Age and Genesis of Pitchblende of the Haidewula Uranium Deposit, East Kunlun Orogen and Its Geological Significance
-
摘要: 海德乌拉铀矿床位于东昆仑造山带东段,是西北地区最近发现的与火山岩有关的独立铀矿床,对其研究有助于揭示青藏高原热液铀成矿机制. 利用扫描电镜、电子探针和激光原位分析等对海德乌拉铀矿床沥青铀矿开展了化学成分分析和同位素定年等工作. 结果显示海德乌拉铀矿床沥青铀矿具有较高的Ca和REE含量,较低的LREE/HREE比值. 沥青铀矿电子探针U⁃Th⁃Pb化学年龄为226~350 Ma,峰值为289 Ma;U⁃Pb同位素年龄为234.6±1.2 Ma(MSWD=0.99,n=17). 两组年龄的差异可能与海德乌拉铀矿床沥青铀矿中存在普通铅而导致电子探针U⁃Th⁃Pb化学定年失准有关. 研究认为海德乌拉铀矿床沥青铀矿形成于岩浆期后富Ca的中温热液,矿床的形成可能与古特提斯构造域布青山-阿尼玛卿洋北向俯冲-碰撞后的伸展环境有关.
-
关键词:
- 东昆仑造山带 /
- 火山岩型铀矿床 /
- LA-ICP-MS U-Pb同位素年龄 /
- 后碰撞伸展 /
- 地球化学
Abstract: The Haidewula uranium deposit, which is located in the eastern part of the East Kunlun orogenic belt, is the newly discovered independenturanium mineralization deposit related to volcanic rocks in northwest China. Therefore, the study on this deposit is beneficial to reveal the formation mechanism of hydrothermal uranium mineralization in the Qinghai⁃Tibet Plateau.In this paper, scanning electron microscope, electron probe analysis, and Laser Ablation Inductively Coupled Plasma Mass Spectrometry in⁃situ analysis were carried out to explore the metallogenic age and genesis of the pitchblende at the Haidewula deposit. Analysis results show that the pitchblende shows high Ca and ∑REE contents and low LREE/HREE ratios.It has a U⁃Th⁃Pb chemical age of 226 to 350 Ma with a peak of 289 Ma, and a U⁃Pb isotopic age of 234.6±1.2 Ma (MSWD=0.99, n=17).The difference between the ages obtained by the two methods may be related to the inaccurate U⁃Th⁃Pb chemical age caused by a certain amount of common lead in the pitchblende of the Haidewula uranium deposit.We suggest that the pitchblende in the Haidewula uranium deposit were formed in post⁃magmatic Ca⁃rich medium⁃temperature hydrothermal fluids.And the formation of the Haidewula uranium deposit is related to the extensional environment after northward subduction⁃collision of the Buqingshan⁃Animaqing Ocean in the Paleo⁃Tethys tectonic domain. -
图 1 (a)东昆仑造山带构造简图(改自Dong et al., 2018);(b)海德乌拉铀矿床地质简图(改自雷勇亮等,2021)
Fig. 1. (a) Simplified tectonic map of the East Kunlun Orogenic Belt (from Dong et al., 2018); (b) Simplified geological map of the Haidewula volcanic rock area (from Lei et al., 2021)
图 5 海德乌拉铀矿床沥青铀矿稀土元素球粒陨石标准化配分
稀土元素标准化值据Boynton(1984),底图改自Mercadier et al.(2011)和Frimmel et al.(2014)
Fig. 5. Chondrite⁃normalization REE patterns of pitchblende in the Haidewula uranium deposit
图 6 海德乌拉铀矿床沥青铀矿稀土总量与U/Th关系
Fig. 6. Total REE versus U/Th diagram for pitchblende in the Haidewula uranium deposit
图 8 东昆仑造山带岩浆岩成岩和成矿年龄直方图
其成岩年龄来自Dong et al.(2018);成矿年龄来自补充材料中的文献
Fig. 8. Diagenetic and metallogenicages histogramsin the East Kunlun orogenic belt
-
[1] Bowles, J. F. W, 1990. Age Dating of Individual Grains of Uraninite in Rocks from Electron Microprobe Analyses. Chemical Geology, 83(1/2): 47-53. https://doi.org/10.1016/0009-2541(90)90139-X. [2] Ballouard, C., Poujol, M., Boulvais, P., et al., 2017. Magmatic and Hydrothermal Behavior of Uranium in Syntectonic Leucogranites: The Uranium Mineralization Associated with the Hercynian Guérande Granite (Armorican Massif, France). Ore Geology Reviews, 80: 309-331. https://doi.org/10.1016/j.oregeorev.2016.06.034. [3] Boynton, W.V., 1984. Chapter 3: Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: P. Henderson (Editor), Developments in Geochemistry. Elsevier, 63-114. [4] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007. Electron Microprobe Chemical Ages of Monazites in the Central Kunlun Belt of the East Kunlun Orogenic Belt: Records of Multi-Stage Tectonic Metamorphism Events. Chinese Science Bulletin, (11): 1297-1306 (in Chinese with English abstract). [5] Cai, Y.Q., Zhang, J.D., Li, Z.Y., et al., 2015. Outline of Uranium Resources Characteristics and Metallogenetic Regularity in China. Acta Geologica Sinica, 89(6): 1051-1069 (in Chinese with English abstract). [6] Du, Y.L., Jia, Q.Z., Han, S.F., 2012. Mesozoic Tectono-Magmatic-Mineralization and Copper-Gold Polymetallic Ore Prospecting Research in East Kunlun Metallogenic Belt in Qinghai. Northwestern Geology, 45(4): 69-75 (in Chinese with English abstract). [7] Ding, Q. F., Jiang, S. Y., Sun, F. Y, 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015 [8] Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006 [9] Frimmel, H. E., Schedel, S., Brätz, H, 2014. Uraninite Chemistry as Forensic Tool for Provenance Analysis. Applied Geochemistry, 48: 104-121. https://doi.org/10.1016/j.apgeochem.2014.07.013 [10] Guo, G.L., Zhang, Z.S., Liu, X.D., et al., 2012. EPMA Chemical U-Th-Pb Dating of Uraninite in Guangshigou Uranium Deposit. Journal of East China University of Technology(Natural Science), 35(4): 309-314 (in Chinese with English abstract). [11] Guo, X.Z., Jia, Q.Z., Kong, H.L., et al., 2016. Age, Genesis and Geological Significance of Harizha Quartz Diorite in the Eastern Part of East Kunlun. Bulletin of Geological Science and Technology, 35(5): 18-26 (in Chinese with English abstract). [12] Guo, X.Z., Wang, H.J., Xu, R.K., et al., 2017. Zircon U-Pb Dating of Tieshiguan Eclogite in the Northern Margin of Qaidam Basin and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 36(6): 995-1006 (in Chinese with English abstract). [13] Gao, Y.B., Li, K., Qian, B., et al., 2018. The Metallogenic Chronology of Kaerqueka Deposit in Eastern Kunlun: Evidences from Molybdenite Re-Os and Phlogopite Ar-Ar Ages. Geotectonica et Metallogenia, 42(1): 96-107 (in Chinese with English abstract). [14] Hu, R. Z., Burnard, P. G., Bi, X. W., et al., 2009. Mantle-Derived Gaseous Components in Ore-Forming Fluids of the Xiangshan Uranium Deposit, Jiangxi Province, China: Evidence from He, Ar and C Isotopes. Chemical Geology, 266(1/2): 86-95. https://doi.org/10.1016/j.chemgeo.2008.07.017 [15] Jia, X.H., Wang, Q., Tang, G.J., 2009. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract). [16] Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [17] Li, Y.Q., Duan, J.H., Dai, J.W., et al., 2021. Geochemical characteristics of host rocks and uranium mineralization in Haidewula area, Qinghai. Uranium Geology, 37(4): 643-652 (in Chinese with English abstract). [18] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [19] Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106 (in Chinese with English abstract). [20] Li, W.L., Xia, R., Qing, M., et al., 2014. Re-Os Molybdenite Ages of the Shenduolong Skarn Mo-Pb-Zn Deposit and Geodynamic Framework, Qinghai Province. Rock and Mineral Analysis, 33(6): 900-907 (in Chinese with English abstract). [21] Luo, J.C., Shi, S.H., Chen, Y.W., et al., 2019. Review on Dating of Uranium Mineralization. Acta Petrologica Sinica, 35(2): 589-605 (in Chinese with English abstract). [22] Lei, Y.L., Dai, J.W., Bai, Q., et al., 2021. Genesis and implications of peraluminous A-Type rhyolite in the Haidewula area, East Kunlun Orogen. Acta Petrologica Sinica, 36(7): 1964-1982 (in Chinese with English abstract). [23] Mercadier, J., Cuney, M., Lach, P., et al., 2011. Origin of Uranium Deposits Revealed by Their Rare Earth Element Signature. Terra Nova, 23(4): 264-269. https://doi.org/10.1111/j.1365-3121.2011.01008.X [24] Martz, P., Mercadier, J., Perret, J., et al., 2019. Post-Crystallization Alteration of Natural Uraninites: Implications for Dating, Tracing, and Nuclear Forensics. Geochimica et Cosmochimica Acta, 249: 138-159. https://doi.org/10.1016/j.gca.2019.01.025 [25] Ozha, M. K., Pal, D. C., Mishra, B., et al., 2017. Geochemistry and Chemical Dating of Uraninite in the Samarkiya Area, Central Rajasthan, Northwestern India-Implication for Geochemical and Temporal Evolution of Uranium Mineralization. Ore Geology Reviews, 88: 23-42. https://doi.org/10.1016/j.oregeorev.2017.04.010 [26] Roger, F., Arnaud, N., Gilder, A., et al., 2003. Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet. Tectonics, 22: 1037-1057. https://doi.org/10.1029/2002TC001466 [27] Richard, A., Cathelineau, M., Boiron, M. C., et al., 2016. Metal-Rich Fluid Inclusions Provide New Insights into Unconformity-Related U Deposits (Athabasca Basin and Basement, Canada). Mineralium Deposita, 51(2): 249-270. https://doi.org/10.1007/s00126-015-0601-4 [28] Vermeesch, P, 2018. Dissimilarity Measures in Detrital Geochronology. Earth-Science Reviews, 178: 310-321. https://doi.org/10.1016/j.earscirev.2017.11.027 [29] Wu, J.H., Xie, K.R., Wu, R.G., et al., 2014. The New Progress in the Study of Mesozoic Rhyolite-Trachyte Assemblage and Hydrothermal-Type Uranium Mineralization in Eastern China. Advances in Earth Science, 29(12): 1372-1382(in Chinese with English abstract). [30] Wu, J.H., Lao, Y.J., Xie, G.F., et al., 2017. Stratigraphy and Geochronology of the Volcanic Rocks in the Xiangshan Uranium Orefield, Jiangxi Province and Its Geological Implications. Geology in China, 44(5): 974-992(in Chinese with English abstract). [31] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB). Acta Geologica Sinica, 80(12): 1793-1806 (in Chinese with English abstract). [32] Xiong, F.Q., Ma, C.Q., Zhang, J.Y., et al., 2014. Reworking of Old Continental Lithosphere: an Important Crustal Evolution Mechanism in Orogenic Belts, As Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. The Geological Society of London, 171: 847-863. https://doi.org/10.1144/jgs2013-038 [33] Xin, W., Sun, F. Y., Li, L., et al., 2018. The Wulonggou Metaluminous A2-Type Granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of Subduction-Related Felsic Crust and Implications for Post-Collision Extension. Lithos, 312/313: 108-127. https://doi.org/10.1016/j.lithos.2018.05.005 [34] Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogeny. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [35] Yu, M., Feng, C.Y., Liu, H.C., et al., 2015. 40Ar-39Ar Geochronology of the Galinge Large Skarn lron Deposit in Qinghai Province and Geological Significance. Acta Geologica Sinica, 89(3): 510-521(in Chinese with English abstract). [36] Zhu, Y.H., Zhu, Y.S., Lin, Q.X., et al., 2003. Characteristics of Early Jurassic Volcanic Rocks and Their Tectonic Significance in Haidewula, East Kunlun Orogenic Belt, Qinghai Province. Earth Science, 28(6): 653-659 (in Chinese with English abstract). [37] Zhang, J.D., Li, Z.Y., Cai, Y.Q., et al., 2012. The Main Advance and Achievements in the Potential Evaluation of Uranium Resource in China. Uranium Geology, 28(6): 321-326(in Chinese with English abstract). [38] Zong, K.Q., Chen, J.Y., Hu, Z.C., et al., 2015. In-Situ U-Pb Dating of Uraninite by fs-LA-ICP-MS. Scientia Sinica(Terrae), 45(9): 1304-1319(in Chinese with English abstract). [39] Zheng, G.D., Luo, Q., Liu, W.Q., et al., 2021. In-Situ U-Pb Age and Elemental Characteristics of Pitchblende in Shulouqiu Uranium Deposit and Its Geological Significance. Scientific Journal of Earth Science, 1-24(in Chinese with English abstract). [40] 蔡煜琦, 张金带, 李子颖, 等, 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005 [41] 陈能松, 孙敏, 王勤燕, 等, 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, (11): 1297-1306. doi: 10.3321/j.issn:0023-074X.2007.11.014 [42] 杜玉良, 贾群子, 韩生福, 2012. 青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究. 西北地质, 45(4): 69-75. doi: 10.3969/j.issn.1009-6248.2012.04.007 [43] 高永宝, 李侃, 钱兵, 等, 2018. 东昆仑卡而却卡铜钼铁多金属矿床成矿年代学: 辉钼矿Re-Os和金云母Ar-Ar同位素定年约束. 大地构造与成矿学, 42(1): 96-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201801009.htm [44] 国显正, 贾群子, 孔会磊, 等, 2016. 东昆仑东段哈日扎石英闪长岩时代、成因及其地质意义. 地质科技情报, 35(5): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605003.htm [45] 国显正, 贾群子, 钱兵, 等, 2017. 东昆仑高压变质带榴辉岩和榴闪岩地球化学特征及形成动力学背景. 地球科学与环境学报, 39(6): 735-750. doi: 10.3969/j.issn.1672-6561.2017.06.005 [46] 郭国林, 张展适, 刘晓东, 等, 2012. 光石沟铀矿床晶质铀矿电子探针化学定年研究. 东华理工大学学报(自然科学版), 35(4): 309-314. doi: 10.3969/j.issn.1674-3504.2012.04.002 [47] 贾小辉, 王强, 唐功建, 2009. A型花岗岩的研究进展及意义. 大地构造与成矿学, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 [48] 雷勇亮, 戴佳文, 白强, 等, 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义. 岩石学报, 36(7): 1964-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202107002.htm [49] 李文良, 夏锐, 卿敏, 等, 2014. 应用辉钼矿Re-Os定年技术研究青海什多龙矽卡岩型钼铅·锌矿床的地球动力学背景. 岩矿测试, 33(6): 900-907. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201406027.htm [50] 李彦强, 段建华, 戴佳文, 等, 2021. 青海海德乌拉地区火山岩型铀矿含矿主岩地球化学及铀矿化特征研究. 铀矿地质, 37(4): 643-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202104008.htm [51] 刘彬, 马昌前, 蒋红安, 等, 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm [52] 骆金诚, 石少华, 陈佑纬, 等, 2019. 铀矿床定年研究进展评述. 岩石学报, 35(2): 589-605. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902019.htm [53] 巫建华, 劳玉军, 谢国发, 等, 2017. 江西相山铀矿田火山岩系地层学、年代学特征及地质意义. 中国地质, 44(5): 974-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705011.htm [54] 巫建华, 解开瑞, 吴仁贵, 等, 2014. 中国东部中生代流纹岩-粗面岩组合与热液型铀矿研究新进展. 地球科学进展, 29(12): 1372-1382. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201412010.htm [55] 许志琴, 杨经绥, 李海兵, 等, 2006. 中央造山带早古生代地体构架与高压/超高压变质带的形成. 地质学报, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002 [56] 于淼, 丰成友, 刘洪川, 等, 2015. 青海尕林格矽卡岩型铁矿金云母40Ar/39Ar年代学及成矿地质意义. 地质学报, 89(3): 510-521. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201503006.htm [57] 郑国栋, 罗强, 刘文泉, 等, 2021. 粤北书楼丘铀矿床沥青铀矿原位U-Pb年龄和元素特征及其地质意义. 地球科学: 1-24. doi: 10.3799/dqkx.2020.225 [58] 宗克清, 陈金勇, 胡兆初, 等, 2015. 铀矿fs-LA-ICP-MS原位微区U-Pb定年. 中国科学: 地球科学, 45(9): 1304-1319. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509005.htm [59] 张金带, 李子颖, 蔡煜琦, 等, 2012. 全国铀矿资源潜力评价工作进展与主要成果. 铀矿地质, 28(6): 321-326. doi: 10.3969/j.issn.1000-0658.2012.06.001 [60] 朱云海, 朱耀生, 林启祥, 等, 2003. 东昆仑造山带海德乌拉一带早侏罗世火山岩特征及其构造意义. 地球科学, 28(6): 653-659. doi: 10.3321/j.issn:1000-2383.2003.06.011 -
dqkxzx-47-8-2940-附表.docx