• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海北部陆缘结构及构造-岩浆演化

    张翠梅 孙珍 赵明辉 庞雄 ManatschalGianreto

    张翠梅, 孙珍, 赵明辉, 庞雄, ManatschalGianreto, 2022. 南海北部陆缘结构及构造-岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
    引用本文: 张翠梅, 孙珍, 赵明辉, 庞雄, ManatschalGianreto, 2022. 南海北部陆缘结构及构造-岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
    Zhang Cuimei, Sun Zhen, Zhao Minghui, Pang Xiong, Manatschal Gianreto, 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
    Citation: Zhang Cuimei, Sun Zhen, Zhao Minghui, Pang Xiong, Manatschal Gianreto, 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208

    南海北部陆缘结构及构造-岩浆演化

    doi: 10.3799/dqkx.2021.208
    基金项目: 

    卢嘉锡国际团队项目 GJTD-2018-13

    国家自然科学基金项目 41730532

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0205

    详细信息
      作者简介:

      张翠梅(1981-), 女, 副研究员, 主要从事张裂陆缘构造演化与模拟研究.ORCID: 0000-0002-6268-6592.E-mail: cmzhang@scsio.ac.cn

      通讯作者:

      孙珍, ORCID: 0000-0002-2991-9999.E-mail: zhensun@scsio.ac.cn

    • 中图分类号: P736.15

    Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea

    • 摘要: 南海北部陆缘发育独特的远端带结构,以“裂谷宽、基底厚和地貌起伏”为主要特点,显著有别于经典贫岩浆型和富岩浆型张裂陆缘.为了解释陆缘结构的成因,综合已有研究进展和国际大洋发现计划(IODP)的钻探成果,对南海北部陆缘基底性质进行了调研,探讨了拆离断层和岩浆作用的特点以及两者间的相互作用.结果表明,在38 Ma之前南海北部大范围发育核杂岩构造,并伴随大量岩浆侵入到中下地壳;岩浆作用一方面加剧了地壳的韧性变形,导致应变无法集中而在多个地方同时发育大型拆离,另一方面对拆离面和减薄的基底进行了强烈改造.最终提出同张裂期就位的岩浆作用和中下地壳的韧性流动是形成南海北部宽裂谷陆缘的关键,深化了对陆缘结构、变形过程和岩石圈减薄机制的理解.

       

    • 图  1  贫岩浆型和富岩浆型张裂陆缘的地壳结构

      a. 全球不同大陆边缘类型的分布(Haupert et al., 2016);b. 典型贫岩浆型陆缘(Sutra et al., 2013),其位置参见图a;c. 典型富岩浆型陆缘(据Geoffroy et al., 2015修改),其位置参见图a

      Fig.  1.  The crustal structures in the magma-poor and magma-rich rifted margins

      图  2  南海北部陆缘远端带的结构和研究区位置

      a. 多道反射地震测线揭示的陆缘远端带结构;b. 多道反射地震测线揭示的陆缘远端带结构;c. 研究区位置;d. 本研究采用的钻井和反射地震数据的位置. 资料来源:1. 据Briais et al.(1993);2. 据Yang et al.(2018);3. 据Zhang et al.(2021a)

      Fig.  2.  The architecture of the basement in the distal margin of the northern SCS and location of the study area

      图  3  不同基底面性质划分

      Fig.  3.  The definition of different top of basements

      图  4  IODP U1501和U1504钻井揭示的陆缘远端带基底性质

      钻探成果据Larsen et al.(2018a, 2018c). a. U1501站位的基底岩性;b. U1501站位的井震关联和基底性质解释;c. U1504站位的基底岩性;d. U1504站位的井震关联和基底性质解释

      Fig.  4.  The nature of the basement determined by the IODP drill holes

      图  5  荔湾凹陷下部剥露的中下地壳内部结构及与露头的对比

      a和a’. 深度域反射地震剖面显示荔湾下部剥露的中下地壳,内部以强烈交织的不连续带为特征,将基底分隔成多个地质体(Zhang et al., 2021b);b. 阿尔卑斯古张裂陆缘出露的中地壳,显示交织融合的不连续带(图示蓝色点线)(Petri et al., 2019);c. 希腊Tinos岛出露的韧性剪切带和内部不均一性地质体(Clerc et al., 2015

      Fig.  5.  Structure of the exhumed mid-lower crust underneath the Liwan Subbasin and comparison with outcrop

      图  6  南海北部陆缘远端带的基底(面)性质和分布

      洋陆转换带的解释参考Zhang et al.(2021a),非本文讨论的重点

      Fig.  6.  The nature of the (top) basement and its distribution in the distal margin of the northern SCS

      图  7  穹隆构造及其与沉积层的交互作用

      Fig.  7.  Dome-shaped highs and their interaction with syn-rift sediments

      图  8  穹隆构造及重力反演揭示的基底高密度体(据Nirrengarten et al., 2020修改)

      Fig.  8.  Seismic interpretation of the dome-shaped highs and joint inversion showing the denser bodies within the basement (modified from Nirrengarten et al., 2020)

      图  9  南海北部陆缘构造‒岩浆演化

      Fig.  9.  The tectono-magmatic evolution of the northern continental margin of South China Sea

      图  10  岩浆作用相对于地壳减薄时间的关系与导致的陆缘结构构造差异

      Fig.  10.  The relationship between the timing of magmatism relative to the crustal thinning and the resultant structure of the rifted margins

    • [1] Bai, Y. L., Dong, D. D., Brune, S., et al., 2019. Crustal Stretching Style Variations in the Northern Margin of the South China Sea. Tectonophysics, 751: 1-12. https://doi.org/10.1016/j.tecto.2018.12.012
      [2] Boillot, G., Recq, M., Winterer, E. L., et al., 1987. Tectonic Denudation of the Upper Mantle along Passive Margins: A Model Based on Drilling Results (ODP Leg 103, Western Galicia Margin, Spain). Tectonophysics, 132(4): 335-342. https://doi.org/10.1016/0040-1951(87)90352-0
      [3] Bown, J. W., White, R. S., 1994. Variation with Spreading Rate of Oceanic Crustal Thickness and Geochemistry. Earth and Planetary Science Letters, 121(3-4): 435-449. https://doi.org/10.1016/0012-821x(94)90082-5
      [4] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      [5] Brune, S., Heine, C., Clift, P. D., et al., 2017. Rifted Margin Architecture and Crustal Rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79: 257-281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
      [6] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z
      [7] Chenin, P., Picazo, S., Jammes, S., et al., 2018. Potential Role of Lithospheric Mantle Composition in the Wilson Cycle: A North Atlantic Perspective. Geological Society, London, Special Publications, 470(1): 157-172. https://doi.org/10.1144/sp470.10
      [8] Childress, L., Scientists, T. E. X., 2019. Expedition 368X Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program.
      [9] Clerc, C., Jolivet, L., Ringenbach, J. C., 2015. Ductile Extensional Shear Zones in the Lower Crust of a Passive Margin. Earth and Planetary Science Letters, 431: 1-7. https://doi.org/10.1016/j.epsl.2015.08.038
      [10] Clerc, C., Ringenbach, J. C., Jolivet, L., et al., 2018. Rifted Margins: Ductile Deformation, Boudinage, Continentward-Dipping Normal Faults and the Role of the Weak Lower Crust. Gondwana Research, 53: 20-40. https://doi.org/10.1016/j.gr.2017.04.030
      [11] Deng, H., Ren, J., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break Up. Nature Communications, 11(1): 4583. https://doi.org/10.1038/s41467-020-18448-y
      [12] Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      [13] Doré, T., Lundin, E., 2015. Research Focus: Hyperextended Continental Margins-Knowns and Unknowns. Geology, 43(1): 95-96. https://doi.org/10.1130/focus012015.1
      [14] Eldholm, O., Gladczenko, T. P., Skogseid, J., et al., 2000. Atlantic Volcanic Margins: A Comparative Study. Geological Society, London, Special Publications, 167(1): 411-428. https://doi.org/10.1144/gsl.sp.2000.167.01.16
      [15] Eldholm, O., Grue, K., 1994. North Atlantic Volcanic Margins: Dimensions and Production Rates. Journal of Geophysical Research: Solid Earth, 99(B2): 2955-2968. https://doi.org/10.1029/93jb02879
      [16] Foulger, G. R., Doré, T., Emeleus, C. H., et al., 2020. The Iceland Microcontinent and a Continental Greenland-Iceland-Faroe Ridge. Earth-Science Reviews, 206: 102926. https://doi.org/10.1016/j.earscirev.2019.102926
      [17] Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
      [18] Franke, D., Ladage, S., Schnabel, M., et al., 2010. Birth of a Volcanic Margin off Argentina, South Atlantic. Geochemistry, Geophysics, Geosystems, 11(2): Q0AB04. https://doi.org/10.1029/2009gc002715
      [19] Franke, D., Neben, S., Ladage, S., et al., 2007. Margin Segmentation and Volcano-Tectonic Architecture along the Volcanic Margin off Argentina/Uruguay, South Atlantic. Marine Geology, 244(1-4): 46-67. https://doi.org/10.1016/j.margeo.2007.06.009
      [20] Geoffroy, L., Burov, E. B., Werner, P., 2015. Volcanic Passive Margins: Another Way to Break up Continents. Scientific Reports, 5: 14828. https://doi.org/10.1038/srep14828
      [21] Gernigon, L., Franke, D., Geoffroy, L., et al., 2020. Crustal Fragmentation, Magmatism, and the Diachronous Opening of the Norwegian-Greenland Sea. Earth-Science Reviews, 206: 102839. https://doi.org/10.1016/j.earscirev.2019.04.011
      [22] Gillard, M., Autin, J., Manatschal, G., et al., 2015. Tectonomagmatic Evolution of the Final Stages of Rifting along the Deep Conjugate Australian-Antarctic Magma-Poor Rifted Margins: Constraints from Seismic Observations. Tectonics, 34(4): 753-783. https://doi.org/10.1002/2015tc003850
      [23] Gong, Z. S., Li, S. T., Xie, T. J., et al., 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Science Press, Beijing (in Chinese).
      [24] Haupert, I., Manatschal, G., Decarlis, A., et al., 2016. Upper-Plate Magma-Poor Rifted Margins: Stratigraphic Architecture and Structural Evolution. Marine and Petroleum Geology, 69: 241-261. https://doi.org/10.1016/j.marpetgeo.2015.10.020
      [25] Hinz, K., Neben, S., Schreckenberger, B., et al., 1999. The Argentine Continental Margin North of 48°S: Sedimentary Successions, Volcanic Activity during Breakup. Marine and Petroleum Geology, 16(1): 1-25. https://doi.org/10.1016/s0264-8172(98)00060-9
      [26] Jian, Z. M., Jin, H. Y., Kaminski, M. A., et al., 2019. Discovery of the Marine Eocene in the Northern South China Sea. National Science Review, 6(5): 881-885. https://doi.org/10.1093/nsr/nwz084
      [27] Jolivet, L., Brun, J. P., 2010. Cenozoic Geodynamic Evolution of the Aegean. International Journal of Earth Sciences, 99(1): 109-138. https://doi.org/10.1007/s00531-008-0366-4
      [28] Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., et al., 2018a. Site U1501. Proceedings of the International Ocean Discovery Program, 367/368.
      [29] Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., et al., 2018b. Site U1502. Proceedings of the International Ocean Discovery Program, 367/368.
      [30] Larsen, H.C., Jian, Z., Alvarez Zarikian, C.A., et al., 2018c. Site U1504. Proceedings of the International Ocean Discovery Program, 367/368.
      [31] Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018d. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      [32] Lei, C., Alves, T. M., Ren, J. Y., et al., 2019. Depositional Architecture and Structural Evolution of a Region Immediately Inboard of the Locus of Continental Breakup (Liwan Subbasin, South China Sea). GSA Bulletin, 131(7-8): 1059-1074. https://doi.org/10.1130/b35001.1
      [33] Li, C. F., Zhou, Z. Y., Hao, H. J., et al., 2008. Late Mesozoic Tectonic Structure and Evolution along the Present-Day Northeastern South China Sea Continental Margin. Journal of Asian Earth Sciences, 31: 546-561. https://doi.org/10.1016/j.jseaes.2007.09.004
      [34] Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567
      [35] Li, J.B., Ding, W.W., Gao, J.Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract).
      [36] Li, S.Z., Suo, Y.H., Liu, X., et al., 2012. Basic Strcutural Pattern and Tectonic Models of the South China Sea: Problems, Advances and Controversies. Marine Geology & Quaternary Geology, 32(6): 35-53 (in Chinese with English abstract).
      [37] Lin, J., Sun, Z., Li, J.B., et al., 2020. South China Seabasin Opening: Lithospheric Rifting and Interaction with Surrounding Subduction Zones. Science & Technology Review, 38(18): 35-39 (in Chinese with English abstract).
      [38] Lister, G. S., Davis, G. A., 1989. The Origin of Metamorphic Core Complexes and Detachment Faults Formed during Tertiary Continental Extension in the Northern Colorado River Region, USA. Journal of Structural Geology, 11(1-2): 65-94. https://doi.org/10.1016/0191-8141(89)90036-9
      [39] Manatschal, G., 2004. New Models for Evolution of Magma-Poor Rifted Margins Based on a Review of Data and Concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3): 432-466. https://doi.org/10.1007/s00531-004-0394-7
      [40] Mjelde, R., Raum, T., Kandilarov, A., et al., 2009. Crustal Structure and Evolution of the Outer Møre Margin, NE Atlantic. Tectonophysics, 468(1-4): 224-243. https://doi.org/10.1016/j.tecto.2008.06.003
      [41] Müntener, O., Manatschal, G., 2006. High Degrees of Melt Extraction Recorded by Spinel Harzburgite of the Newfoundland Margin: The Role of Inheritance and Consequences for the Evolution of the Southern North Atlantic. Earth and Planetary Science Letters, 252(3-4): 437-452. https://doi.org/10.1016/j.epsl.2006.10.009
      [42] Nemčok, M., Sinha, S. T., Stuart, C. J., et al., 2013. East Indian Margin Evolution and Crustal Architecture: Integration of Deep Reflection Seismic Interpretation and Gravity Modelling. Geological Society, London, Special Publications, 369(1): 477-496. https://doi.org/10.1144/sp369.6
      [43] Nirrengarten, M., Mohn, G., Kusznir, N. J., et al., 2020. Extension Modes and Breakup Processes of the Southeast China-Northwest Palawan Conjugate Rifted Margins. Marine and Petroleum Geology, 113: 104123. https://doi.org/10.1016/j.marpetgeo.2019.104123
      [44] Pang, X., Chen, C.M., Peng, D.J., 2007. Pearl River Deep-Water Fan System and Petroleum in the South China Sea. Science Press, Beijing (in Chinese).
      [45] Pang, X., Zheng, J.Y., Mei, L.F., et al., 2021. Structural Diversity of Fault Depressions under the Background of Preexisting Subduction Continental Margin, Pearl River Mouth Basin, China. Petroleum Exploration and Development, 48(4): 677-687 (in Chinese with English abstract).
      [46] Pérez-Gussinyé, M., 2013. A Tectonic Model for Hyperextension at Magma-Poor Rifted Margins: An Example from the West Iberia-Newfoundland Conjugate Margins. Geological Society, London, Special Publications, 369(1): 403-427. https://doi.org/10.1144/sp369.19
      [47] Pérez-Gussinyé, M., Morgan, J. P., Reston, T. J., et al., 2006. The Rift to Drift Transition at Non-Volcanic Margins: Insights from Numerical Modelling. Earth and Planetary Science Letters, 244(1-2): 458-473. https://doi.org/10.1016/j.epsl.2006.01.059
      [48] Péron-Pinvidic, G., Manatschal, G., Masini, E., et al., 2015. Unravelling the along-Strike Variability of the Angola-Gabon Rifted Margin: A Mapping Approach. Geological Society, London, Special Publications, 438(1): 49-76. https://doi.org/10.1144/sp438.1
      [49] Péron-Pinvidic, G., Manatschal, G., Minshull, T. A., et al., 2007. Tectonosedimentary Evolution of the Deep Iberia-Newfoundland Margins: Evidence for a Complex Breakup History. Tectonics, 26(2). https://doi: 10.1029/2006tc001970
      [50] Petri, B., Duretz, T., Mohn, G., et al., 2019. Thinning Mechanisms of Heterogeneous Continental Lithosphere. Earth and Planetary Science Letters, 512: 147-162. https://doi.org/10.1016/j.epsl.2019.02.007
      [51] Planke, S., Eldholm, O., 1994. Seismic Response and Construction of Seaward Dipping Wedges of Flood Basalts: Vøring Volcanic Margin. Journal of Geophysical Research: Solid Earth, 99(B5): 9263-9278. https://doi.org/10.1029/94jb00468
      [52] Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      [53] Reston, T. J., 1988. Evidence for Shear Zones in the Lower Crust Offshore Britain. Tectonics, 7(5): 929-945. https://doi.org/10.1029/tc007i005p00929
      [54] Reston, T. J., 2009. The Structure, Evolution and Symmetry of the Magma-Poor Rifted Margins of the North and Central Atlantic: A Synthesis. Tectonophysics, 468(1-4): 6-27. https://doi.org/10.1016/j.tecto.2008.09.002
      [55] Reston, T. J., Leythaeuser, T., Booth-Rea, G., et al., 2007. Movement along a Low-Angle Normal Fault: The S Reflector West of Spain. Geochemistry, Geophysics, Geosystems, 8: Q06002. https://doi: 10.1029/2006gc001437
      [56] Ru, K., Pigott, J. D., 1986. Episodic Rifting and Subsidence in the South China Sea. AAPG Bulletin, 70: 1136-1155. https://doi.org/10.1306/94886a8d-1704-11d7-8645000102c1865d
      [57] Stock, J. M., Sun, Z., Klaus, A., et al., 2018. Site U1500. Proceedings of the International Ocean Discovery Program, 367/368.
      [58] Sun, L. H., Sun, Z., Huang, X. L., et al., 2020. Microstructures Documenting Cenozoic Extension Processes in the Northern Continental Margin of the South China Sea. International Geology Review, 62(7-8): 1094-1107. https://doi.org/10.1080/00206814.2019.1669079
      [59] Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      [60] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      [61] Sun, Z., Stock, J. M., Klaus, A., et al., 2018. Site U1499. Proceedings of the International Ocean Discovery Program, 367/368.
      [62] Sutra, E., Manatschal, G., Mohn, G., et al., 2013. Quantification and Restoration of Extensional Deformation along the Western Iberia and Newfoundland Rifted Margins. Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597. https://doi.org/10.1002/ggge.20135
      [63] Tomasi, S., Kusznir, N., Manatschal, G., et al., 2021. The Challenge in Restoring Magma-Rich Rifted Margins: The Example of the Mozambique-Antarctica Conjugate Margins. Gondwana Research, 95: 29-44. https://doi.org/10.1016/j.gr.2021.03.009
      [64] Tugend, J., Gillard, M., Manatschal, G., et al., 2018. Reappraisal of the Magma-Rich versus Magma-Poor Rifted Margin Archetypes. Geological Society, London, Special Publications, 476(1): 23-47. https://doi.org/10.1144/sp476.9
      [65] Tugend, J., Manatschal, G., Kusznir, N. J., et al., 2015. Characterizing and Identifying Structural Domains at Rifted Continental Margins: Application to the Bay of Biscay Margins and Its Western Pyrenean Fossil Remnants. Geological Society, London, Special Publications, 413(1): 171-203. https://doi.org/10.1144/sp413.3
      [66] Vanderhaeghe, O., Teyssier, C., McDougall, I., et al., 2003. Cooling and Exhumation of the Shuswap Metamorphic Core Complex Constrained by 40Ar/39Ar Thermochronology. Geological Society of America Bulletin, 115: 200-216. https://doi.org/10.1130/0016-7606(2003)1150200:caeots>2.0.co;2 doi: 10.1130/0016-7606(2003)1150200:caeots>2.0.co;2
      [67] Wang, J. H., Pang, X., Liu, B. J., et al., 2018. The Baiyun and Liwan Sags: Two Supradetachment Basins on the Passive Continental Margin of the Northern South China Sea. Marine and Petroleum Geology, 95: 206-218. https://doi.org/10.1016/j.marpetgeo.2018.05.001
      [68] Wang, P.X., 2012. Tracing the Life History of a Marginal Sea: On the "South China Sea Deep" Research Program. Chinese Science Bulletin, 57(20): 1807-1826 (in Chinese). doi: 10.1360/csb2012-57-20-1807
      [69] Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291: 645-648. https://doi.org/10.1038/291645a0
      [70] White, R.S., McKenzie, D., 1989. Magmatism at Rift Zones: The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research: Solid Earth, 94(B6): 7685-7729. https://doi.org/10.1029/jb094ib06p07685
      [71] Whitmarsh, R. B., Manatschal, G., Minshull, T. A., 2001. Evolution of Magma-Poor Continental Margins from Rifting to Seafloor Spreading. Nature, 413(6852): 150-154. https://doi.org/10.1038/35093085
      [72] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      [73] Yan, P., Wang, L. L., Wang, Y. L., 2014. Late Mesozoic Compressional Folds in Dongsha Waters, the Northern Margin of the South China Sea. Tectonophysics, 615-616: 213-223. https://doi.org/10.1016/j.tecto.2014.01.009
      [74] Yang, L. L., Ren, J. Y., McIntosh, K., et al., 2018. The Structure and Evolution of Deepwater Basins in the Distal Margin of the Northern South China Sea and Their Implications for the Formation of the Continental Margin. Marine and Petroleum Geology, 92: 234-254. https://doi.org/10.1016/j.marpetgeo.2018.02.032
      [75] Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area: An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth-Science Reviews, 187: 186-204. https://doi.org/10.1016/j.earscirev.2018.09.013
      [76] Ye, Q., Mei, L. F., Shi, H. S., et al., 2020. The Influence of Pre-Existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3): 1-18. https://doi.org/10.1029/2019tc005845
      [77] Zhang, C., Manatschal, G., Pang, X., et al., 2020. Discovery of Mega-Sheath Folds Flooring the Liwan Subbasin (South China Sea): Implications for the Rheology of Hyperextended Crust. Geochemistry, Geophysics, Geosystems, 21(7): e2020gc009023. https://doi.org/10.1029/2020gc009023
      [78] Zhang, C., Su, M., Pang, X., et al., 2019. Tectono-Sedimentary Analysis of the Hyperextended Liwan Sag Basin (Midnorthern Margin of the South China Sea). Tectonics, 38(2): 470-491. https://doi.org/10.1029/2018tc005063
      [79] Zhang, C. M., Sun, Z., Manatschal, G., et al., 2021a. Ocean-Continent Transition Architecture and Breakup Mechanism at the Mid-Northern South China Sea. Earth-Science Reviews, 217: 103620. https://doi.org/10.1016/j.earscirev.2021.103620
      [80] Zhang, C. M., Sun, Z., Manatschal, G., et al., 2021b. Syn-Rift Magmatic Characteristics and Evolution at a Sediment-Rich Margin: Insights from High-Resolution Seismic Data from the South China Sea. Gondwana Research, 91: 81-96. https://doi.org/10.1016/j.gr.2020.11.012
      [81] Zhao, Y. H., Ding, W. W., Ren, J. Y., et al., 2021. Extension Discrepancy of the Hyper-Thinned Continental Crust in the Baiyun Rift, Northern Margin of the South China Sea. Tectonics, 40(5): e2020tc006547. https://doi.org/10.1029/2020tc006547
      [82] Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251(1-4): 161-177. https://doi.org/10.1016/0040-1951(95)00018-6
      [83] Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      [84] Zhu, W.L., Zhang, G.C., Gao, L., 2008. Geological Characteristics and Exploration Objectives of Hydrocarbons in the Northern Continental Margin Basin of South China Sea. Acta Petrolei Sinica, 29(1): 1-9 (in Chinese with English abstract). doi: 10.1111/j.1745-7254.2008.00742.x
      [85] Zhu, W.L., Zhang, G.C., Zhong, K., 2016. Oil and Gas Exploration Progress of China National Offshore Oil Corporation during the 12th Five-Year Plan and the Prospect during the 13th Five-Year Plan. China Petroleum Exploration, 21(4): 1-12 (in Chinese with English abstract).
      [86] 龚再升, 李思田, 谢泰俊, 等, 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社.
      [87] 李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015. doi: 10.3969/j.issn.0001-5733.2011.12.003
      [88] 李三忠, 索艳慧, 刘鑫, 等, 2012. 南海的基本构造特征与成因模型: 问题与进展及论争. 海洋地质与第四纪地质, 32(6): 35-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206009.htm
      [89] 林间, 孙珍, 李家彪, 等, 2020. 南海成因: 岩石圈破裂与俯冲带相互作用新认识. 科技导报, 38(18): 35-39. doi: 10.3981/j.issn.1000-7857.2020.18.005
      [90] 庞雄, 陈长民, 彭大钧, 2007. 南海珠江深水扇系统及油气. 北京: 科学出版社.
      [91] 庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下珠江口盆地断陷结构的多样性. 石油勘探与开发, 48(4): 677-687.
      [92] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558
      [93] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      [94] 汪品先, 2012. 追踪边缘海的生命史: "南海深部计划"的科学目标. 科学通报, 57(20): 1807-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201220002.htm
      [95] 朱伟林, 张功成, 高乐, 2008. 南海北部大陆边缘盆地油气地质特征与勘探方向. 石油学报, 29(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200801002.htm
      [96] 朱伟林, 张功成, 钟锴, 2016. 中国海洋石油总公司"十二五"油气勘探进展及"十三五"展望. 中国石油勘探, 21(4): 1-12. doi: 10.3969/j.issn.1672-7703.2016.04.001
    • 加载中
    图(10)
    计量
    • 文章访问数:  446
    • HTML全文浏览量:  256
    • PDF下载量:  117
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-30
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回