Abnormal Enrichment Mechanism of Potassium-Rich Brine Deposit in Lop Nor Basin of Xinjiang
-
摘要:
罗布泊是世界上最大的单体硫酸盐型液体钾盐矿床,对于其矿床成因一直存在争议. 基于大量盐泉、地下潜水及地表水的化学实测数据,从水文化学的角度探讨罗布泊富钾卤水矿床成因. 结果表明,矿区富钾卤水钠氯系数为0.76~1.24,钾氯系数为38.58~60.49,主体表现为溶滤型卤水特征,指示有其他来源卤水混合参与成矿;首次在罗布泊东部断裂带发现Ca-Cl型卤水,具有典型的富Na+、K+、Ca2+、Cl-,贫HCO3-、CO32-、SO42-特征,指示罗布泊有深部热液流体补给. 在成矿过程中,Ca-Cl型卤水通过“兑卤”效应,直接改变原有成矿卤水成分及结晶路线,使其矿化度升高,而且富K、Na. 改造后的富“钠”卤水与前期生成的石膏(CaSO4·2H2O)反应,生成钙芒硝(Na2Ca(SO4)2·2H2O),并赋存于多孔的钙芒硝晶间,形成超常高矿化度富钾卤水矿床.
Abstract:Lop Nor is the largest single sulfate-type liquid potash deposit in the world, and the genesis of the deposit has been controversial. In this paper, the genesis of potassium-rich brine deposits in Lop Nor is discussed from the perspective of hydrochemistry, based on a large number of measured chemical data of salt springs, underground phreatic water and surface water. The results show that the sodium-chlorine coefficient of potassium-rich brine is 0.76-1.24, and the potassium-chloride coefficient is 38.58-60.49. The main body of the brine shows the characteristics of dissolving-filtering brine, indicating the mixing of brine from other sources. It is the first time that Ca-Cl type brine is found in the eastern fault zone of Lop Nor basin and Dawadi, which shows typical characteristics of enrichment in Na+, K+, Ca2+, Cl- and depletion in HCO3-, CO32-, and SO42-, indicating deep hydrothermal supply in Lop Nor Basin. In the ore-forming process, the Ca-Cl type brine can change the composition and crystallization route of the original ore-forming brine directly through the effect of "mixing brine", so that its mineralization degree is increased, and it is rich in K and Na. The reformed "sodium-rich" brine reacted with gypsum (CaSO4·2H2O), and formed glauberite (Na2Ca(SO4)2·2H2O), which existed among the porous glauberite crystals, forming super-high salinity potassium-rich brine.
-
Key words:
- Lop Nor /
- potash deposit /
- potassium-rich brine /
- enrichment mechanism /
- brine chemistry /
- mineral deposit
-
图 1 新疆罗布泊地区地质简图(引自王凯等,2020)
Fig. 1. Simplified geological map of Lop Nor area in Xinjiang (from Wang et al., 2020)
表 1 罗布泊盆地不同入流水源化学组分
Table 1. Chemical compositions of different inflow waters in Lop Nor Basin
水源类型 TDS(g/L) Na+(g/L) K+(g/L) Ca2+(g/L) Mg2+(g/L) HCO3‒(g/L) CO32‒(g/L) Cl‒(g/L) SO42‒(g/L) Li+(mg/L) B3+(mg/L) 盐泉 最大值 488.01 133.00 13.50 4.55 127.00 0.26 0.79 354.00 68.40 144.00 215.00 最小值 18.64 1.42 0.04 0.10 0.15 0.00 0.00 8.03 0.35 0.10 1.85 平均值 190.40 41.51 1.87 0.89 19.81 0.14 0.06 104.16 22.13 15.29 25.49 变异系数(%) 85.22 102.39 138.80 121.17 203.40 40.48 229.97 103.44 83.46 225.72 149.94 潜水 最大值 412.90 133.00 12.20 3.86 54.30 0.69 0.43 188.00 101.00 64.80 175.00 最小值 3.84 1.32 0.03 0.00 0.02 0.00 0.00 1.35 1.01 0.02 0.58 平均值 277.32 84.12 5.31 0.36 11.83 0.17 0.04 138.50 36.99 10.57 41.20 变异系数(%) 46.29 49.48 101.55 166.26 117.25 85.87 173.56 48.34 71.42 125.26 98.85 河水 最大值 1.00 0.20 0.02 0.09 0.04 0.23 0.00 0.27 0.34 0.06 0.31 最小值 0.57 0.07 0.01 0.05 0.02 0.13 0.00 0.09 0.16 0.01 0.09 平均值 0.69 0.10 0.01 0.06 0.03 0.17 0.00 0.12 0.20 0.03 0.18 变异系数(%) 18.65 34.19 35.68 18.92 21.27 17.33 / 38.09 23.68 59.33 42.77 表 2 罗布泊富钾卤水化学组分
Table 2. Chemical compositions of potassium-rich brine in Lop Nor Basin
矿区 TDS(g/L) Ca2+(g/L) Mg2+(g/L) Na+(g/L) Cl‒(g/L) SO4‒(g/L) K+(g/L) HCO3‒(g/L) Br‒(mg/L) B3+(mg/L) Li+(mg/L) 新庆矿区 最大值 356 0.8 20.1 101.7 186.1 5.9 8.8 0.2 35.2 724.5 18.1 最小值 256 0.0 6.3 48.4 130.5 0.3 6.7 0.1 2.1 293.9 3.4 平均值 332 0.2 11.2 80.9 167.9 2.3 7.2 0.2 15.1 478.5 11.2 变异系数(%) 31 83 31 15 8 75 13 31 48 24 29 罗北凹地 最大值 385 0.4 29.3 99.2 194.7 7.4 9.8 0.3 29.3 715 25.3 最小值 278 0.0 6.3 41.6 104.9 0.2 5.5 0.1 1.9 293.9 8.4 平均值 367 0.2 13.6 81.3 176.3 2.5 8.0 0.2 12.1 504.2 16.8 变异系数(%) 26 77 36 16 8 77 12 0 61 20 23 腾龙矿区 最大值 334 0.6 23.4 93.2 191.8 9.5 9.3 0.3 48.8 755.6 17.6 最小值 247 0.0 7.8 24.4 102.8 0.2 6.1 0.0 2.5 277.3 8.9 平均值 325 0.2 14.8 71.6 164.1 3.0 7.7 0.1 15.5 507.5 14.0 变异系数(%) 24 93 31 23 11 83 12 38 65 25 15 表 3 罗布泊Ca-Cl型泉点卤水化学组分
Table 3. Chemical compositions of Ca-Cl brine in Lop Nor Basin
样品编号 Na(g/L) K(g/L) Ca(g/L) Mg(g/L) HCO3(mg/L) Cl(g/L) SO4(g/L) Li(mg/L) Sr(mg/L) SPW 1.52 1.11 4.55 125 263 354 1.35 141 71.3 表 4 罗布泊Ca-Cl型泉点固相化学组分
Table 4. Chemical compositions of solid phase from Ca-Cl brine in Lop Nor Basin
样品编号 Na(%) K(%) Ca(%) Mg(%) HCO3(%) Cl(%) SO4(%) Li(ug/g) Sr(ug/g) SPG1 0.37 0.09 0.24 12.40 0.16 35.3 < 0.15 33.9 19.8 SPG2 7.84 10.00 0.53 6.31 0.15 40.1 1.0 11.7 138.0 -
[1] Chen, Y.Z., Wang, M.L., Yang, Z.C., et al., 2001. The Making of Potash-Bearing Salts Mixtures through the Processing of Magnesium Sulfate Sub-Type Brine in Lop Nur Saline Lake, Xinjiang. Acta Geoscientia Sinica, 22(5): 465-470 (in Chinese with English abstract). [2] Deng, Z.Q., 1987. The Characteristics of Gravitational and Magnetical Field of Luobupo Region in Xinjiang and Its Architectonic Significance. Xinjiang Geology, 5(1): 85-91 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJDI198701009.htm [3] Gu, X. L., Zhao, Z.H., Li, Q. H., et al., 2003. Analysis of the Developing Prospect of the Unconfined Brine Kalium Mine in the North Hollow of the Lop Nur Region. Hydrogeology & Engineering Geology, 30(2): 32-36, 5 (in Chinese with English abstract). [4] Guo, Z.J., Zhang, Z.C., 1995. The Geological Interpretation of the Forming and Evolution of Lop Nur, NW China. Geological Journal of Universities, 1(2): 82-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX502.009.htm [5] Hardie, L. A., 1990. The Roles of Rifting and Hydrothermal CaCl2 Brines in the Origin of Potash Evaporites: An Hypothesis. American Journal of Science, 290(1): 43-106. https://doi.org/10.2475/ajs.290.1.43 [6] Hu, D.S., Zhang, H.J., 2004. Lake-Evaporated Salt Resources and the Environmental Evolution in the Lop Nur Region. Journal of Glaciology and Geocryology, 26(2): 212-218 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-BCDT200402017.htm [7] Lin, J.X., Zhang, J., Ju, Y.J., et al., 2005. The Lithostratigraphy, Magnetostratigraphy, and Climatostratigraphy in the Lop Nur Region, Xinjiang. Journal of Stratigraphy, 29(4): 317-322 (in Chinese with English abstract). [8] Liu, C.L., Jiao, P.C., Wang, M.L., et al., 2003. Ascending Brine Fluids in Quaternary Salty Lake of Lop Nur in Xinjiang and Their Significance in Potash Formation. Mineral Deposits, 22(4): 386-392 (in Chinese with English abstract). [9] Liu, C.L., Wang, M.L., Jiao, P.C., et al., 2002. Formation of Pores and Brine Reserving Mechanism of the Aquifers in Quaternary Potash Deposits in Lop Nur Lake, Xinjiang, China. Geological Review, 48(4): 437-443, 450 (in Chinese with English abstract). [10] Liu, D.M., Li, D.W., Yang, W.R., et al., 2005. Evidence from Fission Track Ages for the Tectonic Uplift of the Himalayan Orogen during Late Cenozoic. Earth Science, 30(2): 147-152 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200502003.htm [11] Lowenstein, T. K., Risacher, F., 2009. Closed Basin Brine Evolution and the Influence of Ca-Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquatic Geochemistry, 15: 71-94. https://doi.org/10.1007/s10498-008-9046-z [12] Luo, C., Peng, Z.C., Liu, W.G., et al., 2008. Evidence from the Lacustrine Sediments of Lop-Nur Lake, Northwest China for the Younger Dryas Event. Earth Science, 33(2): 190-196 (in Chinese with English abstract). [13] Ma, L.C., Liu, C.L., Jiao, P.C., et al., 2010. A Preliminary Discussion on Geological Conditions and Indicator Pattern of Potash Deposits in Typical Playas of Xinjiang. Mineral Deposits, 29(4): 593-601 (in Chinese with English abstract). [14] Ma, L. C., Lowenstein, T. K., Li, B. G., et al., 2010. Hydrochemical Characteristics and Brine Evolution Paths of Lop Nor Basin, Xinjiang Province, Western China. Applied Geochemistry, 25(11): 1770-1782. https://doi.org/10.1016/j.apgeochem.2010.09.005 [15] Ma, L.C., Wang, K., Zhang, Y., et al., 2021. Dynamic Variations in Salinity and Potassium Grade of a Potassium-Rich Brine Deposit in Lop Nor Basin, China. Scientific Reports, 11(1): 3351. https://doi.org/10.1038/s41598-021-82958-y [16] Risacher, F., Clement, A., 2001. A Computer Program for the Simulation of Evaporation of Natural Waters to High Concentration. Computers & Geosciences, 27(2): 191-201. https://doi.org/10.1016/s0098-3004(00)00100-x [17] Sun, J.M., Liu, W.G., Liu, Z.H., et al., 2017. Effects of the Uplift of the Tibetan Plateau and Retreat of Neotethys Ocean on the Stepwise Aridification of Mid-Latitude Asian Interior. Bulletin of Chinese Academy of Sciences, 32(9): 951-958 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYYX201709010.htm [18] Sun, M. G., Ma, L. C., 2018. Potassium-Rich Brine Deposit in Lop Nor Basin, Xinjiang, China. Scientific Reports, 8: 7676. https://doi.org/10.1038/s41598-018-25993-6 [19] Sun, X.H., Liu, C.L., Jiao, P.C., et al., 2016. A Further Discussion on Genesis of Potassium-Rich Brine in Lop Nur: Evaporating Experiments for Brine in Gypsum-Bearing Clastic Strata. Mineral Deposits, 35(6): 1190-1204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201606005.htm [20] Wang, K., Sun, M.G., Ma, L.C., et al., 2020. Spatial Variability in the Geochemical Characteristics of the K-Rich Brines in the Lop Nor. Acta Geologica Sinica, 94(4): 1183-1191 (in Chinese with English abstract). [21] Wang, M.L., Liu, C.L., Jiao, P.C., et al., 2001. Potash Resources in Lop Nor Salt Lake. Geological Publishing House, Beijing (in Chinese). [22] Wang, M. L., Liu, C. L., Jiao, P. C., et al., 2005. Minerogenic Theory of the Superlarge Lop Nur Potash Deposit, Xinjiang, China. Acta Geologica Sinica (English Edition), 79(1): 53-65. https://doi.org/10.1111/j.1755-6724.2005.tb00867.x [23] Xia, X.C., 2017. Lop Nur in China. Science Press, Beijing (in Chinese). [24] Xu, Z.Q., Li, S.T., Zhang, J.X., et al., 2011. Paleo-Asian and Tethyan Tectonic Systems with Docking the Tarim Block. Acta Petrologica Sinica, 27(1): 1-22 (in Chinese with English abstract). https://www.researchgate.net/publication/298499409_Paleo-Asian_and_Tethyan_tectonic_systems_with_docking_the_Tarim_block [25] Zhao, Z.H., Hou, G.C., Qi, W.Q., et al., 2001. Discussion of the Lower Limit of Quaternary in Lop Nur, Xinjiang. Arid Land Geography, 24(2): 130-135 (in Chinese with English abstract). [26] Zheng, M.P., Qi, W., Wu, Y.S., et al., 1991. A Preliminary Study on the Sedimentary Environment and Prospect of Potassium Exploration in Lop Nur Salt Lake since the Late Pleistocene. Chinese Science Bulletin, 36(23): 1810-1813(in Chinese). doi: 10.1360/csb1991-36-23-1810 [27] 陈永志, 王弭力, 杨志琛, 等, 2001. 罗布泊硫酸镁亚型卤水制取钾混盐工艺试验研究. 地球学报, 22(5): 465-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200105015.htm [28] 邓振球, 1987. 塔里木盆地东部(罗布泊)区域重磁场特征及对区域地质构造的意义. 新疆地质, 5(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI198701009.htm [29] 顾新鲁, 赵振宏, 李清海, 等, 2003. 罗布泊地区罗北凹地潜卤水钾矿床成因与开发前景. 水文地质工程地质, 30(2): 32-36, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200302008.htm [30] 郭召杰, 张志诚, 1995. 罗布泊形成及演化的地质新说. 高校地质学报, 1(2): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.009.htm [31] 胡东生, 张华京, 2004. 罗布泊荒漠地区湖泊蒸发盐资源的形成及环境演化. 冰川冻土, 26(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200402017.htm [32] 林景星, 张静, 剧远景, 等, 2005. 罗布泊地区第四纪岩石地层、磁性地层和气候地层. 地层学杂志, 29(4): 317-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200504001.htm [33] 刘成林, 焦鹏程, 王弭力, 等, 2003. 新疆罗布泊第四纪盐湖上升卤水流体及其成钾意义. 矿床地质, 22(4): 386-392. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200304008.htm [34] 刘成林, 王弭力, 焦鹏程, 等, 2002. 罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究. 地质论评, 48(4): 437-443, 450. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200204015.htm [35] 刘德民, 李德威, 杨巍然, 等, 2005. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据. 地球科学, 30(2): 147-152. http://www.earth-science.net/article/id/1431 [36] 罗超, 彭子成, 刘卫国, 等, 2008. 新仙女木事件在罗布泊湖相沉积物中的记录. 地球科学, 33(2): 190-196. http://www.earth-science.net/article/id/1750 [37] 马黎春, 刘成林, 焦鹏程, 等, 2010. 新疆典型干盐湖成钾条件对比与指标模型初探. 矿床地质, 29(4): 593-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201004003.htm [38] 孙继敏, 刘卫国, 柳中晖, 等, 2017. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响. 中国科学院院刊, 32(9): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709010.htm [39] 孙小虹, 刘成林, 焦鹏程, 等, 2016. 罗布泊盐湖富钾卤水成因再探讨——碎屑层卤水蒸发实验分析. 矿床地质, 35(6): 1190-1204. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201606005.htm [40] 王凯, 孙明光, 马黎春, 等, 2020. 罗布泊富钾卤水矿床地球化学空间分布特征. 地质学报, 94(4): 1183-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202004011.htm [41] 王弭力, 刘成林, 焦鹏程, 等, 2001. 罗布泊盐湖钾盐资源. 北京: 地质出版社. [42] 夏训诚, 2017. 中国罗布泊. 北京: 科学出版社. [43] 许志琴, 李思田, 张建新, 等, 2011. 塔里木地块与古亚洲/特提斯构造体系的对接. 岩石学报, 27(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101002.htm [44] 赵振宏, 侯光才, 齐万秋, 等, 2001. 浅谈新疆罗布泊地区第四纪下限. 干旱区地理, 24(2): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL200102006.htm [45] 郑绵平, 齐文, 吴玉书, 等, 1991. 晚更新世以来罗布泊盐湖的沉积环境和找钾前景初析. 科学通报, 36(23): 1810-1813. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199123015.htm