Geochemical Characteristics and Tectonic Implications of the End Early Permian High Magnesium Gabbro from Northern Beishan Orogenic Belt, Inner Mongolia
-
摘要: 在北山造山带北部百合山蛇绿混杂岩带南清河沟-红柳峡地区新识别出一套辉长岩.通过LA-ICP-MS锆石U-Pb定年,全岩主微量及Sr-Nd同位素工作,显示辉长岩侵位于278.2±1.3 Ma,具有高镁(Mg#=55~66)、低钾拉斑-钙碱性的地球化学特征,富集Rb、Ba、Sr等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素.辉长岩εNd(t)介于5.64~6.77,具有较高的Sm/Yb比值,暗示岩浆起源于亏损地幔的部分熔融.较高的Mg#及Cr、Ni含量及Zr、Hf负异常,表明母岩浆经历了有限的分离结晶与地壳混染.结合区域地质资料,认为北山造山带北部增生造山作用结束时限为早-中二叠世,北山造山带古亚洲洋最终闭合可能在中二叠世之后.Abstract: A suite of high-magnesium gabbro is located in the Qinghegou-Hongliuxia area in the southern part of the Baiheshan ophillite mélange belt in the northern Beishan orogenic belt. Based on LA-ICP-MS zircon U-Pb dating, whole-rock geochemical and Sr-Nd isotopic analyses, the gabbro was intruded at 278.2±1.3 Ma and they show high magnesium geochemical characteristic, belonging to low-tholeiite to calc-alkaline series. They are enriched in large-ion lithophile elements of Rb, Ba, Sr and depleted in high field strength elements of Nb, Ta, Ti. The values of εNd(t) of the gabbro vary from 5.64 to 6.77, with high Sm/Yb, implying magma originates from depleted mantle. Relatively high Mg#, Cr, Ni and negative Zr and Hf indicate that the primary magma has undergone limited fractional crystallization and crustal contamination. Combined with regional geological material, it is suggested that the end of the accretionary orogeny is Early to Middle Permian in the northern Beishan orogenic belt. The Paleo-Asian Ocean in the Beishan orogenic belt may have been lasted until or after Middle Permian.
-
图 1 北山造山带大地构造位置简图(a)及主要蛇绿岩带分布图(b)(据Xiao et al., 2010;辛后田等,2020)
Fig. 1. Tectonic location (a) and distribution of ophiolites (b) of the Beishan orogenic belt (modified by Xiao et al., 2010; Xin et al., 2020)
图 5 北山造山带北部辉长岩原始地幔标准化微量元素蛛网图(a);球粒陨石标准化稀土元素配分曲线(b)
原始地幔及球粒陨石参考值引自Sun and McDonough(1998)
Fig. 5. Primitive mantle-normalized trace element patterns (a) and chondrite-normalized REE distribution patterns (b) of the gabbro from northern Beishan orogenic belt
图 8 北山造山带北部辉长岩(87Sr/86Sr)i-εNd(t)图解(据DePaolo and Wasserburg,1979)
Fig. 8. (87Sr/86Sr)i-εNd(t) diagram of the gabbro from northern Beishan orogenic belt(modified by DePaolo and Wasserburg, 1979)
图 10 北山造山带北部辉长岩Th/Nb-Ta/Nd判别图解(a;Aldanmaz et al., 2008)和Nb/Yb-Th/Yb判别图解(b;Pearce, 2008)
Fig. 10. Th/Nb-Ta/Nd (a; Aldanmaz et al., 2008) and Nb/Yb-Th/Yb (b; Pearce, 2008) diagrams for the gabbro from northern Beishan orogenic belt
-
[1] Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7 [2] Aldanmaz, E., Yaliniz, M. K., Güctekin, A., et al., 2008. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution during Variable Stages of Ocean Crust Generation. Geological Magazine, 145(1): 37-54. https://doi.org/10.1017/s0016756807003986 [3] Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821X(78)90123-1 [4] Ao, S. J., Xiao, W. J., Han, C. M., et al., 2010. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2-3): 466-478. https://doi.org/10.1016/j.gr.2010.01.004 [5] Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4): 606-625. https://doi.org/10.1017/s0016756811000884 [6] DePaolo, D. J., Wasserburg, G. J., 1979. Neodymium Isotopes in Flood Basalts from the Siberian Platform and Inferences about Their Mantle Sources. Proceedings of the National Academy of Sciences of the United States of America, 76(7): 3056-3060. https://doi.org/10.1073/pnas.76.7.3056 [7] Duan, L. F., Niu, W. C., Zhang, Y., et al., 2020. The Petrogenesis of Quartz Diorite (350 Ma) from the Baiheshan Area of the Beishan Orogenic Belt, and Its Chronological Constraint on Hongshishan-Baiheshan Ocean's Subduction Initiation. Geological Bulletin of China, 39(9): 1330-1340 (in Chinese with English abstract). [8] Guo, Q. Q., Xiao, W. J., Windley, B. F., et al., 2012. Provenance and Tectonic Settings of Permian Turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic Accretionary Tectonics of the Southern Altaids. Journal of Asian Earth Sciences, 49: 54-68. https://doi.org/10.1016/j.jseaes.2011.03.013 [9] Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062 [10] He, F., Xu, L. Q., Su, H. W., et al., 2004. Characteristics and Tectonic Setting of Middle-Permian A-Type Granites in Tianshuijing Area, West of Inner Mongolia. Northwestern Geology, 37(3): 7-14 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2004.03.002 [11] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2 [12] Huang, Y. Q., Jiang, Y. D., Yu, Y., et al., 2020. Nd-Hf Isotopic Decoupling of the Silurian-Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge? Journal of Earth Science, 31(1): 102-114. https://doi.org/10.1007/s12583-019-1217-x [13] Jahn, B. M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599-603. https://doi.org/10.1016/S1367-9120(03)00124-X [14] Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200: 181-209. https://doi.org/10.1130/2007.1200(11) [15] Lassiter, J., DePaolo, D. L., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. In: John, J. M., Millard, F. C., eds., Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington D. C. . [16] Li, M., Xin, H. T., Ren, B. F., et al., 2019. Petrogenesis and Tectonic Significance of the Late Palaeozoic Granitoids in Hazhu Area, Inner Mongolia. Earth Science, 44(1): 328-343 (in Chinese with English abstract). [17] Li, J. J., Peng, Y., Zhang, T., et al., 2021. Division of Metallogenic Units in North China. North China Geology, 44(3): 4-24 (in Chinese with English abstract). [18] Liu, W. G., Wei, S., Zhang, J., et al., 2020. An Improved Separation Scheme for Sr through Fluoride Coprecipitation Combined with a Cation-Exchange Resin from Geological Samples with High Rb/Sr Ratios for High-Precision Determination of Sr Isotope Ratios. Journal of Analytical Atomic Spectrometry, 35(5): 953-960. https://doi.org/10.1039/d0ja00035c [19] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [20] Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [21] Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012. The Liuyuan Complex in the Beishan, NW China: A Carboniferous-Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483-506. https://doi.org/10.1017/s0016756811000811 [22] McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021 [23] Niu, W. C., Xin, H. T., Duan, L. F., et al., 2020. Geochemical Characteristics, Zircon U-Pb Age of SSZ Ophiolite in the Baiheshan Area of the Beishan Orogenic Belt, Inner Mongolia, and Its Indication for the Evolution of the Paleo-Asian Ocean. Geological Bulletin of China, 39(9): 1317-1329 (in Chinese with English abstract). [24] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [25] Qi, R. R., Huang, Z. B., Jin, X., 2006. Geochemical Characteristics and Tectonic Implications of the Dashishan A-Type Granitic Intrusive in Beishan Area, Gansu Province. Acta Petrologica et Mineralogica, 25(2): 90-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2006.02.002 [26] Ren, B. F., Ren, Y. W., Niu, W. C., et al., 2019. Zircon U-Pb Ages and Hf Isotope Characteristics of the Volcanic Rocks from Queershan Group in the Hazhudongshan Area of Beishan, Inner Mongolia and Their Geological Significance. Earth Science, 44(1): 298-311 (in Chinese with English abstract) [27] Rollinson, H. R., 1993. Using Geochemical Data: Evaluaiton, Presentation, Interdretation. Longman Scientific & Technical, New York. [28] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4 [29] Song, D. F., Xiao, W. J., Windley, B. F., et al., 2016. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147. https://doi.org/10.1016/j.tecto.2016.09.012 [30] Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2012. Geochronologic-Petrochemical Studies of the Hongshishan Mafic-Ultramafic Intrusion, Beishan Area, Xinjiang (NW China): Petrogenesis and Tectonic Implications. International Geology Review, 54(3): 270-289. https://doi.org/10.1080/00206814.2010.543011 [31] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [32] Tian, J., Duan, X. L., Cheng, X. Y., 2020. Source Characteristics of the Late Silurian-Early Devonian Intrusive Rocks in the Central Part of the Beishan Orogenic Belt, NW China. Geological Survey and Research, 34(3): 207-211 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2020.03.002 [33] Tian, Z. H., Xiao, W. J., Shan, Y. H., et al., 2013. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52: 119-135. https://doi.org/10.1016/j.jsg.2013.03.016 [34] Wang, S. Q., Hu, X. J., Yang, Z. L., 2020. Detrital Zircon Geochronology and Tectonic Significance of Metamorphic Rocks from Chaganchulu Area, North of Erlianhot, Inner Mongolia. Geological Survey and Research, 43(4): 287-292 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2020.04.001 [35] Wei, Y. S., Yan, T., Yang, W. B., et al., 2020. The Establishment of Late Paleozoic Stratigraphic Framework in the Northern Belt of Beishan Orogenic Belt of Inner Mongolia. Geological Bulletin of China, 39(9): 1367-1388 (in Chinese with English abstract). [36] Wilson, M., 1989. Igneous Petrogenesis. Unwim Hyman, London. [37] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [38] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). [39] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12 [40] Xin, H. T., Niu, W. C., Tian, J., et al., 2020. Spatio-Temporal Structure of Beishan Orogenic Belt and Evolution of Paleo-Asian Ocean, Inner Mongolia. Geological Bulletin of China, 39(9): 1297-1316 (in Chinese with English abstract). [41] Yang, H. Q., Li, Y., Zhao, G. B., et al., 2010. Character and Structural Attribute of the Beishan Ophiolite. Northwestern Geology, 43(1): 26-36 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2010.01.002 [42] Yu, J. Y., Li, X. M., Wang, G. Q., et al., 2012. Zircon U-Pb Ages of Huitongshan and Zhangfangshan Ophiolite in Beishan of Gansu-Inner Mongolia Border Area and Their Significance. Geological Bulletin of China, 31(12): 2038-2045 (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2012.12.013 [43] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x [44] Zhang, Y. Y., Dostal, J., Zhao, Z. H., et al., 2011. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China: Implications for Crust-Mantle Interaction. Geoanalytical Research, 20(4): 816-830. https://doi.org/10.1016/j.gr.2011.03.008 [45] Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. https://doi.org/10.1016/j.chemgeo.2004.05.005 [46] Zuo, G. C., Liu, Y. K., Liu, C. Y., 2003. Framework and Evolution of the Tectonic Structure in Beishan Area Across Gansu Provence, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract). [47] 段连峰, 牛文超, 张永, 等, 2020. 内蒙古北山造山带百合山地区350 Ma石英闪长岩的成因及对红石山-百合山洋俯冲时限的制约. 地质通报, 39(9): 1330-1340. [48] 贺锋, 许立权, 苏宏伟, 等, 2004. 内蒙古西部甜水井地区中二叠世A型花岗岩. 西北地质, 37(3): 7-14. doi: 10.3969/j.issn.1009-6248.2004.03.002 [49] 李敏, 辛后田, 任邦方, 等, 2019. 内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义. 地球科学, 44(1): 328-343. doi: 10.3799/dqkx.2018.238 [50] 李俊建, 彭翼, 张彤, 等, 2021. 华北地区成矿单元划分. 华北地质, 44(3): 4-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202103002.htm [51] 牛文超, 辛后田, 段连峰, 等, 2020. 内蒙古北山造山带百合山SSZ型蛇绿岩地球化学特征、锆石U-Pb年龄及其对古亚洲洋演化的指示. 地质通报, 39(9): 1317-1329. [52] 齐瑞荣, 黄增保, 金霞, 2006. 甘肃北山大石山A型花岗岩体的地球化学特征及构造意义. 岩石矿物学杂志, 25(2): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200602002.htm [53] 任邦方, 任云伟, 牛文超, 等, 2019. 内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地球科学, 44(1): 298-311. doi: 10.3799/dqkx.2018.356 [54] 田健, 段霄龙, 程先钰, 2020. 北山造山带中部晚志留世-早泥盆世侵入岩源区特征及其反映的陆壳增生机制. 地质调查与研究, 34(3): 207-211. [55] 王树庆, 胡晓佳, 杨泽黎, 2020. 内蒙古二连浩特北部查干楚鲁地区变质岩系碎屑锆石年代学及地质意义. 地质调查与研究, 43(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202004001.htm [56] 卫彦升, 闫涛, 杨五宝, 等, 2020. 内蒙古北山造山带北带晚古生代地层时空格架的建立. 地质通报, 39(9): 1367-1388. [57] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979 [58] 辛后田, 牛文超, 田健, 等, 2020. 内蒙古北山造山带时空结构与古亚洲洋演化. 地质通报, 39(9): 1297-1316. [59] 杨合群, 李英, 赵国斌, 等, 2010. 北山蛇绿岩特征及构造属性. 西北地质, 43(1): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201001003.htm [60] 余吉远, 李向民, 王国强, 等, 2012. 甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 31(12): 2038-2045. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201212013.htm [61] 左国朝, 刘义科, 刘春燕, 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质, 12(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200301000.htm