The Whole⁃Rock Sr⁃Nd⁃Li Isotopic Characteristics and Genesis of the Triassic Jiefangyingzi Pluton in the Southeastern Margin of the Central Asian Orogenic Belt
-
摘要: 中亚造山带东南缘三叠纪花岗岩类型多样且成因复杂,为研究其物源及形成背景,本文选取解放营子岩体不同位置的二长花岗岩、片麻状似斑状花岗岩和闪长玢岩,并对其进行全岩地球化学、锆石年代学及全岩Sr-Nd-Li同位素分析.锆石U-Pb年代学结果显示解放营子岩体不同类型的岩石均形成于晚三叠世(234~226 Ma).地球化学特征表明岩体为经历不同程度结晶分异作用的I型花岗岩.略负到正的ɛNd(t)值(-3.9~+1.5)指示它们主要来源于新生地壳,且源区有不同程度古老地壳物质的加入.为了进一步示踪再循环物质对岩浆源区的贡献,本文首次报到了该地区岩体的全岩Li同位素特征,δ7Li值变化范围为+1.1~+6.6‰,平均值为+3.37‰,接近上地幔平均值,表明有显著幔源组分的贡献.结合区域地质特征,晚三叠世解放营子岩体为未明显受再循环物质作用的幔源组分在造山后伸展背景下发生部分熔融形成,且岩浆源区有古老陆壳组分的加入.Abstract: The Triassic granites in the southeastern margin of the Central Asian Orogenic Belt are of diverse types and complex genesis. In order to study their provenance and formation setting, we selected monzogranite, gneissic porphyritic granite and diorite porphyrite in the different locations of the Jiefangyingzi pluton, and performed the whole-rock elemental and Sr-Nd-Li isotope analyses, and zircon geochronology. Zircon U-Pb geochronology results show that the different rock types of the Jiefangyingzi pluton were similarly formed in the Late Triassic (234-226 Ma). Geochemical characteristics show that all of them are I-type granites undergoing different degrees of fractionation crystallization. Slightly negative to positive ɛNd(t) values (-3.9-+1.5) indicate that they derived from juvenile materials with the addition of ancient crustal materials to varying degrees. The whole-rock Li isotopic characteristics of pluton in this region are reported for the first time. The range of δ7Li value is +1.1- +6.6‰ with an average value of +3.37‰, similar to the average value of upper mantle, indicating that there is a significant contribution of mantle-derived components. Combined with regional geology, the Jiefangyingzi pluton was formed in the post-orogenic extension stage after the closure of the Paleo-Asian Ocean. Decompression melting induced the partial melting of the juvenile mantle-derived components without obvious water-rock interaction related to the early subduction process.
-
Key words:
- Southeast margin of Central Asian Orogenic Belt /
- Triassic /
- post-orogeny /
- Li isotope /
- geochemistry
-
图 1 中亚造山带简图(a),中亚造山带东南缘构造单元划分简图(b),研究区地质图(c)
图a修改自Jahn et al.(2000);图b修改自Jian et al.(2010);图c据内蒙古自治区地质矿产局,1991,内蒙古地质矿产局1∶20万地质图
Fig. 1. Schematic diagram of Central Asian Orogenic Belt (CAOB) (a); division of tectonic units in the southeastern margin of the CAOB (b); geological map of the study area (c)
图 5 三叠纪解放营子岩体主量元素(a和b)、微量元素(c,d,f)及稀土元素特征(e)
解放营子中三叠世后碰撞花岗岩类数据自Liu et al (2012);图a据Middlemost(1994);图b据Frost and Fost(2008);图c和d据Whalen et al.(1987);球粒陨石和原始地幔标准值来自SunandMcDonough(1989)
Fig. 5. Characteristics of major elements (a and b), trace elements (c, d, f) and rare earth elements (e) of the rocks
表 4 赤峰东北部晚三叠世解放营子岩体全岩Li同位素测试结果
Table 4. Whole rock Li isotope results of Late Triassic felsic magmatic rocks in northeastern Chifeng
样品 岩体 岩性 Li (10‒6) δ7Li (‰) 17CF-17.1 解放营子 片麻状似斑状花岗岩 32.8 1.1 17CF-18.3 解放营子 闪长玢岩 18.3 2.4 17CF-22.5 解放营子 二长花岗岩 26.1 6.6 表 5 地壳不同层位平均Li含量及同位素组成
Table 5. Average Li content and isotopic composition in different layers of the crust
层位 同位素(‰)(平均值) 浓度(10‒6)
(平均值)样品来源 参考文献 上
地
壳0±2 (1σ) 35±11 (2σ) 北美、中国、欧洲、澳大利亚和新西兰51个样品的页岩、黄土、花岗岩和上地壳复合物(共51件) Teng et al., 2004 +0.6±0.6 (2σ) 30.5± 3.6 (2σ) 世界多个地区(欧洲、阿根廷、中国和塔吉克斯坦)的沙漠和冰缘黄土沉积物(风沙) Sauzéat et al., 2015 中地壳 +4.0±1.4 12 浓度:平均中地壳成分
同位素组成:高级变质地体(中国东部,华北(八个地点),华南(一个地点);太古代)浓度:Rudnick and Gao (2003)同位素:Teng et al., 2008 下地壳 2.5 8 同位素组成:8件达到矿物间同位素平衡的麻粒岩相捕虏体;
浓度:所有麻粒岩相捕虏体数据,包括全岩(44)和矿物(29,辉石、长石)麻粒岩相捕虏体来自澳洲(Chudleigh and McBride suites)、华北(汉诺坝)Teng et al., 2008 整个地壳 1.2 18 上、中、下地壳数据结合 Teng et al., 2008 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [2] Barnes, E. M., Weis, D., Groat, L. A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21-36. https://doi.org/10.1016/j.lithos.2011.11.014 [3] Chen, B., Tian, W., Liu, A. K., et al., 2008. Petrogenesis of the Xiaozhangjiakou Mafic-Ultramafic Complex, North Hebei: Constraints from Petrological, Geochemical and Nd-Sr Isotopic Data. Geological Journal of China Universities, 14(3): 295-3030 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.03.002 [4] Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97-111. https://doi.org/10.1016/j.chemgeo.2015.06.029 [5] Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955-1969. https://doi.org/10.1093/petrology/egn054 [6] Han, B. F., Kagami, H., Li, H. M., 2004. Age and Nd-Sr Isotopic Geochemistry of the Guangtoushan Alkaline Granite, Hebei Province, China: Implications for Early Mesozoic Crust-Mantle Interaction in North China Block. Acta Petrologica Sinica, 20(6): 1375-1388 (in Chinese with English abstract). [7] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. https://doi.org/10.1017/s0263593300007367 [8] Jian, P., Liu, D. Y., Kröner, A., et al., 2010. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190. https://doi.org/10.1016/j.lithos.2010.04.014 [9] Li, J. Y., Gao, L. M., Sun, G. H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract). [10] Li, P., Xia, Q. K., Deloule, E., 2012. Anomalous Lithium Isotopic Compositions of the Cenozoic Lithospheric Mantle Beneath Penglai, Shandong Province: The Ion Probe Analyses of Peridotite Xenoliths. Geological Journal of China Universities, 18(1): 62-73 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.01.006 [11] Li, S., Wilde, S. A., He, Z. J., et al., 2014. Triassic Sedimentation and Postaccretionary Crustal Evolution along the Solonker Suture Zone in Inner Mongolia, China. Tectonics, 33(6): 960-981. https://doi.org/10.1002/2013TC003444 [12] Li, S., Chung, S. L., Wang, T. et al., 2017a. Water-Fluxed Crustal Melting and Petrogenesis of Largescale Early Cretaceous Intracontinental Granitoids in the Southern Great Xing'an Range, North China. Geological Society of America Bulletin, 130(3-4): 580-597. https://doi.org/10.1130/B31771.1 [13] Li, S., Chung, S. L., Wilde, S. A., et al., 2016. Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 6(1): 25751. https://doi.org/10.1038/srep25751 [14] Li, S., Chung, S. L., Wilde, S. A., et al., 2017b. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 122(3): 2291-2309. https://doi.org/10.1002/2017JB014006 [15] Li, X. H., Liu, Y., Tang, Y. J., 2015. In Situ Li Isotopic Microanalysis Using SIMS and Its Applications. Earth Science Frontiers, 22(5): 160-170 (in Chinese with English abstract). [16] Liang, Q., Grégoire, D. C., 2000. Determination of Trace Elements in Twenty Six Chinese Geochemistry Reference Materials by Inductively Coupled Plasma-Mass Spectrometry. Geostandards Newsletter, 24(1): 51-63. https://doi.org/10.1111/j.1751-908X.2000.tb00586.x [17] Liu, J. F., Li, J. Y., Chi, X. G., et al., 2012. Petrogenesis of Middle Triassic Post-Collisional Granite from Jiefangyingzi Area, Southeast Inner Mongolia: Constraint on the Triassic Tectonic Evolution of the North Margin of the Sino-Korean Paleoplate. Journal of Asian Earth Sciences, 60: 147-159. https://doi.org/10.1016/j.jseaes.2012.08.012 [18] Liu, J. F., Li, J. Y., Chi, X. G., et al., 2020. Destruction of the Northern Margin of the North China Craton in Mid‐Late Triassic: Evidence from Asthenosphere‐Derived Mafic Enclaves in the Jiefangyingzi Granitic Pluton from Chifeng Area, Southern Inner Mongolia. Acta Geologica Sinica (English Edition), 94(4): 1071-1092. https://doi.org/10.1111/1755-6724.14502 [19] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2016. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013 [20] Ludwig, K. R., 2003. ISOPLOT 3.0: A Gochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [21] Magna, T., Janoušek, V., Kohút, M., et al., 2010. Fingerprinting Sources of Orogenic Plutonic Rocks from Variscan Belt with Lithium Isotopes and Possible Link to Subduction-Related Origin of Some A-Type Granites. Chemical Geology, 274(1-2): 94-107. https://doi.org/10.1016/j.chemgeo.2010.03.020 [22] Maloney, J. S., Nabelek, P. I., Sirbescu, M. L. C. H., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905-916. https://doi.org/10.1127/0935-1221/2008/0020-1823 [23] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [24] Norrish, K., Hutton, J. T., 1969. An Accurate X-Ray Spectrographic Method for the Analysis of a Wide Range of Geological Samples. Geochimica et Cosmochimica Acta, 33(4): 431-453. https://doi.org/10.1016/0016-7037(69)90126-4 [25] Ren, J. X., Niu, B. G., Liu, Z. G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.03.008 [26] Romer, R. L., Meixner, A., Förster, H. J., 2014. Lithium and Boron in Late-Orogenic Granites-Isotopic Fingerprints for the Source of Crustal Melts? Geochimica et Cosmochimica Acta, 131: 98-114. https://doi.org/10.1016/j.gca.2014.01.018 [27] Rudnick, R., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R., ed., The Crust, Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/B0⁃08⁃043751⁃6/03016⁃4 [28] Sauzéat, L., Rudnick, R. L., Chauvel, C., et al., 2015. New Perspectives on the Li Isotopic Composition of the Upper Continental Crust and Its Weathering Signature. Earth and Planetary Science Letters, 428: 181-192. https://doi.org/10.1016/j.epsl.2015.07.032 [29] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [30] Song, S. G., Wang, M. M., Xu, X., et al., 2015. Ophiolites in the Xing'an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 34(10): 2221-2248. https://doi.org/10.1002/2015TC003948 [31] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [32] Tang, Y. J., Zhang, H. F., Ying, J. F., 2007. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374-388. https://doi.org/10.2747/0020-6814.49.4.374 [33] Tang, Y. J., Zhang, H. F., Ying, J. F., 2011. Sr-Nd-Li Isotopic Constraints on the Origin of EM1 End-Member. Bulletin of Mineralogy, Petrology and Geochemistry, 30(1): 11-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2011.01.002 [34] Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031 [35] Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488-1498. https://doi.org/10.2138/am.2006.2083 [36] Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2007. Limited Lithium Isotopic Fractionation during Progressive Metamorphic Dehydration in Metapelites: A Case Study from the Onawa Contact Aureole, Maine. Chemical Geology, 239(1-2): 1-12. https://doi.org/10.1016/j.chemgeo.2006.12.003 [37] Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1-2): 47-59. https://doi.org/10.1016/j.chemgeo.2008.06.009 [38] Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3-4): 370-379. https://doi.org/10.1016/j.chemgeo.2009.02.009 [39] Tian, S. H., Hou, Z. Q., Su, A. N., et al., 2015. The Anomalous Lithium Isotopic Signature of Himalayan Collisional Zone Carbonatites in Western Sichuan, SW China: Enriched Mantle Source and Petrogenesis. Geochimica et Cosmochimica Acta, 159: 42-60. https://doi.org/10.1016/j.gca.2015.03.016 [40] Tian, S. H., Hu, W. J., Hou, Z. Q., et al., 2012. Enriched Mantle Source and Petrogenesis of Miocene Sailipu Ultrapotassic Rocks in Western Lhasa Block, Tibetan Plateau: Lithium Isotopic Constraints. Mineral Deposits, 31(4): 791-812 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.04.010 [41] Tomascak, P. B., Carlson, R. W., Shirey, S. B., 1999. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 158(1-2): 145-154. https://doi.org/10.1016/S0009-2541(99)00022-4 [42] Tomascak, P. B., Widom, E., Benton, L. D., et al., 2002. The Control of Lithium Budgets in Island Arcs. Earth and Planetary Science Letters, 196(3-4): 227-238. https://doi.org/10.1016/S0012-821X(01)00614-8 [43] Tomascak, P. B., Magna, T. S., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer International Publishing, New York. [44] Wang, T., Zheng, Y. D., Zhang, J. J., et al., 2011. Pattern and Kinematic Polarity of Late Mesozoic Extension in Continental NE Asia: Perspectives from Metamorphic Core Complexes. Tectonics, 30(6): TC6007. https://doi.org/10.1029/2011TC002896 [45] Wang, Y., Zhou, L. Y., Zhao, L. J., 2013. Cratonic Reactivation and Orogeny: An Example from the Northern Margin of the North China Craton. Gondwana Research, 24(3-4): 1203-1222. https://doi.org/10.1016/j.gr.2013.02.011 [46] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [47] Windley, B. F., Alexeiev, D. V., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [48] Wu, D. D., Li, S., Chew, D., et al., 2021. Permian-Triassic Magmatic Evolution of Granitoids from the Southeastern Central Asian Orogenic Belt: Implications for Accretion Leading to Collision. Science China Earth Sciences, 64(5): 788-806. https://doi.org/10.1007/ s11430-020-9714-5 doi: 10.1007/s11430-020-9714-5 [49] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001 [50] Wu, F. Y., Wilde, S. A., Zhang, G. L., et al., 2004. Geochronology and Petrogenesis of the Post-Orogenic Cu-Ni Sulfide-Bearing Mafic-Ultramafic Complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 23(5): 781-797. https://doi.org/10.1016/S1367-9120(03)00114-7 [51] Wu, F. Y., Yang, J. H., Wilde, S. A., et al., 2005. Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010 [52] Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002TC001484 [53] Xiao, W. J., Kusky, T., Safonova, I., et al., 2015. Tectonics of the Central Asian Orogenic Belt and Its Pacific Analogues. Journal of Asian Earth Sciences, 113: 1-6. https://doi.org/10.1016/j.jseaes.2015.06.032 [54] Yan, G. H., Mu, B. L., Xu, B. L., et al., 1999. Triassic Alkaline Intrusives in the Yanliao-Yinshan Area: Their Chronology, Sr, Nd and Pb Isotopic Characteristics and Their Implication. Science China Earth Sciences, 42(6): 582-587. https://doi.org/10.1007/BF02877785 [55] Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2008. Mesozoic Decratonization of the North China Block. Geology, 36(6): 467-470. https://doi.org/10.1130/g24518a.1 [56] Zeng, Q. D., Yang, J. H., Liu, J. M., et al., 2012. Genesis of the Chehugou Mo-Bearing Granitic Complex on the Northern Margin of the North China Craton: Geochemistry, Zircon U-Pb Age and Sr-Nd-Pb Isotopes. Geological Magazine, 149(5): 753-767. https://doi.org/10.1017/s0016756811000987 [57] Zhang, H. F., Tang, Y. J., Zhao, X. M., et al., 2007. Significance and Prospective of Non-Traditional Isotopic Systems in Mantle Geochemistry. Earth Science Frontiers, 14(2): 37-57 (in Chinese with English abstract). [58] Zhang, S. H., Zhao, Y., Song, B., et al., 2009. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton: Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 121(1-2): 181-200. https://doi.org/10.1130/B26157.1 [59] Zhang, S. H., Zhao, Y., Ye, H., et al., 2014. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9-10): 1275-1300. https://doi.org/10.1130/b31042.1 [60] 陈斌, 田伟, 刘安坤, 2008. 冀北小张家口基性‒超基性杂岩的成因: 岩石学、地球化学和Nd-Sr同位素证据. 高校地质学报, 14(3): 295-303. doi: 10.3969/j.issn.1006-7493.2008.03.002 [61] 韩宝福, 加加美宽雄, 李惠民, 2004. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义. 岩石学报, 20(6): 1375-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406006.htm [62] 李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm [63] 李佩, 夏群科, Deloule, E., 2012. 山东蓬莱新生代岩石圈地幔的异常锂同位素组成: 橄榄岩包体的离子探针分析. 高校地质学报, 18(1): 62-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201008.htm [64] 李献华, 刘宇, 汤艳杰, 等, 2015. 离子探针Li同位素微区原位分析技术与应用. 地学前缘, 22(5): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505016.htm [65] 任纪舜, 牛宝贵, 刘志刚, 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903010.htm [66] 汤艳杰, 张宏福, 英基丰, 2011. 地幔中EM1端员成因的锂同位素制约. 矿物岩石地球化学通报, 30(1): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201101002.htm [67] 田世洪, 胡文洁, 侯增谦, 等, 2012. 拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因: Li同位素制约. 矿床地质, 31(4): 791-812. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204011.htm [68] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm [69] 张宏福, 汤艳杰, 赵新苗, 等, 2007. 非传统同位素体系在地幔地球化学研究中的重要性及其前景. 地学前缘, 14(2): 37-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702003.htm