Porphyry Cu Deposits. Ore Geology Reviews, 126: 103744. https://doi.org/10.1016/j.oregeorev.2020.103744
      [158] Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. http://doi.org/10.2113/gsecongeo.98.8.1515
      [159] Richards, J.P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250. https://doi.org/10.1130/g25451a.1
      [160] Richards, J.P., 2013. Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes. Nature Geoscience, 6(11): 911-916. https://doi.org/10.1038/ngeo1920
      [161] Richards, J.P., 2015. Tectonic, Magmatic, and Metallogenic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70: 323-345. https://doi.org/10.1016/j.oregeorev.2014.11.009
      [162] Rielli, A., Tomkins, A.G., Nebel, O., et al., 2018. Sulfur Isotope and PGE Systematics of Metasomatised Mantle Wedge. Earth and Planetary Science Letters, 497: 181-192. https://doi.org/10.1016/j.epsl.2018.06.012
      [163] Rock, N.M.S., 1991. Nature, Origin and Evolution of Lamprophyre Melts. In: Rock, N.M.S., ed., Lamprophyres, Boston, MA, Springer US, 125-149. https://doi.org/10.1007/978-1-4615-3924-7_8
      [164] Rock, N.M.S., Groves, D.I., 1988. Do Lamprophyres Carry Gold as Well as Diamonds? Nature, 332: 253-255. https://doi.org/10.1038/332253a0
      [165] Salters, V.J.M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5). https://doi.org/10.1029/2003gc000597
      [166] Sarah-Jane, B., 2016. Chalcophile Elements. In: White, W.M., ed., Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_220-1
      [167] Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2015. Sulfide Metasomatism and the Mobility of Gold in the Lithospheric Mantle. Chemical Geology, 410: 149-161. https://doi.org/10.1016/j.chemgeo.2015.06.016
      [168] Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2016. Gold in the Mantle: The Role of Pyroxenites. Lithos, 244: 205-217. https://doi.org/10.1016/j.lithos.2015.12.008
      [169] Saunders, J.E., Pearson, N.J., O'Reilly, S.Y., et al., 2018. Gold in the Mantle: A Global Assessment of Abundance and Redistribution Processes. Lithos, 322: 376-391. https://doi.org/10.1016/j.lithos.2018.10.022
      [170] Shen, J., Li, W.Y., Li, S.G., et al., 2019. Crust-Mantle Interactions at Different Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111(in Chinese with English abstract).
      [171] Secchiari, A., Gleissner, P., Li, C.H., et al., 2020. Highly Siderophile and Chalcophile Element Behaviour in Abyssal-Type and Supra-Subduction Zone Mantle: New Insights from the New Caledonia Ophiolite. Lithos, 354-355: 105338. https://doi.org/10.1016/j.lithos.2019.105338
      [172] Selvaraja, V., Caruso, S., Fiorentini, M.L., et al., 2017. Atmospheric Sulfur in the Orogenic Gold Deposits of the Archean Yilgarn Craton, Australia. Geology, 45(8): 691-694. https://doi.org/10.1130/g39018.1
      [173] Seo, J.H., Guillong, M., Heinrich, C.A., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1): 323-328. https://doi.org/10.1016/j.epsl.2009.03.036
      [174] Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      [175] Simmons, S.F., Brown, K.L., 2006. Gold in Magmatic Hydrothermal Solutions and the Rapid Formation of a Giant Ore Deposit. Science, 314(5797): 288-291. https://doi.org/10.1126/science.1132866
      [176] Simmons, S.F., Brown, K.L., Tutolo, B.M., 2016. Hydrothermal Transport of Ag, Au, Cu, Pb, Te, Zn, and Other Metals and Metalloids in New Zealand Geothermal Systems: Spatial Patterns, Fluid-Mineral Equilibria, and Implications for Epithermal Mineralization. Economic Geology, 111(3): 589-618. https://doi.org/10.2113/econgeo.111.3.589
      [177] Simon, A.C., Frank, M.R., Pettke, T., et al., 2005. Gold Partitioning in Melt-Vapor-Brine Systems. Geochimica et Cosmochimica Acta, 69(13): 3321-3335. https://doi.org/10.1016/j.gca.2005.01.028
      [178] Simon, A.C., Pettke, T., Candela, P.A., et al., 2007. The Partitioning Behavior of As and Au in S-Free and S-Bearing Magmatic Assemblages. Geochimica et Cosmochimica Acta, 71(7): 1764-1782. https://doi.org/10.1016/j.gca.2007.01.005
      [179] Sisson, T.W., 2003. Native Gold in a Hawaiian Alkalic Magma. Economic Geology, 98(3): 643-648. https://doi.org/10.2113/gsecongeo.98.3.643
      [180] Smythe, D.J., Wood, B.J., Kiseeva, E.S., 2017. The S Content of Silicate Melts at Sulfide Saturation: New Experiments and a Model Incorporating the Effects of Sulfide Composition. American Mineralogist, 102(4): 795-803. https://doi.org/10.2138/am-2017-5800ccby
      [181] Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411
      [182] Song, M.C., Cui, S.X., Jiang, H.L., 2011. Metallogenic Structural System for Jiaojia Gold Field and Jiaoxibei Gold Deposits Concentrated Areas in Shandong Province, China. Geological Bulletin of China, 30(4): 573-578(in Chinese with English abstract).
      [183] Song, M.C., Song, Y.X., Ding, Z.J., et al., 2018. Jiaodong Gold Deposits: Essential Characteristics and Major Controversy. Gold Science and Technology, 26(4): 406-422(in Chinese with English abstract).
      [184] Sullivan, N.A., Zajacz, Z., Brenan, J.M., 2018. The Solubility of Pd and Au in Hydrous Intermediate Silicate Melts: The Effect of Oxygen Fugacity and the Addition of Cl and S. Geochimica et Cosmochimica Acta, 231: 15-29. https://doi.org/10.1016/j.gca.2018.03.019
      [185] Sun, W., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431: 975-978. https://doi.org/10.1038/nature02972
      [186] Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      [187] Tan, J., Wei, J.H., He, H.Y., et al., 2018. Noble Gases in Pyrites from the Guocheng-Liaoshang Gold Belt in the Jiaodong Province: Evidence for a Mantle Source of Gold. Chemical Geology, 480: 105-115. https://doi.org/10.1016/j.chemgeo.2017.09.027
      [188] Tassara, S., González-Jiménez, J.M., Reich, M., et al., 2017. Plume-Subduction Interaction Forms Large Auriferous Provinces. Nature Communications, 8(1): 843. https://doi.org/10.1038/s41467-017-00821-z
      [189] Tassara, S., González-Jiménez, J.M., Reich, M., et al., 2018. Highly Siderophile Elements Mobility in the Subcontinental Lithospheric Mantle beneath Southern Patagonia. Lithos, 314-315: 579-596. https://doi.org/10.1016/j.lithos.2018.06.022
      [190] Tassara, S., Reich, M., Konecke, B.A., et al., 2020. Unraveling the Effects of Melt-Mantle Interactions on the Gold Fertility of Magmas. Frontiers in Earth Science, 8: 29. https://doi.org/10.3389/feart.2020.00029
      [191] Taylor, W.R., Rock, N.M.S., Groves, D.I., et al., 1994. Geochemistry of Archean Shoshonitic Lamprophyres from the Yilgarn Block, Western Australia: Au Abundance and Association with Gold Mineralization. Applied Geochemistry, 9(2): 197-222. https://doi.org/10.1016/0883-2927(94)90007-8
      [192] Tomkins, A.G., 2013. On the Source of Orogenic Gold. Geology, 41(12): 1255-1256. https://doi.org/10.1130/focus122013.1
      [193] Ulrich, T., Günther, D., Heinrich, C.A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399: 676-679. https://doi.org/10.1038/21406
      [194] Varas-Reus, M.I., Garrido, C.J., Marchesi, C., et al., 2018. Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and Its Bearing on the Compositional Heterogeneity of the Earth's Mantle. Geochimica et Cosmochimica Acta, 232: 303-328. https://doi.org/10.1016/j.gca.2018.04.033
      [195] Vikent'ev, I.V., Borisova, A.Y., Karpukhina, V.S., et al., 2012. Direct Data on the Ore Potential of Acid Magmas of the Uzel'ginskoe Ore Field (Southern Urals, Russia). Doklady Earth Sciences, 443(1): 401-405. https://doi.org/10.1134/s1028334x12030300
      [196] Wallace, P., Carmichael, I.S.E., 1992. Sulfur in Basaltic Magmas. Geochimica et Cosmochimica Acta, 56(5): 1863-1874. https://doi.org/10.1016/0016-7037(92)90316-b
      [197] Wallace, P.J., Edmonds, M., 2011. The Sulfur Budget in Magmas: Evidence from Melt Inclusions, Submarine Glasses, and Volcanic Gas Emissions. Reviews in Mineralogy and Geochemistry, 73(1): 215-246. https://doi.org/10.2138/rmg.2011.73.8
      [198] Wallace, P.J., Plank, T., Edmonds, M., et al., 2015. Volatiles in Magmas. In: Sigurdsson, H., ed., The Encyclopedia of Volcanoes (Second Edition). Academic Press, Amsterdam, 163-183. https://doi.org/10.1016/b978-0-12-385938-9.00007-9
      [199] Wang, J.T., Xiong, X.L., Chen, Y.X., et al., 2020. Redox Processes in Subduction Zones: Progress and Prospect. Scientia Sinica (Terrae), 50(12): 1799-1817(in Chinese). doi: 10.1360/SSTe-2019-0313
      [200] Wang, Q.F., Deng, J., Weng, W.J., et al., 2020. Cenozoic Orogenic Gold System in Tibet. Acta Petrologica Sinica, 36(5): 1315-1354, 73-77(in Chinese with English abstract).
      [201] Wang, Q.F., Deng, J., Zhao, H.S., et al., 2019. Review on Orogenic Gold Deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract).
      [202] Wang, X., Deng, J., Wang, Q.F., et al., 2021a. Contrast between Metamorphic and Ore-Forming Fluids in the Ailaoshan Belt, Southeastern Tibet: New Constraints on Ore-Fluids Source for Its Orogenic Gold Deposits. Ore Geology Reviews, 131: 103933. https://doi.org/10.1016/j.oregeorev.2020.103933
      [203] Wang, X., Wang, Z.C., Cheng, H., et al., 2020b. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369: 105593. https://doi.org/10.1016/j.lithos.2020.105593
      [204] Wang, X., Wang, Z.C., Cheng, H., et al., 2022. Gold Endowment of the Metasomatized Lithospheric Mantle for Giant Gold Deposits: Insights from Lamprophyre Dykes. Geochimica et Cosmochimica Acta, 316: 21-40. https://doi.org/10.1016/j.gca.2021.10.006
      [205] Wang, Y., Wei, B., Tan, W., et al., 2021. The Distribution, Characteristics and Fluid Sources of Lode Gold Deposits: an Overview. Scientia Sinica (Terrae), 51(9): 1457-1476(in Chinese). doi: 10.1360/SSTe-2021-0036
      [206] Wang, Z.C., Becker, H., 2015. Fractionation of Highly Siderophile and Chalcogen Elements during Magma Transport in the Mantle: Constraints from Pyroxenites of the Balmuccia Peridotite Massif. Geochimica et Cosmochimica Acta, 159: 244-263. https://doi.org/10.1016/j.gca.2015.03.036
      [207] Wang, Z.C., Cheng, H., Zong, K.Q., et al., 2020a. Metasomatized Lithospheric Mantle for Mesozoic Giant Gold Deposits in the North China Craton. Geology, 48(2): 169-173. https://doi.org/10.1130/g46662.1
      [208] Wang, Z.C., Xu, Z., Cheng, H., et al., 2021b. Precambrian Metamorphic Crustal Basement cannot Provide Much Gold to Form Giant Gold Deposits in the Jiaodong Peninsula, China. Precambrian Research, 354: 106045. https://doi.org/10.1016/j.precamres.2020.106045
      [209] Wang, Z.L., Yang, L.Q., Guo, L.N., et al., 2015. Fluid Immiscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China: A Fluid Inclusion Study. Ore Geology Reviews, 65: 701-717. https://doi.org/10.1016/j.oregeorev.2014.06.006
      [210] Webber, A.P., Roberts, S., Taylor, R.N., et al., 2013. Golden Plumes: Substantial Gold Enrichment of Oceanic Crust during Ridge-Plume Interaction. Geology, 41(1): 87-90. https://doi.org/10.1130/g33301.1
      [211] Wei, B., Wang, C.Y., Wang, Z.C., et al., 2021. Mantle-Derived Gold Scavenged by Bismuth-(Tellurium)-Rich Melts: Evidence from the Mesozoic Wulong Gold Deposit in the North China Craton. Ore Geology Reviews, 131: 104047. https://doi.org/10.1016/j.oregeorev.2021.104047
      [212] Williams-Jones, A.E., Bowell, R.J., Migdisov, A.A., 2009. Gold in Solution. Elements, 5(5): 281-287. https://doi.org/10.2113/gselements.5.5.281
      [213] Williams-Jones, A.E., Heinrich, C.A., 2005.100th Anniversary Special Paper: Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100(7): 1287-1312. https://doi.org/10.2113/gsecongeo.100.7.1287
      [214] Wood, B.J., Bryndzia, L.T., Johnson, K.E., 1990. Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
      [215] Woodland, A.B., Girnis, A.V., Bulatov, V.K., et al., 2019. Experimental Study of Sulfur Solubility in Silicate-Carbonate Melts at 5-10.5 GPa. Chemical Geology, 505: 12-22. https://doi.org/10.1016/j.chemgeo.2018.12.008
      [216] Workman, R.K., Hart, S.R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
      [217] Wu, F.Y., Yang, J.H., Xu, Y.G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev-earth-053018-060342
      [218] Xu, B., Hou, Z.Q., Griffin, W.L., et al., 2021. Recycled Volatiles Determine Fertility of Porphyry Deposits in Collisional Settings. American Mineralogist, 106(4): 656-661. https://doi.org/10.2138/am-2021-7714
      [219] Xu, C., Qi, L., Huang, Z.L., et al., 2008. Abundances and Significance of Platinum Group Elements in Carbonatites from China. Lithos, 105(3-4): 201-207. https://doi.org/10.1016/j.lithos.2008.03.008
      [220] Yang, L.Q., Deng, J., Song, M.C., et al., 2019. Structure Control on Formation and Localization of Giant Deposits: An Example of Jiaodong Gold Deposits in China. Geotectonica et Metallogenia, 43(3): 431-446(in Chinese with English abstract).
      [221] Yang, Z.F., Li, J., Liang, W.F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth-Science Reviews, 157: 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001
      [222] Zajacz, Z., Candela, P.A., Piccoli, P.M., et al., 2013. Solubility and Partitioning Behavior of Au, Cu, Ag and Reduced S in Magmas. Geochimica et Cosmochimica Acta, 112: 288-304. https://doi.org/10.1016/j.gca.2013.02.026
      [223] Zajacz, Z., Seo, J.H., Candela, P.A., et al., 2010. Alkali Metals Control the Release of Gold from Volatile-Rich Magmas. Earth and Planetary Science Letters, 297(1-2): 50-56. https://doi.org/10.1016/j.epsl.2010.06.002
      [224] Zhai, M.G., Fan, H.R., Yang, J.H., et al., 2004. Large-Scale Cluster of Gold Deposits in East Shandong: Anorogenic Metallogenesis. Earth Science Frontiers, 11(1): 85-98(in Chinese with English abstract).
      [225] Zhang, Y.W., Hu, F.F., Fan, H.R., et al., 2020a. Fluid Evolution and Gold Precipitation in the Muping Gold Deposit (Jiaodong, China): Insights from In-Situ Trace Elements and Sulfur Isotope of Sulfides. Journal of Geochemical Exploration, 218: 106617. https://doi.org/10.1016/j.gexplo.2020.106617
      [226] Zhang, L., Weinberg, R.F., Yang, L.Q., et al., 2020b. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120±2 Ma during Cooling of Pregold Granite Intrusions. Economic Geology, 115(2): 415-441. https://doi.org/10.5382/econgeo.4716
      [227] Zhang, Z.C., Mao, J.W., Wang, F.S., et al., 2006. Native Gold and Native Copper Grains Enclosed by Olivine Phenocrysts in a Picrite Lava of the Emeishan Large Igneous Province, SW China. American Mineralogist, 91(7): 1178-1183. https://doi.org/10.2138/am.2006.1888
      [228] Zhao, T., Zhu, G., Lin, S.Z., et al., 2016. Indentation-Induced Tearing of a Subducting Continent: Evidence from the Tan-Lu Fault Zone, East China. Earth-Science Reviews, 152: 14-36. https://doi.org/10.1016/j.earscirev.2015.11.003
      [229] Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430-017-9160-3
      [230] Zhu, G., Lu, Y.C., Su, N., et al., 2021. Crustal Deformation and Dynamics of Early Cretaceous in the North China Craton. Science China: Earth Sciences, 51(9): 1420-1443(in Chinese).
      [231] Zhu, R.X., Fan, H.R., Li, J.W., et al., 2015. Decratonic Gold Deposits. Science China: Earth Sciences, 45(8): 1153-1168, 1-4(in Chinese).
      [232] Zhu, R.X., Sun, W.D., 2021. The Big Mantle Wedge and Decratonic Gold Deposits. Science China: Earth Sciences, ,51(9): 1444-1456(in Chinese).
      [233] Zhu, R.X., Xu, Y.G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China: Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430-012-4516-y
      [234] 陈衍景, Pirajno, F., 赖勇, 等, 2004. 胶东矿集区大规模成矿时间和构造环境. 岩石学报, 20(4): 907-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200404013.htm
      [235] 邓黎旭, 刘勇胜, 宗克清, 等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
      [236] 范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
      [237] 范宏瑞, 蓝廷广, 李兴辉, 等, 2021. 胶东金成矿系统的末端效应. 中国科学: 地球科学, 51(9): 1504-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109007.htm
      [238] 侯增谦, 曲晓明, 杨竹森, 等, 2006. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604000.htm
      [239] 侯增谦, 郑远川, 耿元生, 2015. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用. 矿床地质, 34(4): 641-674. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504001.htm
      [240] 李献华, 孙贤鉥, 1995. "煌斑岩"与金矿的实际观察与理论评述. 地质论评, 41(3): 252-260. doi: 10.3321/j.issn:0371-5736.1995.03.008
      [241] 刘星成, 许婷, 熊小林, 等, 2021. 岩浆熔/流体中金的溶解度: 高温高压实验研究进展. 中国科学: 地球科学, 51(9): 1477-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109005.htm
      [242] 毛景文, 谢桂青, 李晓峰, 等, 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展. 地学前缘, 11(1): 45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003
      [243] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 171-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm
      [244] 沈骥, 李王晔, 李曙光, 等, 2019. 俯冲隧道内不同深度的壳幔相互作用: 地幔楔超镁铁质岩的镁同位素记录. 地球科学, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286
      [245] 宋明春, 崔书学, 姜洪利, 2011. 山东胶西北矿集区和焦家金矿田成矿构造系统. 地质通报, 30(4): 573-578. doi: 10.3969/j.issn.1671-2552.2011.04.014
      [246] 宋明春, 宋英昕, 丁正江, 等, 2018. 胶东金矿床: 基本特征和主要争议. 黄金科学技术, 26(4): 406-422. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804006.htm
      [247] 王锦团, 熊小林, 陈伊翔, 等, 2020. 俯冲带氧逸度研究: 进展和展望. 中国科学: 地球科学, 50(12): 1799-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012008.htm
      [248] 王庆飞, 邓军, 翁伟俊, 等, 2020. 青藏高原新生代造山型金成矿系统. 岩石学报, 36(5): 1315-1354, 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202005002.htm
      [249] 王庆飞, 邓军, 赵鹤森, 等, 2019. 造山型金矿研究进展: 兼论中国造山型金成矿作用. 地球科学, 44(6): 2155-2186. doi: 10.3799/dqkx.2019.105
      [250] 王焰, 魏博, 谭伟, 等, 2021. 脉状金矿床的时空分布、地质特征和成矿流体来源. 中国科学: 地球科学, 51(9): 1457-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109004.htm
      [251] 杨立强, 邓军, 宋明春, 等, 2019. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析. 大地构造与成矿学, 43(3): 431-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903005.htm
      [252] 翟明国, 范宏瑞, 杨进辉, 等, 2004. 非造山带型金矿——胶东型金矿的陆内成矿作用. 地学前缘, 11(1): 85-98. doi: 10.3321/j.issn:1005-2321.2004.01.005
      [253] 朱光, 陆元超, 苏楠, 等, 2021. 华北克拉通早白垩世地壳变形规律与动力学. 中国科学: 地球科学, 51(9): 1420-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109002.htm
      [254] 朱日祥, 范宏瑞, 李建威, 等, 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45(8): 1153-1168, 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508006.htm
      [255] 朱日祥, 孙卫东, 2021. 大地幔楔与克拉通破坏型金矿. 中国科学: 地球科学, 51(9): 1444-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109003.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  1502
    • HTML全文浏览量:  520
    • PDF下载量:  222
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-07
    • 刊出日期:  2021-12-15

    目录

      /

      返回文章
      返回