Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei
-
摘要: 牛蹄塘组是湖北省重要的海相页岩气层系之一,对其深入研究有助于预测资源潜力并指明勘探方向.利用露头及探井资料对区内牛蹄塘组的储层特征、资源潜力等进行了研究.结果表明,牛蹄塘组依据岩性组合可以分为一段和二段,鄂西宜昌‒恩施、神农架西侧深水陆棚相以及鄂东南盆地边缘相富有机质页岩厚度大,TOC含量高,以硅质类页岩为主,页岩气成藏物质基础良好.气显较好的地区集中分布在鄂西黄陵背斜东南缘,分析认为较弱的变形、有效的顶底板和适中的热演化是牛蹄塘组页岩气富集成藏的关键.除宜昌局部地区具有勘探开发前景外,秭归、鹤峰等地区仍值得探索,鄂东南及鄂西北地区由于构造变形和岩浆活动强烈,保存条件极差,基本无页岩气勘探前景.Abstract: The Lower Cambrian Niutitang Formation (∈1n) is one of the important shale gas target reservoirs in Hubei Province, China. The deep study of the ∈1n helps to calculate the resource potential and indicate exploration direction. Based on outcrop profiles and wells, the characteristics of shale reservoir and resource potential of the ∈1n were deeply studied. The results show that the ∈1n can be divided into two sections, the first section (∈1n1) and the second section (∈1n2). The organic-rich shales of Yichang-Enshi and Shennongjia in West Hubei and Tongshan-Chongyang area in eastern Hubei are characterized by large thickness, high TOC and silica content, which indicates a good material foundation and shale gas resource potential. The area with high gas content is mainly distributed in the southeast slope of Huangling anticline in Yichang, West Hubei. The weak deformation, the effective roof and floor, and moderate thermal evolution are the key factors for the enrichment of Niutitang shale gas reservoir. In addition to Yichang area, Zigui and Hefeng areas are also worthy of further exploration. Due to the strong tectonic deformation and magmatic activity, there is no shale gas exploration prospect in Southeast Hubei and Northwest Hubei.
-
图 1 湖北省构造单元划分及主要断裂分布简图
F1.襄(阳)‒广(济)断裂带;F2.郯庐(黄梅)断裂带;F3.阳日断裂;F4.通山断裂;F5.新华断裂;F6.通城河断裂;F7.南漳‒荆门断裂;F8.建始‒彭水断裂;F9.齐岳山断裂;F10.建始‒彭水断裂;F11.恩施‒黔江断裂;F12.大青山断裂;F13.咸丰断裂;F14.仙女山断裂;F15.雾渡河断裂;F16.新黄断裂;F17.白河‒石花街断裂;F18.两郧断裂;F19.天阳坪‒监利断裂;F20.团麻断裂;F21.咸宁断裂
Fig. 1. Structural unit division and main fault distribution in Hubei Province
表 1 湖北省早寒武世牛蹄塘组一段富有机质页岩含气性综合数据表(许露露等,2020)
Table 1. Comprehensive data of gas content of organic-rich shale of the Lower Cambrian ∈1n1 in Hubei Province
地理位置 钻井 构造位置 底界埋深(m) 页岩厚度(m) TOC
(%)Ro
(%)解析气量
(m3/t)鄂西神农架地区 神地1 神农架背斜北翼 1 366 258.5 0.20~5.75/2.06(107) 2.92~3.55/3.16(5) 0.01~0.48/0.10(58) 红地1 神农架背斜北翼 1 852 292 2.08(1) 3.22(1) 0.02(1) 鄂西宜昌-恩施地区 兴地1 黄陵背斜北翼 550.1 1.6 1.2(1) 1.92(1) 0 宜地3 黄陵背斜东南翼 837 4 / / 0 宜地2 黄陵背斜东南翼 1 728 77 0.52~5.96/2.26(29) 2.25~2.35/2.31(3) 0.1~3.65/1.54(29) 宜页1 黄陵背斜东南翼 1 872 87 0.98~7.4/3.65(29) 2.26~2.37/2.35(29) 0.58~5.48/2.05(29) 秭地1 黄陵背斜东南翼 358.4 105.1 0.53~8.72/3.14(17) 1.43~1.79/1.61(6) 0.001~0.57/0.15(20) 秭地2 黄陵背斜东南翼 804.9 50.7 0.41~5.02/2.61(10) 2.05~2.59/2.34(10) 0.42~2.52/1.22(16) 阳页1 黄陵背斜东南翼 3 070 134 1.0~5.2/2.2(280) 2.70(1) 0.14~2.26/1.05(27) 阳地1 长阳背斜核部 1 214 75 3.37(1) / 0.05(1) 长地1 长阳背斜核部 390.2 124.6 1.2~12.49/5.36(35) 2.21~2.56/2.39(3) 0.03~0.17/0.08(30) 聂地1 宜都鹤峰背斜核部 754 95 1.46~14.44/6.88(33) 2.61~2.72/2.64(3) 0.03~0.15/0.08(20) 宜地4 宜都鹤峰背斜北翼 1 334 58 / / 0.06~3.13/1.55(12) 五地1 宜都鹤峰背斜南翼 1 602 118.9 4.1(1) 3.50(1) 0.02(1) 恩页1 中央背斜东南翼 3 945 175 1.5~6.2/5.1(12) / 0.1~0.4/0.26(12) 咸地1 咸丰背斜核部 1 406 > 32.0 / / 0 松地2 宜都鹤峰背斜核部 1 574.8 / 0.69~12.79/3.32(32) / 0.02~0.67/0.29(32) 鄂东南咸宁地区 通地1 幕府山背斜南翼 583.2 49.2 0.17~36.23/8.06(23) 2.61~3.52/3.0(6) 0~0.05/0.02(10) 注:TOC、Ro、解析气量数据依次为最小值、最大值、平均值和数据个数. 表 2 湖北省各构造单元特征及其页岩气保存条件
Table 2. Characteristics of tectonic units and preservation conditions of shale gas in Hubei Province
二级构造单元 三级构造单元 保存类型 保存条件 巴‒洪冲断褶皱带
(Ⅱ1)构造非稳定区 构造变形最为强烈,近东西向高角度逆冲断层及与之伴随的斜歪、倒转同斜褶皱或断片组成的叠瓦状冲断‒褶皱组合为其显著构造样式.地层产状陡峭,断块发育,页岩热演化程度高,页岩气保存条件差. 神农架‒黄陵基底隆起带
(Ⅱ2)神农架背斜(Ⅱ21) 构造非稳定区 神农架基底隆起带由一系列同斜褶皱与逆冲断层组成褶冲构造样式,页岩热演化程度高,页岩气保存条件差. 黄陵背斜(Ⅱ22) 构造稳定区 黄陵基底隆起带周缘是震旦系‒志留系等组成的裙边状褶皱,东翼和南翼呈现稳定的缓倾单斜构造,页岩气保存条件好. 川(渝)东褶皱带
(Ⅱ3)石柱复向斜(Ⅱ31) 构造稳定区 发育北东向隔挡式宽缓向斜,变形弱,盖层封闭性好,页岩气保存条件好. 齐岳山复背斜(Ⅱ32) 构造非稳定区 发育高陡背斜线状褶皱,齐岳山断裂是一规模较大的通天断裂,导致核部地层不同程度断失、尖灭再现,变形较强,页岩气保存条件较差. 鄂西褶断带
(Ⅱ4)利川复向斜(Ⅱ41) 构造次稳定区 该带褶皱开阔、断裂不发育,页岩气保存条件较好. 中央复背斜(Ⅱ42) 构造次稳定区 构造变形强弱不一,北段恩施白果坝至建始长梁变形强烈,属非构造稳定区,页岩气保存条件差;南段毛坝至活龙坪一带构造变形较弱,页岩气保存条件较好. 花果坪复向斜(Ⅱ43) 构造稳定区 总体表现为北东向斜歪、开阔或箱状背向斜间列的褶皱组合样式,总体而言本带构造变形相对较弱,页岩气保存条件较好. 宜都—鹤峰复背斜(Ⅱ44) 构造次稳定‒非稳定区 构造变形改造较强,但在部分地区地层产状较缓,断层不发育,属“动中有静”的较稳定构造区.该单元东南地区由于底板岩家河组缺失,盖层封闭性较差,因此该区总体上页岩气保存条件较差. 秭归复向斜(Ⅱ45) 构造次稳定区 该单元总体显示东西向向斜构造,受晚期构造叠加影响,东部北东向叠加特征明显,该带变形中等,页岩气保存条件相对较好. 鄂中褶断区
(Ⅱ5)沉湖‒土地堂复向斜(Ⅱ51) 构造次稳定区 本单元变形改造较强,构造改造较为强烈,页岩气保存条件一般. 乐乡关‒潜江复背斜(Ⅱ52) 构造非稳定区 该带构造变形强烈,页岩气保存条件较差. 当阳复向斜(Ⅱ53) 构造次稳定区 本带褶皱较完整,仅局部区域被断层切割破坏,页岩气保存条件较好. 鄂东南冲断推覆‒岩浆岩带(Ⅱ6) 构造非稳定区 带内以广泛发育晚中生代岩浆岩、逆冲推覆及平移断层密集、褶皱紧闭倒转及新元古代冷家溪群褶皱基底转入变形等为显著特征,为构造‒岩浆活动区,可以推断其页岩气保存条件基本丧失. 表 3 湖北省牛蹄塘组页岩气选区标准
Table 3. Shale gas selection standard of Niutitang Formation in Hubei Province
指标类别 主要参数 远景区 有利区 目标区 页岩分布 页岩面积(S) 连续分布面积≥50 km2 页岩埋深(D) 500~5 000 m 500~5 000 m 1 000~4 500 m 页岩品质 页岩厚度(H) ≥15 m ≥20 m ≥30 m 有机碳含量(TOC) ≥0.5% ≥1.0% ≥1.0% 镜质体反射(Ro) 1.3%~4.0% 1.3%~3.5% 含气性 总含气量(C) / ≥1.0 m3/t ≥2.0 m3/t,
钻井获页岩气流保存条件 构造特征 构造简单(地层产状普遍平缓、断层不发育),
顶底板保存完整,距离断裂≥2.0 km可压裂性 脆性矿物含量 / ≥40.0% 表 4 湖北省牛蹄塘组页岩气地质资源量统计表
Table 4. Statistics of shale gas geological resources of Niutitang Formation in Hubei Province
选区 序号 位置 面积(km2) 地质资源量(108m3) 远景区 Ⅲ1 利川复向斜太阳河‒团堡远景区 1 722.62 2 942.71 Ⅲ2 中央复背斜白果坝‒活龙坪远景区 1 814.00 5 670.84 Ⅲ3 中央复背斜恩施芭蕉远景区 417.06 1 514.29 Ⅲ4 花果坪复向斜宣恩晓关远景区 171.54 614.32 Ⅲ5 花果坪复向斜野三关‒大河坝远景区 6 393.65 21 163.10 Ⅲ6 宜都鹤峰复背斜鹤峰太平远景区 271.87 785.15 Ⅲ7 宜都鹤峰复背斜来凤百福司远景区 93.35 357.33 Ⅲ8 神农架背斜南缘沿渡河‒官渡口远景区 1 526.95 3 171.36 Ⅲ9 宜都鹤峰复背斜杨林桥远景区 482.77 988.21 Ⅲ10 宜都鹤峰复背斜谢家坪‒长乐坪远景区 3 493.55 6 543.28 Ⅲ11 宜都鹤峰复背斜南北镇远景区 177.82 294.41 Ⅲ12 神农架背斜北缘上龛远景区 362.07 1 177.77 Ⅲ13 神农架背斜北缘红坪远景区 697.78 1 437.25 Ⅲ14 巴洪冲断带保康黄堡远景区 330.91 147.41 Ⅲ15 黄陵背斜东缘苟家垭‒分乡远景区 297.24 67.87 Ⅲ16 黄陵背斜东南缘高家堰‒龙泉远景区 1 887.31 969.44 Ⅲ17 宜都鹤峰复背斜贺家坪‒高家堰远景区 181.62 301.79 Ⅲ18 宜都鹤峰复背斜长阳‒刘家场远景区 3 477.43 4 253.40 Ⅲ19 鄂中褶断区观音档‒黄穴远景区 5 653.69 3 689.01 Ⅲ20 鄂中褶断区纸厂河‒石首远景区 3 896.05 5 393.03 Ⅲ21 鄂中褶断区东缘嘉鱼‒车埠远景区 2 616.35 937.60 Ⅲ22 鄂中褶断区东缘随阳远景区 1 163.72 2 098.97 Ⅲ23 鄂中褶断区东缘高桥远景区 253.12 187.32 有利区 Ⅱ1 黄陵背斜南缘贺家坪‒高家堰有利区 159.13 971.55 Ⅱ2 宜都鹤峰复背斜聂家河有利区 543.46 1 826.07 Ⅱ3 黄陵背斜东南缘高家堰‒龙泉有利区 1 587.32 2 678.48 目标区 Ⅰ1 黄陵背斜南缘贺家坪‒高家堰目标区 79.60 528.60 Ⅰ2 黄陵背斜东南缘土城目标区 202.36 842.25 -
[1] Bao, H. Y., Zhang, B. Q., Zeng, L. B., et al., 2019. Marine Shale Gas Differential Enrichment Structure Models in South China. Earth Science, 44(3): 993-1000 (in Chinese with English abstract). [2] Chen, X. H., Liu, A., Luo, S. Y., et al., 2017. Shale Gas High-Yield Industrial Gas Flow was Obtained in Cambrian from YiYe 1-HF Well of in Yichang Area, Hubei Province. Results Express of China Geological Survey, 3(13): 1-5 (in Chinese with English abstract). [3] Chen, X. H., Wei, K., Zhang, B. M., et al., 2018. Main Geological Factors Controlling Shale Gas Reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as Well as Its and Enrichment Patterns. Geology in China, 45(2): 207-226 (in Chinese with English abstract). [4] Gao, B., Liu, Z. B., Shu, Z. G., et al., 2020. Reservoir Characteristics and Exploration of the Lower Cambrian Shale Gas in the Middle-Upper Yangtze Area. Oil & Gas Geology, 41(2): 284-294 (in Chinese with English abstract). [5] Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36 (in Chinese with English abstract). [6] Hao, F., Zou, H. Y., Lu, Y. C., et al., 2013. Mechanism of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. doi: 10.1306/02141312091 [7] He, Y. F., Zhao, H. Y., Dou, X. J., et al., 2018. Calculating Model of the Nano-Pore Permeability in the Shale Reservoir Considering the Stress Sensitivity. Petroleum Geology & Oilfield Development in Daqing, 37(6): 151-157 (in Chinese with English abstract). [8] Hu, L., Zhu, Y. M., Chen, S. B., et al., 2012. Resource Potential Analysis of Shale Gas in Lower Cambrian Qiongzhusi Formation in Middle & Upper Yangtze Region. Journal of China Coal Society, 37(11): 1871-1877 (in Chinese with English abstract). [9] Hu, M. Y., Hu, Z. G., Qiu, X. S., et al., 2016. Lithofacies Paleogeography and Shale Gas Resource Potential Evaluation of Organic-Rich Shale of Sinian-Silurian in the Middle and Upper Yangtze Region. Science Press, Beijing (in Chinese). [10] Jiang, L., Deng, B., Liu, S. G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2): 524-538 (in Chinese with English abstract). [11] Li, Y. X., Lin, J. H., Long, Y. K., et al., 2011. Exploration Prospect of Gas-Bearing Marine Mudstone-Shale in Lower Palaeozoic in the Central Yangtze Area, China. Geological Bulletin of China, 30(2-3): 349-356. [12] Liang, X., Zhang, T. S., Yang, Y., et al., 2014. Microscopic Pore Structure and Its Controlling Factors of Overmature Shale in the Lower Cambrian Qiongzhusi Fm, Northern Yunnan and Guizhou Provinces of China. Natural Gas Industry, 34(2): 18-26 (in Chinese with English abstract). [13] Liu, B. J., Xu, X. S., Pan, X. N., et al., 1993. Sedimentary Crustal Evolution and Mineralization in the Ancient Continent of Southern China. Science Press, Beijing (in Chinese). [14] Liu, H. F., 1996. Cycle Geodynamic Scenario and Evolution of Sedimentary Basins in China. Earth Science, 21(4): 345-356 (in Chinese with English abstract). [15] Long, Y. K., 2011. Lower Paleozoic Shale Gas Exploration Potential in the Central Yangtze Area, China. Geological Bulletin of China, 30(S1): 344-348 (in Chinese with English abstract). [16] Ma, L., Chen, H. J., Gan, K. W., et al., 2004. Tectonics and Marine Petroleum Geology in South China. Geological Publishing House, Beijing, 259-282. [17] Nie, H. K., Bian, R. K., Zhang, P. X., et al., 2014. Micro-Types and Characteristics of Shale Reservoir of the Lower Paleozoic in Southeast Sichuan Basin, and Their Effects on the Gas Content. Earth Science Frontiers, 21(4): 331-343 (in Chinese with English abstract). [18] Oil and Gas Resource Strategy Research Center, Ministry of Land and Resources, 2016. Investigation and Evaluation of Shale Gas Resource Potential in China and Optimization of Favorable Areas. Science Press, Beijing (in Chinese). [19] Qiu, X. S., Hu, M. Y., Hu, Z. G., 2014. Lithofacies Palaeogeographic Characteristics and Reservoir-Forming Conditions of Shale Gas of Lower Cambrian in Middle Yangtze Region. Journal of Central South University (Science and Technology), 45(9): 3174-3185 (in Chinese with English abstract). [20] Ross, D. J. K., Bustin, R. M., 2008. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 [21] Strategic Research Center of Oil and Gas Resources, Ministry of Land and Resources, 2016. National Shale Gas Resource Potential Investigation and Evaluation and Optimization of Favorable Areas. Science Press, Beijing (in Chinese). [22] Tang, S. H., Fan, E. P., Zhang, S. H., et al., 2016. Reservoir Characteristics and Gas-Bearing Capacity of the Lower Palaeozoic Marine Shales in Northwestern Hunan. Earth Science Frontiers, 23(2): 135-146 (in Chinese with English abstract). [23] Tang, X., Jiang, Z., Jiang, S., et al., 2016. Heterogeneous Nanoporosity of the Silurian Longmaxi Formation Shale Gas Reservoir in the Sichuan Basin Using the QEMSCAN, FIB-SEM and Nano-CT Methods. Marine and Petroleum Geology, 78: 99-109. doi: 10.1016/j.marpetgeo.2016.09.010 [24] Wang, C., Zhang, B. Q., Shu, Z. G., et al., 2018. Lithofacies Types and Reservoir Characteristics of Marine Shales of the Wufeng Formation-Longmaxi Formation in Fuling Area, the Sichuan Basin. Oil & Gas Geology, 39(3): 485-497 (in Chinese with English abstract). [25] Wang, R. Y., Ding, W. L., Gong, D. J., et al., 2016. Gas Preservation Conditions of Marine Shale in Northern Guizhou Area: A Case Study of the Lower Cambrian Niutitang Formation in the Cen'gong Block, Guizhou Province. Oil & Gas Geology, 37(1): 45-55 (in Chinese with English abstract). [26] Xiao, D. S., Zhao, R. W., Yang, X., et al., 2019. Characterization, Classification and Contribution of Marine Shale Gas Reservoirs. Oil & Gas Geology, 40(6): 1215-1225 (in Chinese with English abstract). [27] Xie, Y., Wang, J., Wang, Z. J., et al., 2018. Marine Petroleum Geology and Resource Evaluation in Basin-Mountain Transition Area on the West Side of Xuefeng Mountain. Geological Publishing House, Beijing (in Chinese). [28] Xu, L. L., Liu, Z. X., Wen, Y. R., et al., 2020. Shale Gas Reservoir and Gas-Bearing Properties of Middle Yangtze Niutitang Formation in Western Hubei. Special Oil and Gas Reservoirs, 27(4): 1-9 (in Chinese with English abstract). [29] Xu, L. L., Zhou, X. H., Chen, W., et al., 2021. A Study on Shale Gas Preservational Conditions of the Lower Cambrian Niutitang Formation in the Western Hubei. Marine Origin Petroleum Geology, 26(2): 113-122 (in Chinese with English abstract). [30] Yang, F., Ye, J. Z., 2011. Tectonic Characteristics and Shale Gas Exploration Potential of Southeastern Sichuan to Western Hunan and Hubei Province. China University of Geoscienes Press, Wuhan (in Chinese). [31] Zhai, G. Y., Wang, Y. F., Liu, G. H., et al., 2020. Accumulation Model of the Sinian-Cambrian Shale Gas in Western Hubei Province, China. Journal of Geomechanics, 26(5): 696-713 (in Chinese with English abstract). [32] Zhang, D. W., Li, Y. X., Zhang, J. C., et al., 2012. National Shale Gas Resource Potential Survey and Evaluation. Geological Publishing House, Beijing (in Chinese). [33] Zhang, J. C., Lin, L. M., Li, Y. X., et al., 2012. The Method of Shale Gas Assessment: Probability Volume Method. Earth Science Frontiers, 19(2): 184-191 (in Chinese with English abstract). [34] Zhang, J. F., Xu, H., Zhou, Z., et al., 2019. Geological Characteristics of Shale Gas Reservoir in Yichang Area, Western Hubei. Acta Petrolei Sinica, 40(8): 887-899 (in Chinese with English abstract). [35] Zhang, S. G., Zhang, Y. B., Yan, H. J., 2015. Introduction to the Stratigraphic Chart of China (2014). Journal of Stratigraphy, 39(4): 359-366 (in Chinese with English abstract). [36] Zhang, Y. L., Liu, Z. X., Chen, W., 2019. Shale Gas was First Discovered in the Sinian and Cambrian Strata of the Well ZD1 in Yichang-Shennongjia Area. Management and Research on Scientific & Technological Achievements, 14(12): 79-81. [37] Zhu, D. W., Ding, W. L., Deng, L. H., et al., 2012. Development Characteristics of Mud Shale and Shale Gas Formation Conditions in the Middle Yangtze Region. Special Oil and Gas Reservoirs, 19(1): 34-37, 136 (in Chinese with English abstract). [38] Zou, C. N., Dong, D. Z., Yang, H., et al., 2011. Conditions of Shale Gas Accumulation and Exploration Practices in China. Natural Gas Industry, 31(12): 26-39, 125 (in Chinese with English abstract). [39] 包汉勇, 张柏桥, 曾联波, 等, 2019. 华南地区海相页岩气差异富集构造模式. 地球科学, 44(3): 993-1000. doi: 10.3799/dqkx.2018.943 [40] 陈孝红, 刘安, 罗胜元, 等, 2017. 湖北宜昌地区鄂宜页1HF井钻获寒武系页岩气高产工业气流. 中国地质调查局成果快讯, 3(13): 1-5. [41] 陈孝红, 危凯, 张保民, 等, 2018. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式. 中国地质, 45(2): 207-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201802002.htm [42] 高波, 刘忠宝, 舒志国, 等, 2020. 中上扬子地区下寒武统页岩气储层特征及勘探方向. 石油与天然气地质, 41(2): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002006.htm [43] 郭彤楼, 张汉荣, 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm [44] 何岩峰, 赵虹宇, 窦祥骥, 等, 2018. 考虑应力敏感的页岩储层纳米孔隙渗透率计算模型. 大庆石油地质与开发, 37(6): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201806026.htm [45] 胡琳, 朱炎铭, 陈尚斌, 等, 2012. 中上扬子地区下寒武统筇竹寺组页岩气资源潜力分析. 煤炭学报, 37(11): 1871-1877. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201211016.htm [46] 胡明毅, 胡忠贵, 邱小松, 等, 2016. 中上扬子地区震旦系‒志留系富有机质页岩岩相古地理及页岩气资源潜力评价. 北京: 科学出版社. [47] 姜磊, 邓宾, 刘树根, 等, 2019. 焦石坝‒武隆构造带古流体活动差异及对页岩气保存条件的影响. 地球科学, 44(2): 524-538. doi: 10.3799/dqkx.2018.515 [48] 梁兴, 张廷山, 杨洋, 等, 2014. 滇黔北地区筇竹寺组高演化页岩气储层微观孔隙特征及其控制因素. 天然气工业, 34(2): 18-26. doi: 10.3787/j.issn.1000-0976.2014.02.003 [49] 刘宝珺, 许效松, 潘杏南, 等, 1993. 中国南方古大陆沉积地壳演化与成矿. 北京: 科学出版社. [50] 刘和甫, 1996. 中国沉积盆地演化与旋回动力学环境. 地球科学, 21(4): 345-356. doi: 10.3321/j.issn:1000-2383.1996.04.001 [51] 龙幼康, 2011. 中扬子地区下古生界页岩气的勘探潜力. 地质通报, 30(S1): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1021.htm [52] 聂海宽, 边瑞康, 张培先, 等, 2014. 川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响. 地学前缘, 21(4): 331-343. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404040.htm [53] 国土资源部油气资源战略研究中心, 2016. 全国页岩气资源潜力调查评价及有利区优选. 北京: 科学出版社. [54] 邱小松, 胡明毅, 胡忠贵, 2014. 中扬子地区下寒武统岩相古地理及页岩气成藏条件分析. 中南大学学报(自然科学版), 45(9): 3174-3185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409033.htm [55] 唐书恒, 范二平, 张松航, 等, 2016. 湘西北下古生界海相页岩储层特征与含气性分析. 地学前缘, 23(2): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602016.htm [56] 王超, 张柏桥, 舒志国, 等, 2018. 四川盆地涪陵地区五峰组‒龙马溪组海相页岩岩相类型及储层特征. 石油与天然气地质, 39(3): 485-497. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803007.htm [57] 王濡岳, 丁文龙, 龚大建, 等, 2016. 黔北地区海相页岩气保存条件: 以贵州岑巩区块下寒武统牛蹄塘组为例. 石油与天然气地质, 37(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601008.htm [58] 肖佃师, 赵仁文, 杨潇, 等, 2019. 海相页岩气储层孔隙表征、分类及贡献. 石油与天然气地质, 40(6): 1215-1225. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906006.htm [59] 谢渊, 王剑, 汪正江, 等, 2018. 雪峰山西侧盆山过渡区海相油气地质与资源评价. 北京: 地质出版社. [60] 许露露, 刘早学, 温雅茹, 等, 2020. 中扬子鄂西地区牛蹄塘组页岩储层特征及含气性研究. 特种油气藏, 27(4): 1-9. doi: 10.3969/j.issn.1006-6535.2020.04.001 [61] 许露露, 周向辉, 陈威, 等, 2021. 中扬子鄂西地区下寒武统牛蹄塘组页岩气保存条件研究. 海相油气地质, 26(2): 113-122. doi: 10.3969/j.issn.1672-9854.2021.02.003 [62] 杨飞, 叶建中, 2011. 川东南‒湘鄂西地区构造特征与页岩气勘探潜力. 武汉: 中国地质大学出版社. [63] 翟刚毅, 王玉芳, 刘国恒, 等, 2020. 鄂西地区震旦系—寒武系页岩气成藏模式. 地质力学学报, 26(5): 696-713. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005007.htm [64] 张大伟, 李玉喜, 张金川, 等, 2012. 全国页岩气资源潜力调查评价. 北京: 地质出版社. [65] 张金川, 林腊梅, 李玉喜, 等, 2012. 页岩气资源评价方法与技术: 概率体积法. 地学前缘, 19(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202028.htm [66] 张君峰, 许浩, 周志, 等, 2019. 鄂西宜昌地区页岩气成藏地质特征. 石油学报, 40(8): 887-899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908001.htm [67] 章森桂, 张允白, 严惠君, 2015. 《中国地层表》(2014)正式使用. 地层学杂志, 39(4): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504002.htm [68] 张焱林, 刘早学, 陈威, 2019. 宜昌‒神农架地区秭地1井首次在震旦系和寒武系获得页岩气重要发现. 科技成果管理与研究, 14(12): 79-81. [69] 朱定伟, 丁文龙, 邓礼华, 等, 2012. 中扬子地区泥页岩发育特征与页岩气形成条件分析. 特种油气藏, 19(1): 34-37, 136. doi: 10.3969/j.issn.1006-6535.2012.01.007 [70] 邹才能, 董大忠, 杨桦, 等, 2011. 中国页岩气形成条件及勘探实践. 天然气工业, 31(12): 26-39, 125. doi: 10.3787/j.issn.1000-0976.2011.12.005