Spatiotemporal Distribution of Granites in Xitian Ore Field in Hunan and Its Tungsten-Tin Mineralization: Constraints from Zircon U-Pb Dating and Geochemical Characteristics
-
摘要:
锡田钨锡多金属矿田位于南岭成矿带中段,发育多期次岩浆活动与钨锡成矿. 为了厘清花岗岩与钨锡成矿的时空关系,采用野外调查、显微鉴定、锆石U-Pb同位素定年与岩石地球化学的方法对矿田内多期次花岗岩岩体(脉)的空间分布、岩石类型、成岩时代、地球化学组成等进行了研究. 结果表明,锡田矿田发生了三期岩浆事件,分别为加里东期(435~441 Ma)、印支期(220~230 Ma)、燕山期(141~160 Ma);三期花岗岩普遍富集大离子亲石元素Rb、K、U、Th等,亏损Ti、P、Sr、Ba等微量元素,具明显的负Eu异常,其中加里东期花岗岩与印支期花岗岩为S型花岗岩,而燕山期花岗岩为A型花岗岩;不同时期花岗岩中的成矿元素从加里东期→印支期→燕山期逐渐升高,特别是W、Sn元素在燕山期白云母与二云母花岗岩中最为富集,这与华南地区燕山期钨锡大爆发的时间是一致的;印支期岩体接触带发育少量矽卡岩型Fe-Cu-W多金属矿床,燕山期岩体接触带也发育矽卡岩型W-Sn多金属矿床,并在附近陡倾的张裂隙中发育多个中大型石英脉型W-Sn矿床,而加里东期岩体附近尚未发现钨锡矿化. 因此,锡田矿田的多期次花岗岩与钨锡多金属成矿是时空耦合的,且成矿以燕山期矽卡岩型与石英脉型钨锡矿为主.
Abstract:Xitian W-Sn polymetallic ore field is located in the middle part of the Nanning metallogenic belt, and multi-stage magmatism and W-Sn mineralization are developed in this ore field. To determine the spatial and temporal relationship between granites and W-Sn mineralization, in this paper it conducts field geological survey, microscopic observation, zircon U-Pb isotopic dating and geochemical analysis on the spatial distribution, lithology, intrusive age and geochemical compositions of multi-stage granites in this ore field. The results show that the Xitian ore field experienced three magmatic events, namely Caledonian (435-441 Ma), Indosinian (220-230 Ma), and Yanshanian (141-160 Ma). All of these granitoids are basically enriched in large ion lithophile elements (e.g., Rb, K, U, Th) and depleted in Ti, P, Sr, Ba, with pronounced negative Eu anomalies. The Caledonian granite and Indosinian granite are S-type granite. The Yanshanian granite is A-type granite. The metal elements in granites of different periods gradually increase from the Caledonian→Indosinian→Yanshanian, in particular, W and Sn were extremely enriched in muscovite and two-mica granites, consistent with the timing of the W-Sn flare-up in South China. A few skarn-type Fe-Cu-W polymetallic deposits were developed in the margin of Indosinian rock, and multiple quartz vein type W-Sn polymetallic deposits were developed in faults or fractures near the Yanshanian rocks, without W-Sn mineralization found near the Caledonian granites. Therefore, the multi-stage granites and W-Sn polymetallic mineralization in Xitian ore field are spatially and temporally coupled, and the major mineralization is characterized by Yanshanian skarn-type and vein W-Sn mineralization, which is an important part of Nanling mineralization belt.
-
Key words:
- granite /
- zircon dating /
- geochronology /
- geochemistry /
- Xitian ore field
-
图 1 中国南岭地区主要W-Sn多金属矿床及成矿年代分布(据毛景文等,2007)
Fig. 1. Distribution of major W-Sn deposits and mineralization age in the Nanling area, China (modified from Mao et al., 2007)
图 8 锡田花岗岩稀土元素配分模式和微量元素蛛网图
标准化值据Sun and McDonough(1989)
Fig. 8. Chondrite-normalized REE pattern and primitive mantle-normalized trace element spider diagram of Xitian granites
表 1 不同时期花岗岩样品信息
Table 1. Information of granite samples in different periods
时期 样号 地区 坐标 岩性 加里东期 170922-4s1 锡田岩体南部 113°42'11"E,26°43'48"N 中细粒白云母花岗岩 170922-3s1 锡田岩体南部 113°42'11"E,26°43'48"N 中细粒白云母花岗岩 印支期 150619-5s1 锡田地区 113°45'48"E,26°49'46"N 细粒白云母花岗岩岩脉 181102-3s1 邓埠仙地区 113°44'43"E,27°8'14"N 细粒黑云母花岗岩岩脉 181102-3s2 邓埠仙地区 113°44'43"E,27°8'14"N 细粒二云母花岗岩岩脉 燕山期 160823-8s8 锡田地区 113°48'50"E,26°48'28"N 细粒白云母花岗岩岩脉 表 2 锡田矿田花岗岩主量(%)、微量(10-6)及稀土元素(10-6)组成
Table 2. Major (%), trace (10-6) and rare earth (10-6) element compositions of granites in Xitian ore field
样品编号 170922-3s1 170922-3s2 170922-3s3 170922-4s1 170922-4s2 170922-4s3 1407-25 0822-5-s1 0823-4s1 0816-15s1 0619-5s1 0823-15s1 0818-12s1 0719-4s1 0720-13s1 0818-3s2 加里东期细粒白云母花岗岩 印支期花岗岩 燕山期花岗岩 SiO2 75.00 74.40 75.00 - - - 75.81 75.68 78.07 76.79 64.27 75.17 76.18 76.32 74.97 76.36 TiO2 0.04 0.04 0.05 - - - 0.02 0.02 0.02 0.03 0.10 0.09 0.04 < 0.01 0.02 0.06 Al2O3 14.10 14.30 14.20 - - - 13.44 13.65 12.58 13.26 18.46 13.33 12.88 13.17 13.56 12.40 TFe2O3 0.96 0.99 1.05 - - - 0.34 0.81 0.78 1.64 0.51 1.13 1.13 1.14 0.43 1.39 MnO 0.03 0.02 0.02 - - - 0.01 0.06 0.01 0.03 0.02 0.02 0.04 0.05 0.02 0.07 MgO 0.25 0.31 0.31 - - - 0.26 0.05 0.03 0.05 0.22 0.10 0.04 0.11 0.04 0.08 CaO 0.29 0.25 0.24 - - - 0.42 0.38 0.40 0.09 0.75 1.06 0.58 0.93 0.57 0.25 Na2O 3.32 3.01 3.09 - - - 3.28 3.52 3.97 2.80 1.38 3.10 3.82 3.68 4.11 3.20 K2O 4.21 4.26 4.18 - - - 6.13 4.37 4.38 4.09 13.30 5.59 4.66 3.55 5.36 4.79 P2O5 0.16 0.14 0.13 - - - < 0.01 0.01 < 0.01 0.03 0.08 0.07 < 0.01 0.02 0.02 0.03 LOI 1.13 1.40 1.36 - - - 0.58 0.68 0.49 1.19 0.88 0.41 0.54 1.31 0.51 0.61 Na2O+K2O 7.53 7.27 7.27 - - - 9.41 7.89 8.35 6.89 14.68 8.69 8.48 7.23 9.47 7.99 Total 100 100 100 - - - 100.29 99.23 100.73 100 99.97 100.07 99.91 100.28 99.61 99.24 A/CNK 1.34 1.43 1.42 - - - 1.05 1.22 1.05 1.44 1.02 1.02 1.04 1.14 1.00 1.14 A/NK 1.41 1.50 1.48 - - - 1.12 1.30 1.11 1.47 1.11 1.19 1.14 1.33 1.08 1.19 DI 93.40 92.50 92.70 - - - 96.10 95.33 97.32 95.20 94.62 94.15 96.37 91.56 96.34 96.86 V 2 2 2 2 1 1 1 1 < 1 1 2 3 1 1 1 2 Cr 15 19 17 6 7 6 20 16 17 14 7 16 13 15 22 14 Cs 24.3 22.5 22.3 28.8 28.5 28.4 20.9 85.2 20.4 34.0 53.6 12.45 59.7 34.0 32.4 41.1 Ga 27.4 28.2 27.5 32.9 29.6 29.8 20.2 27.1 23.5 37.8 22.3 18.9 24.7 24.6 26.3 23.3 Rb 393 393 391 460 430 431 560 900 520 600 590 383 820 590 880 830 Ba 170.0 164.0 168.0 128.0 128.0 120.0 137.0 40.7 6.4 11.0 212.0 289.0 6.3 66.3 49.1 34.9 Th 7.43 8.03 7.58 9.85 7.85 8.45 23.70 29.20 68.50 8.15 8.22 64.70 41.70 27.30 30.30 26.70 U 10.70 9.30 9.40 4.60 4.20 4.20 21.60 23.60 47.10 21.20 34.70 15.50 35.90 34.70 22.10 20.30 Ta 4.60 4.80 4.60 5.80 4.70 5.00 10.40 38.80 8.15 10.80 2.51 2.05 7.99 13.90 8.81 5.68 Nb 20.9 21.5 21.8 28.9 22.5 24.3 11.3 13.8 21.8 5.1 11.2 10.1 42.2 33.2 26.3 25.2 Sr 97.4 79.2 83.7 20.3 28.3 27.3 54.9 22.5 4.7 3.5 142.5 103.0 5.4 27.7 35.8 10.3 Zr 41.0 45.0 42.0 43.0 44.0 40.0 95.0 60.0 236.0 28.0 53.0 82.0 108.0 104.0 67.0 71.0 Hf 2.1 2.3 2.2 2.3 2.2 2.2 8.0 4.3 14.0 2.1 2.5 3.4 7.7 8.4 5.0 3.6 La 10.5 7.1 6.0 9.6 11.1 8.9 9.8 11.8 12.8 4.2 10.6 10.8 27.5 19.7 21.8 24.6 Ce 15.2 13.1 12.6 18.5 22.7 17.3 25.5 28.8 19.9 10.9 25.8 21.3 62.9 55.8 54.1 57.7 Pr 2.18 1.78 1.61 2.32 2.62 2.06 3.09 3.64 4.32 1.40 3.20 2.45 10.00 7.95 6.79 7.02 Nd 9.50 6.80 6.10 8.20 9.00 7.90 70.20 62.90 68.90 37.70 19.10 16.60 35.00 31.40 33.10 28.00 Sm 3.26 2.57 2.21 2.77 2.86 2.35 2.94 5.32 10.15 1.83 3.27 3.39 17.15 15.50 10.80 7.95 Eu 0.19 0.18 0.13 0.16 0.12 0.12 0.04 0.13 0.05 0.03 0.20 0.67 0.08 0.12 0.09 0.10 Gd 4.18 3.33 2.92 2.75 2.69 2.62 2.54 6.92 16.05 1.83 3.09 4.52 20.10 18.70 13.55 8.57 Tb 0.87 0.71 0.64 0.66 0.63 0.59 0.44 1.62 3.71 0.44 0.65 1.00 4.35 4.46 3.32 1.99 Dy 4.33 3.71 3.18 3.20 3.30 3.26 2.91 11.85 27.20 3.11 4.86 6.43 28.80 32.70 23.30 14.10 Ho 0.56 0.48 0.42 0.42 0.42 0.43 0.69 2.65 6.15 0.60 1.05 1.39 5.82 6.76 4.83 2.97 Er 1.22 0.93 0.84 0.89 0.90 0.89 2.53 8.19 21.10 2.15 3.63 4.34 18.90 23.00 16.55 9.73 Tm 0.15 0.11 0.10 0.10 0.11 0.11 0.52 1.31 3.35 0.42 0.64 0.64 3.18 3.95 2.87 1.60 Yb 0.83 0.63 0.59 0.57 0.65 0.64 4.70 9.53 23.90 3.67 4.51 4.15 23.60 28.70 21.10 11.50 Lu 0.11 0.09 0.08 0.07 0.09 0.09 0.87 1.48 3.72 0.57 0.68 0.63 3.65 4.31 3.18 1.78 Y 20.8 16.4 19.2 14.7 16.0 15.4 27.60 61.30 220.00 21.00 32.80 42.00 189.00 185.50 151.00 87.70 ΣREE 53.10 41.50 37.40 50.20 57.20 47.30 126.77 156.14 221.30 68.85 81.28 78.31 261.03 253.05 215.38 177.61 LREE 40.80 31.50 28.70 41.60 48.40 38.60 111.57 112.59 116.12 56.06 62.17 55.21 152.63 130.47 126.68 125.37 HREE 12.30 9.99 8.77 8.66 8.79 8.63 15.20 43.55 105.18 12.79 19.11 23.10 108.40 122.58 88.70 52.24 LREE/HREE 3.33 3.16 3.27 4.80 5.51 4.48 7.34 2.59 1.10 4.38 3.25 2.39 1.41 1.06 1.43 2.40 LaN/YbN 9.07 8.08 7.29 12.1 12.3 9.97 1.50 0.89 0.38 0.82 1.69 1.87 0.84 0.49 0.74 1.53 Eu/Eu* 0.16 0.19 0.16 0.18 0.13 0.15 0.04 0.07 0.01 0.05 0.19 0.52 0.01 0.02 0.02 0.04 Ce/Ce* 0.74 0.88 0.97 0.93 1.00 0.95 1.13 1.07 0.65 1.10 1.08 0.98 0.93 1.09 1.08 1.06 表 3 锡田矿田花岗岩成矿元素组成(10-6)
Table 3. Ore-forming element compositions (10-6) of granites in Xitian ore field
样品编号 期次 岩石名称 采样位置 W Sn Cu Pb Zn 170922-3s2 加里东期 中细粒白云母花岗岩 茶陵水库边 10.9 17.7 3.6 9.0 21 170922-3s3 加里东期 中细粒白云母花岗岩 茶陵水库边 6.7 18.3 3.5 9.0 16 170922-3s4 加里东期 中细粒白云母花岗岩 茶陵水库边 6.1 17.9 3.7 8.6 17 170922-4s2 加里东期 中细粒白云母花岗岩 茶陵水库边 7.8 25.5 5.3 16.6 32 170922-4s3 加里东期 中细粒白云母花岗岩 茶陵水库边 6.3 21.8 2.2 8.7 23 170922-4s4 加里东期 中细粒白云母花岗岩 茶陵水库边 6.3 22.0 1.8 7.7 22 1407-17-3s4 印支期 似斑状黑云母花岗岩 花木矿废石堆 2.0 17.0 29.0 44.0 38 1407-15-11s1 印支期 似斑状黑云母花岗岩 狗打栏矿废石堆 19.0 51.0 12.0 68.0 54 1407-17-1s9 印支期 似斑状黑云母花岗岩 荷树下矿废石堆 18.0 18.0 8.0 62.0 58 1407-21-5s1 印支期 似斑状黑云母花岗岩 高垄公路边 11.0 40.0 1.0 82.0 32 170929-15s2-1 印支期 粗粒黑云母花岗岩 垄山矿石碓 3.7 19.5 14.8 99.2 47 150619-5s1 印支期 细粒白云母花岗岩 垄上228中段 11.4 30.3 8.7 55.2 14 160822-05-s1 燕山期 细粒黑云母花岗岩 白石凹 43.1 19.8 1.2 51.1 37 160823-04s1 燕山期 细粒黑云母花岗岩 小船里 13.7 7.2 8.6 90.0 12 160818-12s1 燕山期 细粒黑云母花岗岩 小船里 1.6 4.7 0.9 69.6 21 160818-3s2 燕山期 细粒黑云母花岗岩 圆树山 8.5 41.4 1.4 55.3 49 1407-20-12s1 燕山期 细粒黑云母花岗岩 荷树下3号坑道 30.0 14.0 1.0 72.0 11 1407-15-11s9 燕山期 细粒黑云母花岗岩 狗打栏钨锡矿 29.0 26.0 1.0 83.0 19 1407-17-1s10 燕山期 细粒黑云母花岗岩 荷树下矿废石堆 16.0 15.0 10.0 115.0 17 160823-15s1 燕山期 细粒二云母花岗岩 圆树山 41.9 25.8 13.3 69.4 39 615-8s1 燕山期 细粒二云母花岗岩 湘东钨矿矿石堆 23.1 41.5 13.8 10.9 35 160816-15s1 燕山期 细粒白云母花岗岩 岩口水库公路旁 930 78.2 51.7 39.6 19 1407-24-15s1 燕山期 细粒白云母花岗岩 垄上坑道253 283.0 24.0 137.0 56.0 25 1407-25 燕山期 细粒白云母花岗岩 垄上 251.0 8.5 26.5 38.9 24 1407-20-13s1 燕山期 细粒白云母花岗岩 荷树下3号坑道 146.0 10.1 1.1 60.8 58 1407-19-4s1 燕山期 细粒白云母花岗岩 垄上228中段 84.5 32.9 6.4 66.1 63 - - 花岗岩 全国 1.0 2.2 5.5 0.1 40[1] - - 上地壳 中国东部 0.8 1.8 17.0 0.4 63[2] - - 上地壳 华南地块 1.2 2.5 19.0 23.0 69[3] 注:数据[1]来源于迟清华等(2012);数据[2]与数据[3]来源于鄢明才等(1997). -
[1] Cai, M.H., Chen, K.X., Qu, W.J., et al., 2006. Geological Characteristics and Re-Os Dating of Molybdenites in Hehuaping Tin-Polymetallic Deposit, Southern Hunan Province. Mineral Deposits, 25(3): 263-268 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200603004.htm [2] Cai, Y., Lu, J.J., Ma, D.S., et al., 2013. Chronology and Geochemical Characteristics of Late Indosinian Dengfuxian Two-Mica Granite in Eastern Hunan Province, China, and Its Significance. Acta Petrologica Sinica, 29(12): 4215-4231 (in Chinese with English abstract). https://oversea.cnki.net/kcms/detail/detail.aspx?filename=YSXB201312011&dbcode=CJFD&dbname=CJFD2013&v= [3] Cai, Y., Ma, D.S., Lu, J.J., et al., 2012. Re-Os Geochronology and S Isotope Geochemistry of Dengfuxian Tungsten Deposit, Hunan Province, China. Acta Petrologica Sinica, 28(12): 3798-3808 (in Chinese with English abstract). [4] Cao, J.Y., 2016. Metallogenic System of Xitian Tin Polymetallic Ore Field in Chaling, Hunan Province (Dissertation). Central South University, Changsha (in Chinese). [5] Cao, J. Y., Wu, Q. H., Yang, X. Y., et al., 2018. Geochronology and Genesis of the Xitian W-Sn Polymetallic Deposit in Eastern Hunan Province, South China: Evidence from Zircon U-Pb and Muscovite Ar-Ar Dating, Petrochemistry, and Wolframite Sr-Nd-Pb Isotopes. Minerals, 8(3): 1-23. https://doi.org/10.3390/min8030111 [6] Cao, J. Y., Wu, Q. H., Yang, X. Y., et al., 2020. Geochemical Factors Revealing the Differences between the Xitian and Dengfuxian Composite Plutons, Middle Qin-Hang Belt: Implications to the W-Sn Mineralization. Ore Geology Reviews, 118: 103353. https://doi.org/10.1016/j.oregeorev.2020.103353 [7] Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [8] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 [9] Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x [10] Chappell, B. W., Wyborn, D., 2012. Origin of Enclaves in S-Type Granites of the Lachlan Fold Belt. Lithos, 154: 235-247. https://doi.org/10.1016/j.lithos.2012.07.012 [11] Chen, D., Chen, Y.M., Ma, A.J., et al., 2014. Magma Mixing in the Xitian Pluton of Hunan Province: Evidence from Petrography, Geochemistry and Zircon U-Pb Age. Geology in China, 41(1): 61-78 (in Chinese with English abstract). [12] Chen, D., Ma, A.J., Liu, W., et al., 2013. Research on U-Pb Chronology in Xitian Pluton of Hunan Province. Geoscience, 27(4): 819-830 (in Chinese with English abstract). [13] Cheng, S.B., Fu, J.M., Ma, L.Y., et al., 2016. Origin of the Yuechengling Caledonian Granitic Batholith, Northeastern Guangxi: Constraint from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Geotectonica et Metallogenia, 40(4): 853-872 (in Chinese with English abstract). [14] Chi, Q.H., Wang, X.Q., Xu, S.F., et al., 2012. Temporal and Spatial Distribution of Tungsten and Tin in South China Continent. Earth Science Frontiers, 19(3): 70-83 (in Chinese with English abstract). [15] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895 [16] Deng, X.T., Cao, J.Y., Wu, Q.H., et al., 2017. Difference of Sources of the Yanshanian Xitian and Dengfuxian Granites in Hunan Province and Their Implication. Journal of Central South University (Science and Technology), 48(1): 212-222 (in Chinese with English abstract). [17] Deng, X.W., Liu, J.S., Dai, X.L., 2015. Geological Characteristics and Molybdenite Re-Os Isotopic Age of Hejiangkou Tungsten and Tin Polymetallic Deposit, East Hunan, China. The Chinese Journal of Nonferrous Metals, 25(10): 2883-2897 (in Chinese with English abstract). [18] Dong, C.G., 2018. Study on the Diagenetic Chronology and Dynamics of Tin-Tungsten Deposits and Deng Fuxian Tungsten Deposits in Xitian, Hunan (Dissertation). University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), Guangzhou (in Chinese with English abstract). [19] Dou, H.R., Zhang, W.L., Wang, R.C., et al., 2018. Chronology, Metallogenic Fluid Properties and Evolution of the Niutangjie Tungsten Deposit, Northern Guangxi, China. Acta Geologica Sinica, 92(11): 2269-2300 (in Chinese with English abstract). [20] Du, A.D., Qu, W.J., Wang, D.H., et al., 2007. Subgrain-Size Decoupling of Re and 187Os within Molybdenite. Mineral Deposits, 26(5): 572-580 (in Chinese with English abstract). [21] Feng, G.Y., Huang, J., He, F., 2009. The Features and Metallogenesis of the Granites in the Yuechengling- Maoershan Area. Mineral Resources and Geology, 23(5): 412-417 (in Chinese with English abstract). [22] Fu, J.M., Cheng, S.B., Lu, Y.Y., et al., 2012. Geochronology of the Greisen-Quartz-Vein Type Tungsten-Tin Deposit and Its Host Granite in Xitian, Hunan Province. Geology and Exploration, 48(2): 313-320 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201202014.htm [23] Guo, C.L., Li, C., Wu, S.C., et al., 2014. Molybdenite Re-Os Isotopic Dating of Xitian Deposit in Hunan Province and Its Geological Significance. Rock and Mineral Analysis, 33(1): 142-152 (in Chinese with English abstract). [24] He, M., Hou, Q. L., Liu, Q., et al., 2018. Timing and Structural Controls on Skarn-Type and Vein-Type Mineralization at the Xitian Tin-Polymetallic Deposit, Hunan Province, SE China. Acta Geochimica, 37(2): 295-309. https://doi.org/10.1007/s11631-017-0215-x [25] Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 [26] Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China-An Introduction to the Thematic Issue. Mineralium Deposita, 47(6): 579-588. https://doi.org/10.1007/s00126-012-0431-6 [27] Hua, R.M., 2005. Differences between Rock-Forming and Related Ore-Forming Times for the Mesozoic Granitoids of Crust Remelting Types in the Nanling Range, South China, and Its Geological Significance. Geological Review, 51(6): 633-639 (in Chinese with English abstract). [28] Huang, H., Ma, D.S., Lu, J.J., et al., 2011. Zircon U-Pb Geochronology of the Dengfuxian Composite Granite, Hunan Province. Acta Mineralogica Sinica, 31(S1): 590-591 (in Chinese). [29] Huang, H., Ma, D.S., Lu, J.J., et al., 2013. Zircon U-Pb Geochronology and Geochemistry Characteristics of Dengfuxian Two-Mica Granite, Eastern Hunan Province, China. Acta Mineralogica Sinica, 33(2): 245-255 (in Chinese with English abstract). [30] Huang, H.X., 2014. Geochemistry and Metallogenic Mechanism of Dengbuxian Tungsten-Tin Polymetallic Deposit, Hunan (Dissertation). Yangtze University, Jingzhou (in Chinese with English abstract). [31] Li, J.M., Li, Y.M., Lou, F.S., et al., 2016. A "Five-Storey" Style Quartz Vein Wolframite Deposit in Northern Jiangxi Province: The Discovery of the Dongping Wolframite Deposit and Its Geological Significance. Acta Geoscientica Sinica, 37(3): 379-384 (in Chinese with English abstract). [32] Li, S.T., Wang, J.B., Zhu, X.Y., et al., 2011. Re-Os Dating of Molybdenite and Sulfur Isotope Analysis of the Yaogangxian Tungsten Polymetallic Deposits in Hunan Province and Their Geological Significance. Geoscience, 25(2): 228-235 (in Chinese with English abstract). [33] Liang, X. Q., Dong, C. G., Jiang, Y., et al., 2016. Zircon U-Pb, Molybdenite Re-Os and Muscovite Ar-Ar Isotopic Dating of the Xitian W-Sn Polymetallic Deposit, Eastern Hunan Province, South China and Its Geological Significance. Ore Geology Reviews, 78: 85-100. https://doi.org/10.1016/j.oregeorev.2016.03.018 [34] Lin, S.P., Wu, J., Huang, W.T., et al., 2017. Zircon U-Pb Ages of Ore-Bearing Intrusions in Jiepai W-Cu Deposit Northeastern Guangxi and Implication on Caledonian Mineralization in South China. Geotectonica et Metallogenia, 41(6): 1116-1127 (in Chinese with English abstract). [35] Liu, B., Wu, Q. H., Li, H., et al., 2020. Fault-Controlled Fluid Evolution in the Xitian W-Sn-Pb-Zn-Fluorite Mineralization System (South China): Insights from Fluorite Texture, Geochemistry and Geochronology. Ore Geology Reviews, 116: 103233. https://doi.org/10.1016/j.oregeorev.2019.103233 [36] Liu, C.Q., Huang, Z.L., Li, H.P., et al., 2001. The Geofluid in the Mantle and Its Role in Ore-Forming Processes. Earth Science Frontiers, 8(4): 231-243 (in Chinese with English abstract). [37] Liu, G.Q., Wu, S.C., Du, A.D., et al., 2008. Metallogenic Ages of the Xitian Tungsten-Tin Deposit, Eastern Hunan Province. Geotectonica et Metallogenia, 32(1): 63-71 (in Chinese with English abstract). [38] Liu, M., Qiu, H.N., Bai, X.J., et al., 2015. Fluid Inclusion Studies of Xintian Tin-Tungsten Polymetallic Deposit in Hunan Province. Mineral Deposits, 34(5): 981-998 (in Chinese with English abstract). [39] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [40] Liu, Z., Zhang, Y.Z., Cui, X., et al., 2020. Petrogenesis and Implications of the Late Jurassic Granitoid and Its Mafic Microgranular Enclaves in West Guangdong Province: Constraints from Geochronological, Mineralogical and Geochemical Evidence. Earth Science, 45(4): 1243-1265 (in Chinese with English abstract). [41] Ludwig, K.R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [42] Ma, T.Q., Wang, X.H., Bai, D.Y., 2004. Geochemical Characteristics and Its Tectonic Setting of the Xitian Tungsten-Tin-Bearing Granite Pluton. Geology and Mineral Resources of South China, 20(1): 11-16 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-HNKC200401002.htm [43] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China: Metallogenic Ages and Corresponding Geodynamic Processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710003.htm [44] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200804007.htm [45] Ni, Y.J., Shan, Y.H., Wu, S.C., et al., 2015. Determination of Slip Sense of the Laoshan'ao Fault in the Xiangdong Tungsten Deposit (Southeast Hunan) and Its Implications for Mineral Exploration. Geotectonica et Metallogenia, 39(3): 436-445 (in Chinese with English abstract). [46] Niu, R., Liu, Q., Hou, Q.L., et al., 2015. Zircon U-Pb Geochronology of Xitian Granitic Pluton in Hunan Province and Its Constraints on the Metallogenic Ages of the Tungsten-Tin Deposit. Acta Petrologica Sinica, 31(9): 2620-2632 (in Chinese with English abstract). [47] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [48] Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2013. Geological Characteristics of Host Granite Intrusions of the W- Sn-Nb-Ta Deposit, Nanling Area, China. Mineral Exploration, 4(6): 598-608 (in Chinese with English abstract). [49] Wei, W., Song, C., Hou, Q. L., et al., 2018. The Late Jurassic Extensional Event in the Central Part of the South China Block-Evidence from the Laoshan'ao Shear Zone and Xiangdong Tungsten Deposit (Hunan, SE China). International Geology Review, 60(11-14): 1644-1664. https://doi.org/10.1080/00206814.2017.1395714 [50] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [51] Wu, J. H., Kong, H., Li, H., et al., 2021. Multiple Metal Sources of Coupled Cu-Sn Deposits: Insights from the Tongshanling Polymetallic Deposit in the Nanling Range, South China. Ore Geology Reviews, 139: 104521. https://doi.org/10.1016/j.oregeorev.2021.104521 [52] Wu, J. H., Li, H., Algeo, T. J., et al., 2018. Genesis of the Xianghualing Sn-Pb-Zn Deposit, South China: A Multi-Method Zircon Study. Ore Geology Reviews, 102: 220-239. https://doi.org/10.1016/j.oregeorev.2018.09.005 [53] Wu, Q. H., Cao, J. Y., Kong, H., et al., 2016. Petrogenesis and Tectonic Setting of the Early Mesozoic Xitian Granitic Pluton in the Middle Qin-Hang Belt, South China: Constraints from Zircon U-Pb Ages and Bulk-Rock Trace Element and Sr-Nd-Pb Isotopic Compositions. Journal of Asian Earth Sciences, 128: 130-148. https://doi.org/10.1016/j.jseaes.2016.07.002 [54] Wu, S.C., Long, Z.Q., Xu, H.H., et al., 2012. Structural Characteristics and Prospecting Significance of the Xitian Tin-Tungsten Polymetallic Deposit, Hunan Province, China. Geotectonica et Metallogenia, 36(2): 217-226 (in Chinese with English abstract). [55] Xiong, Y. Q., Shao, Y. J., Cheng, Y. B., et al., 2020. Discrete Jurassic and Cretaceous Mineralization Events at the Xiangdong W(-Sn) Deposit, Nanling Range, South China. Economic Geology, 115(2): 385-413. https://doi.org/10.5382/econgeo.4704 [56] Xiong, Y.Q., Shao, Y.J., Liu, J.P., et al., 2016. Ore- Forming Fluid of Quartz-Vein Type Tungsten Deposits, Xitian Orefield, Eastern Hunan, China. The Chinese Journal of Nonferrous Metals, 26(5): 1107-1119 (in Chinese with English abstract). [57] Xiong, Y. Q., Shao, Y. J., Mao, J. W., et al., 2019. The Polymetallic Magmatic-Hydrothermal Xiangdong and Dalong Systems in the W-Sn-Cu-Pb-Zn-Ag Dengfuxian Orefield, SE China: Constraints from Geology, Fluid Inclusions, H-O-S-Pb Isotopes, and Sphalerite Rb-Sr Geochronology. Mineralium Deposita, 54(8): 1101-1124. https://doi.org/10.1007/s00126-019-00863-x [58] Xiong, Y. Q., Shao, Y. J., Zhou, H. D., et al., 2017. Ore-Forming Mechanism of Quartz-Vein-Type W-Sn Deposits of the Xitian District in SE China: Implications from the Trace Element Analysis of Wolframite and Investigation of Fluid Inclusions. Ore Geology Reviews, 83: 152-173. https://doi.org/10.1016/j.oregeorev.2016.12.007 [59] Yan, M.C., Chi, Q.H., Gu, T.X., et al., 1997. Chemical Compositions of Continental Crust and Rocks in Eastern China. Geophysical and Geochemical Exploration, 21(6): 451-459 (in Chinese with English abstract). [60] Yang, F., Li, X.F., Feng, Z.H., et al., 2009. 40Ar/39Ar Dating of Muscovite from Greisenized Granite and Geological Significance in Limu Tin Deposit. Journal of Guilin University of Technology, 29(1): 21-24 (in Chinese with English abstract). [61] Yang, X., Zhang, Y.Z., Cui, X., et al., 2020. Geochemistry and Detrital Zircon U-Pb Ages of Sedimentary Rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province. Earth Science, 45(9): 3461-3474 (in Chinese with English abstract). [62] Yang, X.J., Wu, S.C., Fu, J.M., et al., 2007. Fluid Inclusion Studies of Longshang Tin-Polymetallic Deposit in Xitian Ore Field, Eastern Hunan Province. Mineral Deposits, 26(5): 501-511 (in Chinese with English abstract). [63] Yang, Z., Wang, R. C., Zhang, W. L., et al., 2014. Skarn-Type Tungsten Mineralization Associated with the Caledonian (Silurian) Niutangjie Granite, Northern Guangxi, China. Science China Earth Sciences, 57(7): 1551-1566. https://doi.org/10.1007/s11430-014-4838-z [64] Yao, Y., Chen, J., Lu, J.J., et al., 2013. Geochronology, Hf Isotopic Compositions and Geochemical Characteristics of Xitian A-Type Granite and Its Geological Significance. Mineral Deposits, 32(3): 467-488 (in Chinese with English abstract). [65] Yuan, S. D., Peng, J. T., Shen, N. P., et al., 2007. 40Ar-39Ar Isotopic Dating of the Xianghualing Sn-Polymetallic Orefield in Southern Hunan, China and Its Geological Implications. Acta Geologica Sinica (English Edition), 81(2): 278-286. https://doi.org/10.1111/j.1755-6724.2007.tb00951.x [66] Zhang, M.J., Wang, X.B., Li, L.W., 2000. Composition of Mantle Fluid. Earth Science Frontiers, 7(2): 401-412 (in Chinese with English abstract). [67] Zhao, L., Zhou, X. W., Zhai, M. G., et al., 2018. Petrologic and Zircon U-Pb Geochronological Characteristics of the Pelitic Granulites from the Badu Complex of the Cathaysia Block, South China. Journal of Asian Earth Sciences, 158: 65-79. https://doi.org/10.1016/j.jseaes.2018.02.017 [68] Zheng, M.H., 2015. Study on Diagenetic and Metallogenic Mechanism of Dalong Lead Zinc Deposit (Dissertation). Central South University, Changsha (in Chinese with English abstract). [69] Zheng, M.H., Shao, Y.J., Liu, Z.F., et al., 2016. Rb-Sr Isotope and Main Trace Element Composition Characteristics of Sulfide and Deposit Genesis Investigation of Dalong Pb-Zn Deposit. Journal of Central South University (Science and Technology), 47(11): 3792-3799 (in Chinese with English abstract). [70] Zhou, Y., Liang, X. Q., Wu, S. C., et al., 2015. Isotopic Geochemistry, Zircon U-Pb Ages and Hf Isotopes of A-Type Granites from the Xitian W-Sn Deposit, SE China: Constraints on Petrogenesis and Tectonic Significance. Journal of Asian Earth Sciences, 105: 122-139. https://doi.org/10.1016/j.jseaes.2015.03.006 [71] 蔡明海, 陈开旭, 屈文俊, 等, 2006. 湘南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年. 矿床地质, 25(3): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200603004.htm [72] 蔡杨, 陆建军, 马东升, 等, 2013. 湖南邓阜仙印支晚期二云母花岗岩年代学、地球化学特征及其意义. 岩石学报, 29(12): 4215-4231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312011.htm [73] 蔡杨, 马东升, 陆建军, 等, 2012. 湖南邓阜仙钨矿辉钼矿铼‒锇同位素定年及硫同位素地球化学研究. 岩石学报, 28(12): 3798-3808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212002.htm [74] 曹荆亚, 2016. 湖南茶陵锡田锡多金属矿田成矿系统研究(博士学位论文). 长沙: 中南大学. [75] 陈迪, 陈焰明, 马爱军, 等, 2014. 湖南锡田岩体的岩浆混合成因: 岩相学、岩石地球化学和U-Pb年龄证据. 中国地质, 41(1): 61-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201401005.htm [76] 陈迪, 马爱军, 刘伟, 等, 2013. 湖南锡田花岗岩体锆石U-Pb年代学研究. 现代地质, 27(4): 819-830. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201304010.htm [77] 程顺波, 付建明, 马丽艳, 等, 2016. 桂东北越城岭岩体加里东期成岩作用: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 大地构造与成矿学, 40(4): 853-872. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604017.htm [78] 迟清华, 王学求, 徐善法, 等, 2012. 华南陆块钨和锡的地球化学时空分布. 地学前缘, 19(3): 70-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203008.htm [79] 邓渲桐, 曹荆亚, 吴堑虹, 等, 2017. 湖南锡田和邓阜仙燕山期花岗岩的源区差异及其意义. 中南大学学报(自然科学版), 48(1): 212-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201701029.htm [80] 邓湘伟, 刘继顺, 戴雪灵, 2015. 湘东锡田合江口锡钨多金属矿床地质特征及辉钼矿Re-Os同位素年龄. 中国有色金属学报, 25(10): 2883-2897. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201510028.htm [81] 董超阁, 2018. 湖南锡田锡钨矿床和邓阜仙钨矿床成岩成矿年代学及动力学研究(博士学位论文). 广州: 中国科学院大学(中国科学院广州地球化学研究所). [82] 豆浩然, 张文兰, 王汝成, 等, 2018. 桂北牛塘界加里东期钨矿床年代学、成矿流体性质及其演化. 地质学报, 92(11): 2269-2300. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201811006.htm [83] 杜安道, 屈文俊, 王登红, 等, 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象. 矿床地质, 26(5): 572-580. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200705012.htm [84] 冯国玉, 黄杰, 何方, 2009. 越城岭‒猫儿山地区花岗岩特征及成矿. 矿产与地质, 23(5): 412-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200905003.htm [85] 付建明, 程顺波, 卢友月, 等, 2012. 湖南锡田云英岩‒石英脉型钨锡矿的形成时代及其赋矿花岗岩锆石SHRIMP U-Pb定年. 地质与勘探, 48(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201202014.htm [86] 郭春丽, 李超, 伍式崇, 等, 2014. 湘东南锡田辉钼矿Re-Os同位素定年及其地质意义. 岩矿测试, 33(1): 142-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201401023.htm [87] 华仁民, 2005. 南岭中生代陆壳重熔型花岗岩类成岩‒成矿的时间差及其地质意义. 地质论评, 51(6): 633-639. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200506005.htm [88] 黄鸿新, 2014. 湖南邓埠仙钨锡多金属矿床地球化学和成矿机制研究(硕士学位论文). 荆州: 长江大学. [89] 黄卉, 马东升, 陆建军, 等, 2011. 湖南邓阜仙复式花岗岩体的锆石U-Pb年代学研究. 矿物学报, 31(S1): 590-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1303.htm [90] 黄卉, 马东升, 陆建军, 等, 2013. 湘东邓阜仙二云母花岗岩锆石U-Pb年代学及地球化学研究. 矿物学报, 33(2): 245-255. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201302018.htm [91] 李吉明, 李永明, 楼法生, 等, 2016. 赣北发现"五层楼"式石英脉型黑钨矿矿床: 东坪黑钨矿矿床的发现及其地质意义. 地球学报, 37(3): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603019.htm [92] 李顺庭, 王京彬, 祝新友, 等, 2011. 湖南瑶岗仙钨多金属矿床辉钼矿Re-Os同位素定年和硫同位素分析及其地质意义. 现代地质, 25(2): 228-235. [93] 林书平, 伍静, 黄文婷, 等, 2017. 桂东北苗儿山‒越城岭东北部界牌钨‒铜矿区成矿岩体锆石U-Pb年龄及华南加里东期成矿分析. 大地构造与成矿学, 41(6): 1116-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706009.htm [94] 刘丛强, 黄智龙, 李和平, 等, 2001. 地幔流体及其成矿作用. 地学前缘, 8(4): 231-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104000.htm [95] 刘国庆, 伍式崇, 杜安道, 等, 2008. 湘东锡田钨锡矿区成岩成矿时代研究. 大地构造与成矿学, 32(1): 63-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200801010.htm [96] 刘曼, 邱华宁, 白秀娟, 等, 2015. 湖南锡田钨锡多金属矿床流体包裹体研究. 矿床地质, 34(5): 981-998. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201505008.htm [97] 刘梓, 张玉芝, 崔翔, 等, 2020. 粤西晚侏罗世花岗质岩体及其暗色微粒包体的成因及意义: 年代学、矿物学和地球化学约束. 地球科学, 45(4): 1243-1265. doi: 10.3799/dqkx.2019.113 [98] 马铁球, 王先辉, 柏道远, 2004. 锡田含W, Sn花岗岩体的地球化学特征及其形成构造背景. 华南地质与矿产, 20(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200401002.htm [99] 毛景文, 谢桂青, 郭春丽, 等, 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm [100] 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm [101] 倪永进, 单业华, 伍式崇, 等, 2015. 湖南东南部湘东钨矿区老山坳断层性质的厘定及其对找矿的启示. 大地构造与成矿学, 39(3): 436-445. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201503008.htm [102] 牛睿, 刘庆, 侯泉林, 等, 2015. 湖南锡田花岗岩锆石U-Pb年代学及钨锡成矿时代的探讨. 岩石学报, 31(9): 2620-2632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509012.htm [103] 王莉娟, 王京彬, 王玉往, 等, 2013. 我国南岭地区钨锡铌钽矿床成矿花岗岩主要地质特征. 矿产勘查, 4(6): 598-608. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201306002.htm [104] 伍式崇, 龙自强, 徐辉煌, 等, 2012. 湖南锡田锡钨多金属矿床成矿构造特征及其找矿意义. 大地构造与成矿学, 36(2): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201202011.htm [105] 熊伊曲, 邵拥军, 刘建平, 等, 2016. 锡田矿田石英脉型钨矿床成矿流体. 中国有色金属学报, 26(5): 1107-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201605020.htm [106] 鄢明才, 迟清华, 顾铁新, 等, 1997. 中国东部地壳元素丰度与岩石平均化学组成研究. 物探与化探, 21(6): 451-459. [107] 杨锋, 李晓峰, 冯佐海, 等, 2009. 栗木锡矿云英岩化花岗岩白云母40Ar/39Ar年龄及其地质意义. 桂林工学院学报, 29(1): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200901002.htm [108] 杨雪, 张玉芝, 崔翔, 等, 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461-3474. doi: 10.3799/dqkx.2019.052 [109] 杨晓君, 伍式崇, 付建明, 等, 2007. 湘东锡田垄上锡多金属矿床流体包裹体研究. 矿床地质, 26(5): 501-511. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200705003.htm [110] 姚远, 陈骏, 陆建军, 等, 2013. 湘东锡田A型花岗岩的年代学、Hf同位素、地球化学特征及其地质意义. 矿床地质, 32(3): 467-488. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303002.htm [111] 张铭杰, 王先彬, 李立武, 2000. 地幔流体组成. 地学前缘, 7(2): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200002010.htm [112] 郑明泓, 2015. 大垅铅锌矿床成岩成矿机理研究(博士学位论文). 长沙: 中南大学. [113] 郑明泓, 邵拥军, 刘忠法, 等, 2016. 大垅铅锌矿床硫化物Rb-Sr同位素和主微量成分特征及矿床成因. 中南大学学报(自然科学版), 47(11): 3792-3799. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201611024.htm