Petrogenesis of Pingtaishan Compound Massif in the Eastern Tianshan, NW China, and Its Implications on Late Paleozoic Ridge Subduction
-
摘要: 为深入了解东天山晚古生代时期的构造演化,对东天山卡拉塔格地区平台山岩体开展了系统的野外调查,并进行了锆石U-Pb年代学和地球化学研究.平台山岩体是由辉长岩、辉绿岩、角闪辉长岩和石英闪长岩组成的复式岩体.其中辉长岩和石英闪长岩的LA-ICP-MS锆石U-Pb年龄分别为284.7±2.8 Ma和270.0±3.4 Ma.辉长岩、辉绿岩和角闪辉长岩的SiO2为44.17%~50.14%,Fe2O3T为7.63%~12.75%,MgO介于2.79%~16.80%,全碱含量低且变化大(K2O+Na2O=1.79%~6.36%),Mg#值变化大(41~73),富集Rb、Ba、Sr、U和Pb,亏损Nb、Ta、Zr、Hf和Ti等高场强元素,与岛弧岩浆岩特征一致.石英闪长岩具有髙硅(SiO2=61.15%~64.62%)、富碱(K2O+Na2O=8.50%~9.34%),富集Rb、Ba和Zr、Hf、Y,具有Eu、Sr和Ti负异常,并有高的(Ga/Al)×104比值(3.55~3.68)和Y/Nb比值(14.31~16.28),与A2型花岗岩特征相似.辉长岩、辉绿岩和角闪辉长岩属于阿拉斯加型岩体,母岩浆来源于亏损地幔与被流体交代岩石圈地幔的混合物,石英闪长岩母岩浆来源于亏损地幔与下地壳熔体的混合物.结合区域资料,本文认为早二叠世康古尔洋尚未闭合,平台山复式岩体是康古尔洋洋脊斜向俯冲的产物.Abstract: Pingtaishan intrusion located in the Kalatag area of eastern Tianshan, is a compound massif composed of gabbro, diabase, hornblende gabbro and quartz diorite, and is an ideal object to understand the tectonic evolution of the eastern Tianshan during the Late Paleozoic. LA-ICP-MS zircon U-Pb geochronology and geochemical analysis of major and trace elements are performed to unravel their petrogenesis. The gabbro, diabase and hornblende gabbro exhibit low SiO2 (44.17%-50.14%) and high Fe2O3T (7.63%-12.75%), and variable alkali content (K2O+Na2O=1.79%-6.36%), MgO content (2.79% to 16.80%) and Mg# (41-73). In addition, these rocks are enriched in Rb, Ba, Sr, U, and Pb and depleted in Nb, Ta, Zr, Hf, and Ti, which is consistent with the characteristics of island arc magmatism. The quartz diorites exhibit high SiO2 (61.15%-64.62%) and total alkali (K2O+Na2O=8.50%-9.34%) content, enriched in LILEs (Rb and Ba) and HFSEs (Zr, Hf and Y), high (Ga/Al)×104 ratios (3.55 to 3.68) and Y/Nb ratios (14.31 to 16.28), depleted in Eu, Sr and Ti. Quartz diorites features exhibit an affinity with A2-type granites. On the one hand, these gabbro, diabase, and hornblende gabbro belong to the Alaskan-type mafic complexes, and their parental magma is derived from a mixture of depleted mantle and metasomatized lithospheric mantle. On the other hand, the parental magma of quartz diorite originates from the mixing of the depleted mantle and the lower crust. Collectively, we suggest that the Pingtaishan compound massif results from the oblique subduction of the Kangguer Ocean ridge, implying that the Kangguer Ocean was not yet closed in the Early Permian.
-
Key words:
- compound massif /
- Alaskan-type complexes /
- A2-type granite /
- zircon U-Pb dating /
- ridge subduction /
- eastern Tianshan /
- geochemistry
-
图 1 中亚造山带构造简图(a); 东天山‒北山地区地质略图(b); 卡拉塔格地质图(c); 平台山复式岩体地质图(d)
图a据Şengör et al.,1993修编;图b据Xiao et al.,2004修编;图c据Mao et al.,2021b;图d实际填图
Fig. 1. A brief structural map of the Central Asian Orogenic Belt (a); sketch map of the eastern Tianshan-Beishan area (b); geological maps of the Kalatag area (c) and Pingtaishan compound massif (d)
图 5 平台山复式岩体稀土元素球粒陨石标准化模式图(a, c, e, h)和微量元素原始地幔标准化模式图解(b, d, f, i)
OIB、N-MORB和原始地幔和标准化数值据Sun and McDonough(1989)
Fig. 5. Plots of chondrite-normalized REE patterns (a, c, e, h) and plots of primitive mantle-normalized trace element patterns (b, d, f, i) for Pingtaishan compound massif
图 10 平台山复式岩体构造判别图解
a. Th/Yb-Ta/Yb图解,据Pearce(1982);b. Hf/3-Th-Ta图解,据Wood(1980);c. Nb -Y图解;d. Ta-Yb图解,据Pearce et al.(1984)
Fig. 10. Diagrams of structure discrimination for Pingtaishan compound massif
图 11 康古尔洋洋脊俯冲构造示意图(据Mao et al., 2021d修编)
Fig. 11. Diagram of perspective structure of oceanic ridge subduction for the Kangguer Ocean (modified after Mao et al., 2021d)
-
[1] Allen, M. B., Şengör, A. M. C., Natal'in, B. A., 1995. Junggar, Turfan and Alakol Basins as Late Permian to? Early Triassic Extensional Structures in a Sinistral Shear Zone in the Altaid Orogenic Collage, Central Asia. Journal of the Geological Society, 152(2): 327-338. https://doi.org/10.1144/gsjgs.152.2.0327 [2] Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9 [3] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [4] Ao, S. J., Mao, Q. G., Windley, B. F., et al., 2021. The Youngest Matrix of 234 Ma of the Kanguer Accretionary Mélange Containing Blocks of N-MORB Basalts: Constraints on the Northward Subduction of the Paleo-Asian Kanguer Ocean in the Eastern Tianshan of the Southern Altaids. International Journal of Earth Sciences, 110(3): 791-808. https://doi.org/10.1007/s00531-021-01990-5 [5] Ao, S. J., Xiao, W. J., Han, C. M., et al., 2010. Geochronology and Geochemistry of Early Permian Mafic- Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2-3): 466-478. https://doi.org/10.1016/j.gr.2010.01.004 [6] Branquet, Y., Gumiaux, C., Sizaret, S., et al., 2012. Synkinematic Mafic/Ultramafic Sheeted Intrusions: Emplacement Mechanism and Strain Restoration of the Permian Huangshan Ni-Cu Ore Belt (Eastern Tianshan, NW China). Journal of Asian Earth Sciences, 56: 240-257. https://doi.org/10.1016/j.jseaes.2012.05.021 [7] Brown, M., 1998. Ridge-Trench Interactions and High-T-Low-P Metamorphism, with Particular Reference to the Cretaceous Evolution of the Japanese Islands. Geological Society, London, Special Publications, 138(1): 137-169. https://doi.org/10.1144/gsl.sp.1996.138.01.09 [8] Chai, F. M., Zhang, Z. C., Dong, L. H., et al., 2007. Geochemistry and Petrogenesis of the Baishiquan Cu-Ni Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 23(10): 2366-2378 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.005 [9] Chai, F. M., Zhang, Z. C., Li, W. H., et al., 2019. The Early Paleozoic Huangtupo VMS Cu-Zn Deposit in Kalatag, Eastern Tianshan: Implications from Geochemistry and Zircon U-Pb Geochronology of Volcanic Host Rocks. Lithos, 342-343: 97-113. https://doi.org/10.1016/j.lithos.2019.05.026 [10] Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2-4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014 [11] Chen, W., Sun, S., Zhang, Y., et al., 2005. 40Ar/39Ar Geochronology of the Qiugemingtashi-Huangshan Ductile Shear Zone in East Tianshan, Xinjiang, NW China. Acta Geologica Sinica, 79(6): 790-804 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2005.06.008 [12] Chen, X. J., Shu, L. S., Santosh, M., 2011. Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China: New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks. Lithos, 127(3-4): 581-598. https://doi.org/10.1016/j.lithos.2011.06.008 [13] Chen, Z. Y., Xiao, W. J., Windley, B. F., et al., 2020. Latest Permian-Early Triassic Arc Amalgamation of the Eastern Tianshan (NW China): Constraints from Detrital Zircons and Hf Isotopes of Devonian-Triassic Sediments. Geological Journal, 55(3): 1708-1727. https://doi.org/10.1002/gj.3540 [14] Condie, K. C., 2005. TTGs and Adakites: Are They both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001 [15] Cui, M. M., Bai, Y., Luo, Y., et al., 2020. Characteristics, Petrogenesis and Metallogenesis of Alaskan-Type Complexes. Mineral Deposits, 39(3): 397-418 (in Chinese with English abstract). [16] DeBari, S. M., Coleman, R. G., 1989. Examination of the Deep Levels of an Island Arc: Evidence from the Tonsina Ultramafic-Mafic Assemblage, Tonsina, Alaska. Journal of Geophysical Research: Solid Earth, 94(B4): 4373-4391. https://doi.org/10.1029/JB094iB04p04373 [17] Dickinson, W. R., Snyder, W. S., 1979. Geometry of Triple Junctions Related to San Andreas Transform. Journal of Geophysical Research: Solid Earth, 84(B2): 561-572. https://doi.org/10.1029/JB084iB02p00561 [18] Du, L., Long, X. P., Yuan, C., et al., 2018. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318-319: 47-59. https://doi.org/10.1016/j.lithos.2018.08.006 [19] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 [20] Gibson, I. L., Kirkpatrick, R. J., Emmerman, R., et al., 1982. The Trace Element Composition of the Lavas and Dikes from a 3-km Vertical Section through the Lava Pile of Eastern Iceland. Journal of Geophysical Research: Solid Earth, 87(B8): 6532-6546. https://doi.org/10.1029/JB087iB08p06532 [21] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2010. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3-4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019 [22] Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.04.010 [23] Irvine, T. N., 1974. Petrology of the Duke Island Ultramafic Complex Southern Alaska. Geological Society of America Memoir, 138: 240. https://doi.org/10.1130/MEM138-p1 [24] Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055 [25] Iwamori, H., 2000. Thermal Effects of Ridge Subduction and Its Implications for the Origin of Granitic Batholith and Paired Metamorphic Belts. Earth and Planetary Science Letters, 181(1-2): 131-144. https://doi.org/10.1016/S0012-821X(00)00182-5 [26] Laurent-Charvet, S., Charvet, J., Monié, P., et al., 2003. Late Paleozoic Strike-Slip Shear Zones in Eastern Central Asia (NW China): New Structural and Geochronological Data. Tectonics, 22(2): 1009-1032. https://doi.org/10.1029/2001TC901047 [27] Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford. [28] Li, H. Q., Chen, F. W., Lu, Y. F., et al., 2004. Zircon SHRIMP U-Pb Age and Strontium Isotopes of Mineralized Granitoids in the Sanchakou Copper Polymetallic Depoist, East Tianshan Mountains. Acta Geoscientica Sinica, 25(2): 191-195 (in Chinese with English abstract). [29] Li, J. Y., 2004. Late Neoproterozoic and Paleozoic Tectonic Framework and Evolutionof Eastern Xinjiang, NW China. Geological Review, 50(3): 304-322 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.03.015 [30] Lightfoot, P. C., Hawkesworth, C. J., Sethna, S. F., 1987. Petrogenesis of Rhyolites and Trachytes from the Deccan Trap: Sr, Nd and Pb Isotope and Trace Element Evidence. Contributions to Mineralogy and Petrology, 95(1): 44-54. https://doi.org/10.1007/BF00518029 [31] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [32] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [33] Luo, T., Chen, J. P., Liao, Q. A., et al., 2020. A Back-Arc Basin in Eastern Tianshan, Central Asia: Evidence from Geochronology and Geochemistry of Carboniferous Basalts. Earth Science, 45(1): 194-210 (in Chinese with English abstract). [34] Lü, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract). [35] Ma, R. S., Shu, L. S., Sun, J. Q., 1997. Tectonic Evolution and Metallogeny of Eastern Tianshan Mountains. Geological Publishing House, Beijing (in Chinese). [36] Ma, Z. J., Chai, F. M., Xu, Q. F., et al., 2021. The Discovery of Low-Carboniferous Arc Volcanic Rocks and Its Tectonic Significance at the Kalatag Area in the Eastern Tianshan. Chinese Journal of Geology, 56(3): 683-700 (in Chinese with English abstract). [37] Mao, J. W., Pirajno, F., Zhang, Z. H., et al., 2008. A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 32(2-4): 184-203. https://doi.org/10.1016/j.jseaes.2007.10.006 [38] Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021a. Middle Triassic Lower Crust-Derived Adakitic Magmatism: Thickening of the Dananhu Intra-Oceanic Arc and Its Implications for Arc-Arc Amalgamation in the Eastern Tianshan (NW China). Geological Journal, 56(6): 3137-3154. https://doi.org/10.1002/gj.4095 [39] Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021c. Petrogenesis of Late Carboniferous-Early Permian Mafic-Ultramafic-Felsic Complexes in the Eastern Central Tianshan, NW China: The Result of Subduction-Related Transtension? Gondwana Research, 95: 72-87. https://doi.org/10.1016/j.gr.2021.03.007 [40] Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021d. Cu-Ni Mineralization in Early Permian Mafic Complexes in the Kalatage Area of Eastern Tianshan (NW China): Petrogenetic Constraints from Geochronology, Geochemistry, and Hf-Sr-Nd-Os Isotopes. Ore Geology Reviews, 136: 104258. https://doi.org/10.1016/j.oregeorev.2021.104258 [41] Mao, Q. G., Fang, T. H., Wang, J. B., et al., 2010. Geochronology Studies of the Early Paleozoic Honghai Massive Sulfide Deposits and Its Geological Significance in Kalatage Area, Eastern Tianshan Mountain. Acta Petrologica Sinica, 26(10): 3017-3026 (in Chinese with English abstract). [42] Mao, Q. G., Wang, J. B., Xiao, W. J., et al., 2021b. From Ordovician Nascent to Early Permian Mature Arc in the Southern Altaids: Insights from the Kalatage Inlier in the Eastern Tianshan, NW China. Geosphere, 17(2): 647-683. https://doi.org/10.1130/GES02232.1. [43] Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2014. Geochronology, Geochemistry and Petrogenesis of Early Permian Alkaline Magmatism in the Eastern Tianshan: Implications for Tectonics of the Southern Altaids. Lithos, 190-191: 37-51. https://doi.org/10.1016/j.lithos.2013.11.011 [44] Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2006. Zircon U-Pb Age and the Geochemistry of the Baishiquan Mafic-Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract). [45] Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2021e. Early Permian Subduction-Related Transtension in the Turpan Basin, East Tianshan (NW China): Implications for Accretionary Tectonics of the Southern Altaids. Geological Magazine, 158(1): 175-198. https://doi.org/10.1017/s0016756819001006 [46] Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesite: Orogenic Andesite and Related Rocks. Willy, Chichester. [47] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [48] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [49] Pearce, J. A., Thirlwall, M. F., Ingram, G., et al., 1992. Isotopic Evidence for the Origin of Boninites and Related Rocks Drilled in the Izu-Bonin (Osagawara) Forearc, Leg 125. Proceedings of the Ocean Drilling Program, 125: 237-261. https://doi.org/10.2973/odp.proc.sr.125.134.1992 [50] Pirajno, F., Mao, J. W., Zhang, Z. C., et al., 2008. The Association of Mafic-Ultramafic Intrusions and A-Type Magmatism in the Tian Shan and Altay Orogens, NW China: Implications for Geodynamic Evolution and Potential for the Discovery of New Ore Deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183. https://doi.org/10.1016/j.jseaes.2007.10.012 [51] Qin, K. Z., Fang, T. H., Wang, S. L., et al., 2001. Discovery of the Kalatage Cu-Au Mineralized District and Its Prospecting Potentiality, Paleozoic Window at the South Margin of the Tu-Ha Basin. Chinese Geology, 28(3): 16-23 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2001.03.004 [52] Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a Ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237-260. https://doi.org/10.2475/03.2011.03 [53] Qin, K. Z., Zhang, L. C., Ding, K. S., et al., 2009. Mineralization Type, Petrogenesis of Ore-Bearing Intrusions and Mineralogical Characteristics of Sanchakou Copper Deposits in Eastern Tianshan. Acta Petrologica Sinica, 25(4): 845-861 (in Chinese with English abstract). [54] Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2 [55] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4 [56] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [57] Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. https://doi.org/10.1146/annurev.earth.24.1.263 [58] Shen, X. M., Zhang, H. X., Ma, L., 2010. Ridge Subduction and the Possible Evidences in Chinese Altay, Xinjiang. Geotectonica et Metallogenia, 34(2): 181-195 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2010.02.004 [59] Shu, L. S., Wang, B., Zhu, W. B., et al., 2011. Timing of Initiation of Extension in the Tianshan, Based on Structural, Geochemical and Geochronological Analyses of Bimodal Volcanism and Olistostrome in the Bogda Shan (NW China). International Journal of Earth Sciences, 100(7): 1647-1663. https://doi.org/10.1007/s00531-010-0575-5 [60] Sisson, V. B., Pavlis, T. L., Roeske, S. M., et al., 2003. Introduction: An Overview of Ridge-Trench Interactions in Modern and Ancient Settings. Geological Society of America Special Paper, 371: 1-18. https://doi.org/10.1130/0-8137-2371-X.1 [61] Song, X. Y., Xie, W., Deng, Y. F., et al., 2011. Slab Break-Off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1-2): 128-143. https://doi.org/10.1016/j.lithos.2011.08.011 [62] Su, B. X., Qin, K. Z., Sun, H., et al., 2012. Subduction-Induced Mantle Heterogeneity Beneath Eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 134-135: 41-51. https://doi.org/10.1016/j.lithos.2011.12.011 [63] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [64] Sun, Y., Wang, J. B., Li, Y. C., et al., 2018. Recognition of Late Ordovician Yudai Porphyry Cu (Au, Mo) Mineralization in the Kalatag District, Eastern Tianshan Terrane, NW China: Constraints from Geology, Geochronology, and Petrology. Ore Geology Reviews, 100: 220-236. https://doi.org/10.1016/j.oregeorev.2017.07.011 [65] Sun, Y., Wang, J. B., Lü, X. Q., et al., 2019b. Geochronology, Petrogenesis and Tectonic Implications of the Newly Discovered Cu-Ni Sulfide-Mineralized Yueyawan Gabbroic Complex, Kalatag District, Northwestern Eastern Tianshan, NW China. Ore Geology Reviews, 109: 598-614. https://doi.org/10.1016/j.oregeorev.2019.05.009 [66] Sun, Y., Wang, J. B., Wang, Y. W., et al., 2019a. Ages and Origins of Granitoids from the Kalatag Cu Cluster in Eastern Tianshan, NW China: Constraints on Ordovician-Devonian Arc Evolution and Porphyry Cu Fertility in the Southern Central Asian Orogenic Belt. Lithos, 330/331: 55-73. https://doi.org/10.1016/j.lithos.2019.02.002 [67] Tang, D. M., Qin, K. Z., Su, B. X., et al., 2013. Magma Source and Tectonics of the Xiangshanzhong Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China, Traced from Geochemical and Isotopic Signatures. Lithos, 170-171: 144-163. https://doi.org/10.1016/j.lithos.2013.02.013 [68] Taylor, H. P., 1967. The Zoned Ultramafic Complexes of Southeastern Alaska. In: Wyllie, P. J., ed., Ultramafic and Related Rocks. John Wiley & Sons, New York. [69] Thorkelson, D. J., 1996. Subduction of Diverging Plates and the Principles of Slab Window Formation. Tectonophysics, 255(1-2): 47-63. https://doi.org/10.1016/0040-1951(95)00106-9 [70] Wang, B., Cluzel, D., Jahn, B. M., et al., 2014. Late Paleozoic Pre- and Syn-Kinematic Plutons of the Kangguer-Huangshan Shear Zone: Inference on the Tectonic Evolution of the Eastern Chinese North Tianshan. American Journal of Science, 314(1): 43-79. https://doi.org/10.2475/01.2014.02 [71] Wang, B., Cluzel, D., Shu, L. S., et al., 2009. Evolution of Calc-Alkaline to Alkaline Magmatism through Carboniferous Convergence to Permian Transcurrent Tectonics, Western Chinese Tianshan. International Journal of Earth Sciences, 98(6): 1275-1298. https://doi.org/10.1007/s00531-008-0408-y [72] Wang, J. B., Wang, Y. W., He, Z. J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Geology in China, 33(3): 461-469 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.002 [73] Wang, P. X., Guo, F., Wang, Z. N., 2020. Zircon U-Pb Geochronology, Geochemistry and Geological Significance of Granitoids in the Yazigou, Qimantage Area of East Kunlun Mountains. Geoscience, 34(5): 987-1000 (in Chinese with English abstract). [74] Wang, Q., Wyman, D. A., Zhao, Z. H., et al., 2007. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (Western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1-2): 42-64. https://doi.org/10.1016/j.chemgeo.2006.08.013 [75] Wang, Y., Li, J. Y., Li, W. Q., 2002. 40Ar-39Ar Chronological Evidence of Dextral Shear and Tectonic Evolution of the Eastern Tianshan Orogenic Belt. Xinjiang Geology, 20(4): 315-319 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2002.04.004 [76] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [77] Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Springer, London. [78] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [79] Windley, B. F., Xiao, W. J., 2018. Ridge Subduction and Slab Windows in the Central Asian Orogenic Belt: Tectonic Implications for the Evolution of an Accretionary Orogen. Gondwana Research, 61: 73-87. https://doi.org/10.1016/j.gr.2018.05.003 [80] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821X(80)90116-8 [81] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001 [82] Xiao, Q. H., Deng, J. F., Ma, D. Q., 2002. The Ways of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese). [83] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12 [84] Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165 [85] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 [86] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [87] Yu, M. J., Wang, Y. W., Wang, J. B., et al., 2019. The Mineralization of the Kalatage Arc, Eastern Tianshan, NW China: Insights from the Geochronology of the Meiling Cu-Zn(-Au) Deposit. Ore Geology Reviews, 107: 72-86. https://doi.org/10.1016/j.oregeorev.2018.12.009 [88] Yuan, C., Sun, M., Wilde, S., et al., 2010. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-Off. Lithos, 119(3-4): 269-288. https://doi.org/10.1016/j.lithos.2010.07.004 [89] Zhang, Y. X., Yaxiaer, Y., Zhang, B. W., et al., 2021. Geochronology, Geochemistry and Tectonic Significance of Quartz Monzonite in Hardaban, Southern Wenquan, Xinjiang. Chinese Journal of Geology, 56(4): 1192-1213 (in Chinese with English abstract). [90] Zhou, D. W., Liu, Y. Q., Xing, X. J., et al., 2006. Formation of the Permian Basalts and Implications of Geochemical Tracing for Paleo-Tectonic Setting and Regional Tectonic Background in the Turpan-Hami and Santanghu Basins, Xinjiang. Science in China (Series D), 36(2): 143-153 (in Chinese). [91] Zhou, G. C., Wang, Y. W., Shi, Y., et al., 2019. Geochronology and Geochemistry of Mafic Intrusions in the Kalatag Area, Eastern Tianshan. Acta Petrologica Sinica, 35(10): 3189-3212 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.14 [92] Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. https://doi.org/10.1016/j.chemgeo.2004.05.005 [93] Zhou, T. F., Yuan, F., Zhang, D. Y., et al., 2010. Geochronology, Tectonic Setting and Mineralization of Granitoids in Jueluotage Area, Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478-502 (in Chinese with English abstract). [94] 柴凤梅, 张招崇, 董连慧, 等, 2007. 新疆中天山白石泉含铜镍矿镁铁‒超镁铁岩体地球化学特征与岩石成因. 岩石学报, 23(10): 2366-2378. doi: 10.3969/j.issn.1000-0569.2007.10.005 [95] 陈文, 孙枢, 张彦, 等, 2005. 新疆东天山秋格明塔什‒黄山韧性剪切带40Ar/39Ar年代学研究. 地质学报, 79(6): 790-804. doi: 10.3321/j.issn:0001-5717.2005.06.008 [96] 崔梦萌, 白洋, 罗扬, 等, 2020. 阿拉斯加型岩体的基本特征、成岩过程及成矿作用. 矿床地质, 39(3): 397-418. [97] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [98] 李华芹, 陈富文, 路远发, 等, 2004. 东天山三岔口铜矿区矿化岩体SHRIMP U-Pb年代学及锶同位素地球化学特征研究. 地球学报, 25(2): 191-195. doi: 10.3321/j.issn:1006-3021.2004.02.018 [99] 李锦轶, 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322. doi: 10.3321/j.issn:0371-5736.2004.03.015 [100] 罗婷, 陈继平, 廖群安, 等, 2020. 东天山觉罗塔格构造带石炭纪弧后盆地: 来自基性火山岩的证据. 地球科学, 45(1): 194-210. doi: 10.3799/dqkx.2018.325 [101] 吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228 [102] 马瑞士, 舒良树, 孙家齐, 1997. 东天山构造演化与成矿. 北京: 地质出版社. [103] 马志杰, 柴凤梅, 许强奋, 等, 2021. 东天山卡拉塔格晚石炭世岛弧火山岩发现的地质意义. 地质科学, 56(3): 683-700. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103002.htm [104] 毛启贵, 方同辉, 王京彬, 等, 2010. 东天山卡拉塔格早古生代红海块状硫化物矿床精确定年及其地质意义. 岩石学报, 26(10): 3017-3026. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010013.htm [105] 毛启贵, 肖文交, 韩春明, 等, 2006. 新疆东天山白石泉铜镍矿床基性‒超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601016.htm [106] 秦克章, 方同辉, 王书来, 等, 2001. 吐哈盆地南缘古生代"天窗"卡拉塔格铜金矿化区的发现及其成矿潜力. 中国地质, 28(3): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200103003.htm [107] 秦克章, 张连昌, 丁奎首, 等, 2009. 东天山三岔口铜矿床类型、赋矿岩石成因与矿床矿物学特征. 岩石学报, 25(4): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904010.htm [108] 沈晓明, 张海祥, 马林, 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据. 大地构造与成矿学, 34(2): 181-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201002006.htm [109] 王京彬, 王玉往, 何志军, 2006. 东天山大地构造演化的成矿示踪. 中国地质, 33(3): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603001.htm [110] 王盘喜, 郭峰, 王振宁, 2020. 东昆仑祁漫塔格鸭子沟地区花岗岩类岩石年代学、地球化学及地质意义. 现代地质, 34(5): 987-1000. [111] 王瑜, 李锦轶, 李文铅, 2002. 东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据. 新疆地质, 20(4): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204005.htm [112] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm [113] 肖庆辉, 邓晋福, 马大铨, 2002. 花岗岩研究思维与方法. 北京: 地质出版社. [114] 张宇昕, 亚夏尔·亚力坤, 张博文, 等, 2021. 新疆温泉南部哈尔达坂石英二长岩年代学、地球化学及构造意义. 地质科学, 56(4): 1192-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202104014.htm [115] 周鼎武, 柳益群, 邢秀娟, 等, 2006. 新疆吐‒哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪. 中国科学(D辑), 36(2): 143-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200602003.htm [116] 周国超, 王玉往, 石煜, 等, 2019. 东天山卡拉塔格地区镁铁质岩体年代学、岩石地球化学研究. 岩石学报, 35(10): 3189-3212. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910015.htm [117] 周涛发, 袁峰, 张达玉, 等, 2010. 新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究. 岩石学报, 26(2): 478-502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002014.htm