Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor
-
摘要: 川藏交通廊道沿线山高谷深,地层岩性多变,新构造运动活跃,气候恶劣复杂,导致滑坡、崩塌、泥石流、冰湖溃决洪水等灾害极其发育,对铁路施工及运营带来严重影响.林芝-波密段就是典型地质灾害高发区域,常年受到冰川泥石流的影响,是川藏交通廊道重大灾害防治的难点区段.虽然目前在单沟尺度上对冰川泥石流的形成条件、影响因素、物源性质取得了一定的认识,但对于川藏交通廊道沿线不同类型的冰川泥石流诱发因素、区域发展演化规律及灾变指标的研究还较为初步,尚未构建完善的监测预警体系.借助多源长时序遥感影像、气象监测数据,结合野外实地验证和历史数据分析发现:川藏交通廊道周边区域冰川泥石流沟谷共99条,主要分布于恰青冰川-易贡乡、加拉贝垒-南迦巴瓦峰和古乡沟-嘎隆寺冰川一带;过去40年冰川经历了复杂的流动速度变化,表现为较小高海拔悬冰川活动性增强,大型沟谷冰川活动性减弱;自1973年以来,研究区冰川泥石流呈现频率增高、规模增大的特征.此外,从冰川泥石流发育沟道比降来看,发生高陡地形的滑坡、冰-岩崩诱发的泥石流频率增加.未来,冰川持续退缩,促使冰川源区冰瀑消失,发育更大规模的悬冰川,会增加这类冰川泥石流的风险;冰川泥石流形成及演化过程具有明显的灾变指标,如悬冰川裂隙密度增加、冰川速度增强、冰湖面积快速增加等.因此,基于以上认识,建议针对不同类型的冰川泥石流地建立完善的监测预警指标,并提出了融合卫星、航空遥感平台,气象、水文地面监测平台,地震动监测平台的冰川泥石流“空-天-地”立体监测框架,针对不同类型冰川泥石流进行灾变信息监测与预警判识,为川藏交通廊道安全施工运营提供技术参考.Abstract: The Sichuan-Tibet traffic corridor is an important transportation strategy in China that plays a key role in the economic prosperity, long-term stability, and the "Belt and Road" strategy in western China. However, the complex terrain, climate environment and active geological tectonic movements along the Sichuan-Tibet traffic corridor lead to extremely developed geo-hazards, such as debris flows, landslides, glacial lake outbreak floods (GLOF), which have serious impacts on railway construction and operation. As a representative section, the Linzhi-Bomi is frequently affected by glacier debris flows, and deemed as the most difficult section for disaster mitigation. Although some conclusions about influencing factors and material properties of glacial debris flows have been achieved at the single-valley scale, there is lacking solid research on predisposing factors, evolution laws and catastrophe indicators of different types of glacial debris flows along the Sichuan-Tibet traffic corridor, making it impossible to build an effective monitoring and early warning system. In this paper, multi-source long-term remote sensing images and meteorological monitoring data, combined with field data, are applied to conduct an inductive analysis of the glacial debris flow along the Sichuan-Tibet traffic corridor. Four conclusions can be drawn. (1) 99 glacial debris flow valleys were identified in the study area, that mainly distributed in the Chaqing glacier-Yigong township, Jialabelei-Nangabawa peak, and Guxiang gully-Galongsi glacier. (2) Climate environment change has led to complex responses in glacier activities, characterised by increased activity of smaller glaciers (high-altitude hanging glaciers) and weakened activity of glaciers in large valleys in the past 40 years; (3) Based on the historic inventory, it can be found that the glacial debris flow has shown the characteristics of increasing frequency and scale since 1973. And (4) the frequency of the debris flows induced by landslides and ice-rock avalanches in steep terrain has increased. In the future, the continuous retreat of glaciers will promote the disappearance of ice waterfalls and the development of larger-scale hanging glaciers, which will increase the risk of glacial debris flows. The evolution process of glacial debris flows has obvious catastrophic indicators, such as: the increasing crevice density, the change in glacier velocities, and the rapid increase of glacial lake areas. Finally, it proposes a monitoring and early warning framework that contains satellites, aerial remote sensing platforms, meteorological and hydrological ground monitoring platforms, and ground motion monitoring platforms, which can provide catastrophic information for different types of glacial debris flows.
-
表 1 遥感影像数据
Table 1. Remote sensing images used in this study
卫星 时间
(日/月/年)影像数量 分辨率(m) 重访周期(d) 用途 数据源 Corona KH-4A 03/03/1967, 02/05/1968 2 3 - 冰川泥石流识别 USGS Hexagon KH-9 16/11/1973 1 6 - 冰川泥石流识别 USGS Aster 18/11/2002—02/08/2015 12 15 - 冰川泥石流识别 USGS Landsat 1 16/12/1972 1 60 - 冰川泥石流识别 USGS Landsat 4-5 05/01/1988—04/11/2011 46 30 16 冰川泥石流识别 USGS Landsat 7 24/09/1999—08/02/2021 13 30 16 冰川泥石流识别、冰川速度提取 USGS Landsat 8 20/07/2013—16/02/2021 16 15/30 16 冰川泥石流识别、冰川速度提取 USGS Sentinel 1A (GRD) 12/16/2014—12/31/2018 82 20 12 冰川速度提取 ESA Sentinel 2A/B 12/06/2015—12/25/2018 32 10/60 5 冰川泥石流识别、冰川速度提取 ESA Ziyuan-3 20171211, 20181130 2 2 - 数值高程(DEM)提取 CCRSDA GaoFen-1 11/18/2013—12/06/2019 13 2/8 - 冰川泥石流识别 CCRSDA GaoFen-2 01/17/2016—12/26/2018 5 0.8/3.2 - 冰川泥石流识别 CCRSDA 注:数据来源美国地质调查局(USGS)(https://earthexplorer.usgs.gov/);欧洲航天局(ESA)(https://scihub.copernicus.eu/);中国资源卫星数据与应用中心(CCRSDA)(http://www.cresda.com/EN/). 表 2 色东普沟历史冰川泥石流事件(1973—2018年)
Table 2. Historical glacier debris flow in Sedongpu gully (1973—2018)
遥感时间
(日/月/年)事件类型 是否堵江 诱发因素 21/12/1973 冰崩泥石流 全堵 - 30/06/1977 冰崩泥石流 全堵 - 04/11/1994 冰崩 否 - 15/11/1998 冰崩 否 - 13/11/2012 冰崩 否 - 03/11/2014 冰崩泥石流 全堵 - 20/11/2016 冰崩 否 - 22/10/2017 冰崩泥石流 半堵 鲁朗地震(4.0级) 03/11/2017 泥石流 半堵 - 18/11/2017 冰崩泥石流 半堵 米林地震(6.9级)* 24/07/2018 冰崩泥石流 否 - 17/10/2018 冰崩泥石流 大规模堵江 - 29/10/2018 泥石流 堵江 - 注:*据刘传正等(2019). -
[1] Azam, M. F., Ramanathan, A., Wagnon, P., et al., 2016. Meteorological Conditions, Seasonal and Annual Mass Balances of Chhota Shigri Glacier, Western Himalaya, India. Annals of Glaciology, 57(71): 328-338. https://doi.org/10.3189/2016aog71a570 [2] Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432. [3] Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract). [4] Cheng, Z. L., Liu, J. J., Liu, J. K., 2010. Debris Flow Induced by Glacial Lake Break in Southeast Tibet. WIT Transactions on Engineering Sciences, 67: 101-111. https://doi.org/10.2495/deb100091 [5] Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31(6): 508-527. https://doi.org/10.2747/0272-3646.31.6.508 [6] Dai, K. R., Li, Z. H., Xu, Q., et al., 2020. Entering the Era of Earth Observation-Based Landslide Warning Systems: A Novel and Exciting Framework. IEEE Geoscience and Remote Sensing Magazine, 8(1): 136-153. https://doi.org/10.1109/mgrs.2019.2954395 [7] Fugazza, D., Scaioni, M., Corti, M., et al., 2018. Combination of UAV and Terrestrial Photogrammetry to Assess Rapid Glacier Evolution and Map Glacier Hazards. Natural Hazards and Earth System Sciences, 18(4): 1055-1071. https://doi.org/10.5194/nhess-18-1055-2018. [8] Gao, B., Zhang, J. J., Wang, J. C., et al., 2019. Formation Mechanism and Disaster Characteristics of Debris Flow in the Tianmo Gully in Tibet. Hydrogeology & Engineering Geology, 46(5): 144-153(in Chinese with English abstract). [9] Gao, Z. M., Ding, M. T., Yang, G. H., et al., 2021. Hazard Assessment of Debris Flow along Zire-Bomi Section of Sichuan-Tibet Railway. Journal of Engineering Geology, 29(2): 478-485 (in Chinese with English abstract). [10] Hu, G. S., Chen, N. S., Deng, M. F., et al., 2011. Classification and Initiation Conditions of Debris Flows in Linzhi Area, Tibet. Bulletin of Soil and Water Conservation, 31(2): 193-197, 221(in Chinese with English abstract). [11] Hu, J., Li, Z. W., Ding, X. L., et al., 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133: 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005 [12] Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., et al., 2014. High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles. Remote Sensing of Environment, 150: 93-103. https://doi.org/10.1016/j.rse.2014.04.025 [13] Janke, J. R., 2013. Using Airborne LiDAR and USGS DEM Data for Assessing Rock Glaciers and Glaciers. Geomorphology, 195: 118-130. https://doi.org/10.1016/j.geomorph.2013.04.036 [14] Jia, Y., Cui, P., 2020. The Extreme Climate Background for Glacial Lakes Outburst Flood Events in Tibet. Climate Change Research, 16(4): 395-404(in Chinese with English abstract). [15] Jiang, R. C., Zhang, L. M., Peng, D. L., et al., 2021. The Landslide Hazard Chain in the Tapovan of the Himalayas on 7 February 2021. Geophysical Research Letters, 48(17): e2021GL093723. https://doi.org/10.1029/2021gl093723. [16] Kääb, A., Jacquemart, M., Gilbert, A., et al., 2021. Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers-More Frequent than Thought? The Cryosphere, 15(4): 1751-1785. https://doi.org/10.5194/tc-15-1751-2021 [17] Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Tibet in 2016 after Surge-Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561-017-0039-7 [18] Lan, H. X., Zhang, N., Li, L. P., et al., 2021. Risk Analysis of Major Engineering Geological Hazards for Sichuan-Tibet Railway in the Phase of Feasibility Study. Journal of Engineering Geology, 29(2): 326-341 (in Chinese with English abstract). [19] Legg, N. T., Meigs, A. J., Grant, G. E., et al., 2014. Debris Flow Initiation in Proglacial Gullies on Mount Rainier, Washington. Geomorphology, 226: 249-260. https://doi.org/10.1016/j.geomorph.2014.08.003. [20] Leggat, M. S., Owens, P. N., Stott, T. A., et al., 2015. Hydro-Meteorological Drivers and Sources of Suspended Sediment Flux in the Pro-Glacial Zone of the Retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada. Earth Surface Processes and Landforms, 40(11): 1542-1559. https://doi.org/10.1002/esp.3755 [21] Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234 (in Chinese with English abstract). [22] Liu, J. K., Zhang, J. J., Gao, B., et al., 2019. An Overview of Glacial Lake Outburst Flood in Tibet, China. Journal of Glaciology and Geocryology, 41(6): 1335-1347 (in Chinese with English abstract). [23] Lu, J. Y., Yu, G. A., Huang, H. Q., 2021. Research and Prospect on Formation Mechanism of Debris Flows in High Mountains under the Influence of Climate Change. Journal of Glaciology and Geocryology, 43(2): 555-567 (in Chinese with English abstract). [24] Ni, H. Y., Lü, X. J., Yanf, D. W., 2005. Fractal Feature and Geological Significance of Accumulations at Peilong Section along Sichuan⁃Tibet Highway. Journal of Engineering Geology, 13(4): 451-454(in Chinese with English abstract). [25] Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract). [26] Papadopoulos, G. A., Plessa, A., 2000. Magnitude-Distance Relations for Earthquake-Induced Landslides in Greece. Engineering Geology, 58(3-4): 377-386. https://doi.org/10.1016/s0013-7952(00)00043-0 [27] Qu, Y. P., Tang, C., Liu, Y., et al., 2015a. Investigation and Analysis of Glacier Debris Flow in Nyingchi Area, Tibet. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 2): 4013-4022 (in Chinese with English abstract). [28] Qu, Y. P., Zhu, J., Bu, X. H., et al., 2015b. Preliminary Starting Experiment Study of Glacial Rainfall Debris Flow, in Nyingchi, Tibet. Chinese Journal of Rock Mechanics and Engineering, 34(Suppl. 1): 3256-3266 (in Chinese with English abstract). [29] Samsonov, S., Tiampo, K., Cassotto, R., 2021. SAR-Derived Flow Velocity and Its Link to Glacier Surface Elevation Change and Mass Balance. Remote Sensing of Environment, 258: 112343. https://doi.org/10.1016/j.rse.2021.112343 [30] Satyabala, S. P., 2016. Spatiotemporal Variations in Surface Velocity of the Gangotri Glacier, Garhwal Himalaya, India: Study Using Synthetic Aperture Radar Data. Remote Sensing of Environment, 181: 151-161. https://doi.org/10.1016/j.rse.2016.03.042 [31] Schneider, D., Bartelt, P., Caplan-Auerbach, J., et al., 2010. Insights into Rock-Ice Avalanche Dynamics by Combined Analysis of Seismic Recordings and a Numerical Avalanche Model. Journal of Geophysical Research: Earth Surface, 115(F4): F04026. https://doi.org/10.1029/2010jf001734 [32] Shugar, D., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): eabh4455. https://doi.org/10.1126/science.abh4455 [33] Tong, L. Q., Tu, J. N., Pei, L. X., et al., 2018. Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River. Journal of Engineering Geology, 26(6): 1552-1561 (in Chinese with English abstract). [34] Walter, F., Amann, F., Kos, A., et al., 2020. Direct Observations of a Three Million Cubic Meter Rock-Slope Collapse with almost Immediate Initiation of Ensuing Debris Flows. Geomorphology, 351: 106933. https://doi.org/10.1016/j.geomorph.2019.106933. [35] Wang, J., 2018. Influence of Morine on the Debris Flow in Parlung Tsangpo Basin (Dissertation). University of Chinese Academy of Sciences, Beijing(in Chinese with English abstract). [36] Wang, Z., Hu, K. H., Ma, C., et al., 2021. Landscape Change in Response to Multiperiod Glacial Debris Flows in Peilong Catchment, Southeastern Tibet. Journal of Mountain Science, 18(3): 567-582. https://doi.org/10.1007/s11629-020-6172-6 [37] Wu, K. P., Liu, S. Y., Jiang, Z., et al., 2018. Remote-Sensing Estimate of Glacier Mass Balance over the Central Nyainqentanglha Range during 1968-2013. The Cryosphere Discussions. https://doi.org/10.5194/tc-2018-90 [38] Wu, K. P., Liu, S. Y., Zhu, Y., et al., 2021. High-Resolution Monitoring of Glacier Dynamics Based on Unmanned Aerial Vehicle Survey in the Meili Snow Mountain. Progress in Geography, 40(9): 1581-1589 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2021.09.012 [39] Xu, L. J., Hu, Z. Y., Zhao, Y. N., et al, 2019. Climate Change Characteristics in Qinghai-Tibetan Plateau during 1961-2010. Plateau Meteorology, 38(5): 911-919 (in Chinese with English abstract). [40] Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966 (in Chinese with English abstract). [41] Yao, T. D., Yao, Z. J., 2010. Impacts of Glacial Reretreat on Runoff on Tibetan Plateau. Chinese Journal of Nature, 32(1): 4-8 (in Chinese with English abstract). [42] Zaginaev, V., Petrakov, D., Erokhin, S., et al., 2019. Geomorphic Control on Regional Glacier Lake Outburst Flood and Debris Flow Activity over Northern Tien Shan. Global and Planetary Change, 176: 50-59. https://doi.org/10.1016/j.gloplacha.2019.03.003 [43] Zhao, X., Zhang, H. T., Zhao, Z. F., et al., 2020. Study on the Genesis of Rainfall-Glacier Mixed Type Debris Flow of Haibalo Gully in Northwest Yunnan on July 28, 2019. Journal of Engineering Geology, 28(6): 1339-1349 (in Chinese with English abstract). [44] Zheng, G. X., Mergili, M., Emmer, A., et al., 2021. The 2020 Glacial Lake Outburst Flood at Jinwuco, Tibet: Causes, Impacts, and Implications for Hazard and Risk Assessment. The Cryosphere, 15(7): 1-28. [45] 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294 [46] 高波, 张佳佳, 王军朝, 等, 2019. 西藏天摩沟泥石流形成机制与成灾特征. 水文地质工程地质, 46(5): 144-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201905020.htm [47] 高泽民, 丁明涛, 杨国辉, 等, 2021. 川藏交通廊道孜热-波密段泥石流灾害危险性评价. 工程地质学报, 29(2): 478-485. [48] 胡桂胜, 陈宁生, 邓明枫, 等, 2011. 西藏林芝地区泥石流类型及形成条件分析. 水土保持通报, 31(2): 193-197, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201102040.htm [49] 贾洋, 崔鹏, 2020. 西藏冰湖溃决灾害事件极端气候特征. 气候变化研究进展, 16(4): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202004001.htm [50] 兰恒星, 张宁, 李郎平, 等, 2021. 川藏交通廊道可研阶段重大工程地质风险分析. 工程地质学报, 29(2): 326-341. [51] 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm [52] 刘建康, 张佳佳, 高波, 等, 2019. 我国西藏地区冰湖溃决灾害综述. 冰川冻土, 41(6): 1335-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201906006.htm [53] 鲁建莹, 余国安, 黄河清, 2021. 气候变化影响下高山区泥石流形成机制研究及展望. 冰川冻土, 43(2): 555-567. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202102020.htm [54] 倪化勇, 吕学军, 杨德伟, 2005. 川藏公路培龙沟路段堆积物的分形特征及其地质意义. 工程地质学报, 13(4): 451-454. doi: 10.3969/j.issn.1004-9665.2005.04.004 [55] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏交通廊道工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070 [56] 屈永平, 唐川, 刘洋, 等, 2015a. 西藏林芝地区冰川降雨型泥石流调查分析. 岩石力学与工程学报, 34(增刊2): 4013-4022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2047.htm [57] 屈永平, 朱静, 卜祥航, 等, 2015b. 西藏林芝地区冰川降雨型泥石流起动实验初步研究. 岩石力学与工程学报, 34(增刊1): 3256-3266. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1081.htm [58] 童立强, 涂杰楠, 裴丽鑫, 等, 2018. 雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨. 工程地质学报, 26(6): 1552-1561. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806017.htm [59] 王姣, 2018. 帕隆藏布流域冰碛物对泥石流活动影响(博士学位论文). 北京: 中国科学院大学. [60] 吴坤鹏, 刘时银, 朱钰, 等, 2021. 基于无人机摄影测量的梅里雪山明永冰川末端表面高程动态监测. 地理科学进展, 40(9): 1581-1589. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109013.htm [61] 徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析. 高原气象, 38(5): 911-919. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905001.htm [62] 许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm [63] 姚檀栋, 姚治君, 2010. 青藏高原冰川退缩对河水径流的影响. 自然杂志, 32(1): 4-8. doi: 10.3969/j.issn.0253-9608.2010.01.002 [64] 赵鑫, 张海太, 赵志芳, 等, 2020. 滇西北海巴洛沟"7·28"降雨-冰川融水混合型泥石流成因研究. 工程地质学报, 28(6): 1339-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006020.htm