• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式

    姜平 何胜林 杨朝强 杨楷乐 王猛 兰张健 任双坡 张瑞雪 赵晓博 姚光庆

    姜平, 何胜林, 杨朝强, 杨楷乐, 王猛, 兰张健, 任双坡, 张瑞雪, 赵晓博, 姚光庆, 2022. 莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式. 地球科学, 47(5): 1569-1585. doi: 10.3799/dqkx.2021.190
    引用本文: 姜平, 何胜林, 杨朝强, 杨楷乐, 王猛, 兰张健, 任双坡, 张瑞雪, 赵晓博, 姚光庆, 2022. 莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式. 地球科学, 47(5): 1569-1585. doi: 10.3799/dqkx.2021.190
    Jiang Ping, He Shenglin, Yang Zhaoqiang, Yang Kaile, Wang Meng, Lan Zhangjian, Ren Shuangpo, Zhang Ruixue, Zhao Xiaobo, Yao Guangqing, 2022. High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin. Earth Science, 47(5): 1569-1585. doi: 10.3799/dqkx.2021.190
    Citation: Jiang Ping, He Shenglin, Yang Zhaoqiang, Yang Kaile, Wang Meng, Lan Zhangjian, Ren Shuangpo, Zhang Ruixue, Zhao Xiaobo, Yao Guangqing, 2022. High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin. Earth Science, 47(5): 1569-1585. doi: 10.3799/dqkx.2021.190

    莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式

    doi: 10.3799/dqkx.2021.190
    基金项目: 

    中海石油有限公司湛江分公司资助项目 CCL-2019-ZJFN0734

    详细信息
      作者简介:

      姜平(1971-),男,教授级高级工程师,博士,主要从事海上石油天然气开发研究和管理工作. ORCID:0000-0002-2033-8741.E-mail:jiangp@cnooc.com.cn

      通讯作者:

      任双坡,ORCID:0000-0002-9746-9184. E-mail:rensp@cug.edu.cn

    • 中图分类号: P618.13

    High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin

    • 摘要: 莺歌海盆地LD10区中深层黄流组‒梅山组重力流水道、海底扇储层已被证实具有重大的天然气资源潜力.但是前期测试结果显示气藏中混有高含量CO2气体.因此,精细厘定天然气充注期次,明确CH4、CO2等时空分布规律对规避高CO2风险至关重要.本研究在对不同产状流体包裹体岩相学特征精细观察的基础上,综合激光拉曼光谱分析和包裹体显微测温技术识别出3幕不同成分天然气充注,时间分别为:4.0~2.9 Ma、2.0~1.2 Ma和0.8~0.3 Ma.其中,第一幕充注以烃类气为主,伴有少量有机CO2和N2;第二幕和第三幕充注以大量无机CO2、烃类气为主,伴有少量N2.结合天然气及烃源岩地化特征、天然气组分分析及输导体系识别,总结了LD10区的成藏模式,以期为研究区下一步天然气勘探开发和规避高含量CO2风险提供依据.

       

    • 图  1  莺歌海盆地构造单元划分及研究区位置(据Cao et al., 2015)

      Fig.  1.  Tectonic units and location of the study area in Yinggehai basin(modified from Cao et al., 2015)

      图  2  透射光下不同产状内的流体包裹体

      a.石英内成岩裂纹内的流体包裹体. LD10-1-A井,4 165.52 m;b,c.穿石英裂纹内的流体包裹体. LD10-1-A井,4 165.96 m,LD10-2-A井,4 110.8 m;d,e.石英次生加大边中的流体包裹体. LD10-1-A井,4 166.38 m,LD10-1-B井,3 994.5 m;f.方解石胶结物中的流体包裹体. LD10-1-A井,4 169.04 m

      Fig.  2.  Fluid inclusions in different occurrences under transmitted light

      图  3  LD10区流体包裹体类型

      a.LD10-1-A井,4 166.38 m,石英次生加大边中的椭圆状富气相盐水包裹体和纯气相包裹体;b.LD10-1-A井,4 165.52 m,石英内成岩裂纹中的长条状富气相盐水包裹体和近圆状纯气相包裹体;c.LD10-1-B井,4 091 m,石英内成岩裂纹中的油包裹体的蓝色荧光显示;d.LD10-1-B井,3 868 m,穿石英裂纹中的椭圆状纯气相包裹体和气液两相盐水包裹体;e.LD10-1-B井,4 091 m,石英内成岩裂纹中的发蓝色荧光的不规则气液两相油包裹体;f.LD10-1-B井,方解石胶结物中的不规则状纯气相包裹体

      Fig.  3.  Fluid inclusion types in LD10 area

      图  4  LD10区不同储层中的流体包裹体均一温度直方图

      a.LD10-1构造黄流组二段重力流水道砂体;b.LD10-2构造黄流组二段重力流海底扇砂体;c.LD10-2构造梅山组二段重力流海底扇砂体;d.LD10-3构造梅山组二段重力流海底扇砂体

      Fig.  4.  Histograms of homogenization temperature of fluid inclusions in different reservoirs in LD10 area

      图  5  第二幕热流体充注时期捕获的包裹体拉曼光谱图

      a.LD10-1-A井,4 165.52 m,石英内成岩裂纹中的含CO2气相盐水包裹体(161.7 ℃);b.LD10-1-A井,4 169.16 m,石英内成岩裂纹中的含甲烷气相盐水包裹体(160.5 ℃);c.LD10-2-A井,4 110.8 m,石英内成岩裂纹中的含CO2气相包裹体(169.6 ℃);d.LD10-1-A井,4 171.21 m,石英内成岩裂纹中的含甲烷气相包裹体(158 ℃)

      Fig.  5.  Raman spectra of inclusions captured during the second act of thermal fluid charging

      图  6  第三幕热流体充注时期捕获的包裹体拉曼光谱图

      a.LD10-1-A井,4 170.81 m,石英内成岩裂纹中的含CO2纯气相包裹体(178.9 ℃);b.LD10-2-A井,4 110.8 m,石英内成岩裂纹中发育的CO2和甲烷混合气相盐水包裹体(185.3 ℃)

      Fig.  6.  Raman spectra of inclusions captured during thermal fluid charging in the third act

      图  7  LD10区埋藏史热史投点结果

      a.LD10-1构造黄流组储层埋藏史热史投点; b.LD10-2构造黄流组储层埋藏史热史投点; c.LD10-2构造梅山组储层埋藏史热史投点

      Fig.  7.  Results of burial history and thermal history in LD10 area

      图  8  LD10区天然气甲烷、乙烷碳同位素分布直方图

      Fig.  8.  Histograms of carbon isotope distribution of methane and ethane in LD10 area

      图  9  LD10区烃类气成因及亚类判识与划分

      a.LD10区烃类气δ13C1与δ13C2关系;b.LD10区烃类气δ13C1与δ13C113C2关系

      Fig.  9.  Genesis, subclass identification and classification of hydrocarbon gases in LD10 area

      图  10  LD10区天然气CO2与δ13CCO2含量关系散点图

      Fig.  10.  Scatter plot of relationship between CO2 and δ13CCO2 in LD10 area

      图  11  无机成因CO2与烃源岩的碳同位素组成对比

      a.LD10区天然气中无机成因CO2,12个样品;b.莺歌海盆地中新统和渐新统砂泥岩中碳酸盐矿物和胶结物,25个样品;c.莺东斜坡前古近系基底碳酸盐岩,灰岩和白云岩2个样品

      Fig.  11.  Comparison of carbon isotopic compositions of inorganic CO2 and source rocks

      图  12  AA’测线地震剖面发育的隐伏断裂-垂向输导体系(测线位置见图 1)

      Fig.  12.  Hidden fault-vertical transport system developed by AA'seismic profile

      图  13  LD10区黄流组Ⅱ段储层中发育的裂缝

      a.LD10-1-A井4 134.5 m;b.LD10-1-A井4 165.8 m;c.LD10-1-D井4 330 m;d.LD10-1-D井4 391.3 m

      Fig.  13.  Fractures developed in Huangliu Formation Ⅱ reservoir in LD10 area

      图  14  LD10区天然气成藏模式

      箭头大小表示充注气体含量大小

      Fig.  14.  Gas accumulation pattern diagram in LD10 area

      表  1  LD10区天然气稀有气体同位素分析结果

      Table  1.   Rare gas isotope analysis results in LD10 area

      井号 深度(m) 4He(v/v) 3He/4He 40Ar(v/v) 40Ar/36Ar 38Ar/36Ar R/Ra
      LD10-1-C 4 022.7~4 062.5 6.92E-06 5.10E-08 7.78E-05 3.08E+02 1.88E-01 0.04
      4 022.7~4 062.5 8.63E-06 4.91E-08 5.52E-05 3.16E+02 1.86E-01 0.04
      4 022.7~4 062.5 5.36E-06 1.01E-07 1.45E-04 3.09E+02 1.90E-01 0.07
      LD10-3-A 4 151 2.61E-03 7.78E-08 1.83E-05 5.28E+02 1.83E-01 0.06
      下载: 导出CSV

      表  2  LD10区天然气组分分布

      Table  2.   Distribution of natural gas components in LD10 area

      构造 井号 层位 深度(m) 非烃气(%) CO2(%) 烃类气(%)
      LD10-1 LD10-1-6 H2Ⅳ 4 215.5 5.41 48.79 45.81
      LD10-1-10 H2Ⅳ 4 022.7~4 061.5 4.35 69.86 25.78
      LD10-1-12 H2Ⅴ 4 321.5~4 393.5 1.31 43.76 54.93
      LD10-1-13 H2Ⅲ 4 095.0~4 115.0 2.45 15.26 82.29
      H2Ⅴ 4 209 2.20 63.29 34.51
      LD10-2 LD10-1-5 H2Ⅱ 4 040.4 0.00 19.23 80.77
      H2Ⅲ 3 995.2 0.00 54.20 45.80
      LD10-2-1 H2Ⅰ 3 856.4 0.00 0.81 99.19
      3 867.4 0.00 14.88 85.12
      M1Ⅱ上 3 711 0.00 18.17 81.83
      4 062.1 2.20 65.23 32.50
      M1Ⅱ下 4 158.3 2.07 64.34 33.59
      4 113 0.00 74.15 25.85
      LD10-3 LD10-3-1 M2Ⅱ 4 106 0.00 46.25 53.75
      M2Ⅲ 4 151 0.00 50.89 49.11
      下载: 导出CSV
    • [1] Cao, L., Jiang, T., Wang, Z., et al., 2015. Provenance of Upper Miocene Sediments in the Yinggehai and Qiongdongnan Basins, Northwestern South China Sea: Evidence from REE, Heavy Minerals and Zircon U-Pb Ages. Marine Geology, 361: 136-146. doi: 10.1016/j.margeo.2015.01.007
      [2] Cathles, L. M., Schoell, M., 2007. Modeling CO2 Generation, Migration, and Titration in Sedimentary Basins. Geofluids, 7(4): 441-450. doi: 10.1111/j.1468-8123.2007.00198.x
      [3] Chen, Y., Zhang, D. J., Zhang, J. X., et al., 2020. Sedimentary Characteristics and Controlling Factors of the Axial Gravity Channel in Huangliu Formation of the Yingdong Slope Area in Yinggehai Basin. Journal of Northeast Petroleum University, 44(2): 91-102, 11 (in Chinese with English abstract).
      [4] Dai, J. X., 1996. Carbon Dioxide Gas Reservoirs and Their Gas Types in Eastern China and Continental Shelf. Exploration of Nature, (4): 20-22 (in Chinese with English abstract).
      [5] Dai, J. X., Song, Y., Hong, F., et al., 1994. Inorganic Genetic Carbon Dioxide Gas Accumulations and Their Characteristics in East Part of China. China Offshore Oil and Gas (Geology), 6(4): 215-222 (in Chinese with English abstract).
      [6] Dai, J. X., Zou, C. N., Li, J., et al., 2014. Giant Coal-Derived Gas Fields and Their Gas Sources in China. Science and Technology Press, Beijing, 249-260 (in Chinese).
      [7] Ding, W. W., Pang, Y. M., Hu, A. P., 2005. Natural Gas Accumulation and Geochemical Characteristics in Yinggehai-Qiongdongnan Basin, South China Sea. Petroleum Exploration & Development, 32(4): 97-102 (in Chinese with English abstract).
      [8] Guo, X. X., Xu, X. D., Xiong, X. F., et al., 2017. Gas Accumulation Characteristics and Favorable Exploration Directions in Mid-Deep Strata of the Yinggehai Basin. Natural Gas Geoscience, 28(12): 1864-1872 (in Chinese with English abstract).
      [9] Hao, F., Zou, H. Y., Huang, B. J., 2002. Gas Generation Model and Reservoir Fluid Response in Yinggehai Basin. Science in China (Series D: Earth Sciences), 32(11) : 889-895 (in Chinese).
      [10] He, J. X., 1995. Preliminary Study on CO2 Natural Gas in Yinggehai Basin. Natural Gas Geoscience, 6(3): 1-12 (in Chinese with English abstract).
      [11] He, J. X., Xia, B., Liu, B. M., et al., 2004. Analysis on the Upintrusion of Thermal Fluid and the Migration and Accumulation Rules of Natural Gas and CO2 in the Mud Diapirs of the Yinggehai Basin. Petroleum Geology & Expeximent, 26(4): 349-358 (in Chinese with English abstract).
      [12] Huang, B. J., 2002. Genetic Types and Migration- Accumulation Dynamics of Natural Gases in the Ying-Qiong Basins, the South China Sea (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      [13] Huang, B. J., Li, X. S., Yi, P., et al., 2005. Geochemical Behaviors and Reservoiring History of Natural Gas in Ledong Gas Field in Yinggehai Basin. Oil & Gas Geology, 26(4): 524-529 (in Chinese with English abstract).
      [14] Huang, B. J., Xiao, X. M., Hu, Z. L., 2005. Geochemistry and Episodic Accumulation of Natural Gases from the Ledong Gas Field in the Yinggehai Basin, Offshore South China Sea. Organic Geochemistry, 36(12): 1689-1702. doi: 10.1016/j.orggeochem.2005.08.011
      [15] Li, X. S., Pei, J. X., Li, Y. L., 2013. Gas Play Conditions and Accumulation Patterns of the Ledong Gas Fields, Yinggehai Basin. Natural Gas Industry, 33(11): 16-21 (in Chinese with English abstract).
      [16] Lin, J. Y., Jiang, T., Song, L. B., et al., 2010. The Origin and Gas Vertical Distribution of the Harjin Mixed-Gas Reservoir. Acta Petrolei Sinica, 31(6): 927-932 (in Chinese with English abstract).
      [17] Liu, D. H., Lu, H. Z., Xiao, X. M., 2007. Oil and Gas Inclusions and Their Applications in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guangzhou, 9-19 (in Chinese).
      [18] Liu, N., Wu, K. Q., Liu, L., et al., 2019. Dawsonite Characteristics and Its Implications on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2695-2703 (in Chinese with English abstract).
      [19] Liu, W. H., Xu, Y. C., 1990. Research Status of Argon Isotope in Natural Gas. Natural Gas Geoscience, 1(2): 7-11 (in Chinese with English abstract).
      [20] Liu, Z. Q., Yu, Y., Xu, Y. L., et al., 2019. The Development and Application of High Performance Water Base Muds for HTHP Wells in Yingqiong Basin. Earth Science, 44(8): 2729-2735 (in Chinese with English abstract).
      [21] Pei, J. X., Chen, Y., Hao, D. F., et al., 2016. Identification and Controlling Factors of Submarine Fan in Miocene in Central Depression Zone in Yinggehai Basin. Journal of Northeast Petroleum University, 40(5): 46-54, 7 (in Chinese with English abstract).
      [22] Shui, L. l., Liang, R., Meng, X. H., et al., 2020. Characteristics of Fluid Inclusions in Quartz Fractures in Ledong Area of Yinggehai Basin and Its Constraints on Gas Accumulation. Sedimentary Geology and Tethyan Geology, 40(1): 45-52 (in Chinese with English abstract).
      [23] Sun, M., Wang, H., Liao, J. H., et al., 2014. Sedimentary Characteristics and Model of Gravity Flow Depositional System for the First Member of Upper Miocene Huangliu Formation in Dongfang Area, Yinggehai Basin, Northwestern South China Sea. Journal of Earth Science, 25(3): 506-518. https://doi.org/10.1007/s12583-014-0451-5
      [24] Wakita, H., Sano, Y., 1983. 3He/4He Ration in CH4-Rich Gases Suggest Magmatic Origin. Nature, 305(5937): 792-794. doi: 10.1038/305792a0
      [25] Wang, C. L., Zhou, W., Xie, Y. H., et al., 2015. High-Temperature Thermal Events and Diagenesis of the Reservoir of the Diapiric Structure Zone in Yinggehai Basin. Geological Science and Technology Information, 34(4): 35-42 (in Chinese with English abstract).
      [26] Wang, Z. F., He, J. X., Xie, X. N., 2004. Heat Flow Action and Its Control on Natural Gas Migration and Accumulation in Mud-Fluid Diapir Areas in Yinggehai Basin. Earth Science, 29(2): 203-210 (in Chinese with English abstract).
      [27] Wang, Z. F., Pei, J. X., Hao, D. F., et al., 2015. Development Conditions, Sedimentary Characteristics of Miocene Large Gravity Flow Reservoirs and the Favorable Gas Exploration Directions in Ying-Qiong Basin. China Offshore Oil and Gas, 27(4): 13-21 (in Chinese with English abstract).
      [28] Xie, Y. H., Li, X. S., Tong, C. X., et al., 2015. High Temperature and High Pressure Gas Enrichment Condition, Distribution Law and Accumulation Model in Central Diapir Zone of Yinggehai Basin. China Offshore Oil and Gas, 27(4): 1-12 (in Chinese with English abstract).
      [29] Xie, Y. H., Li, X. S., Xu, X. D., et al., 2016. As Accumulation and Great Exploration Breakthroughs in HTHP Formations within Yinggehai-Qiongdongnan Basins. China Petroleum Exploration, 21(4): 19-29 (in Chinese with English abstract).
      [30] Xie, Y. H., Liu, P., Huang, Z. L., 2012. Geological Conditions and Pooling Process of High-Temperature and Overpressure Natural Gas Reservoirs in the Yinggehai Basin. Natural Gas Industry, 32(4): 19-23, 119 (in Chinese with English abstract).
      [31] Xu, X. D., Zhang, Y. Z., Xiong, X. F., et al., 2017. Genesis, Accumulation and Distribution of CO2 in the Yinggehai-Qiongdongnan Basins, Northern South China Sea. Marine Geology Frontiers, 33(7): 45-54 (in Chinese with English abstract).
      [32] You, L., Fan, C. W., Wu, S. J., et al., 2021. Genesis of Carbonate Cement and Its Relationship with Fluid Activity in the Ledong Area, Yinggehai Basin. Acta Geologica Sinica, 95(2): 578-587 (in Chinese with English abstract).
      [33] Zhu, W. L., Zhang, G. C., Yang, S. K., 2007. Natural Gas Geology of the Northern Continental Margin Basin of the South China Sea. Petroleum Industry Press, Beijing (in Chinese).
      [34] 陈杨, 张道军, 张建新, 等, 2020. 莺歌海盆地莺东斜坡黄流组轴向重力流水道沉积特征及控制因素. 东北石油大学学报, 44(2): 91-102, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202002010.htm
      [35] 戴金星, 1996. 中国东部和大陆架二氧化碳气田(藏)及其气的类型. 大自然探索, (4): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZRT604.006.htm
      [36] 戴金星, 宋岩, 洪峰, 等, 1994. 中国东部无机成因的二氧化碳气藏及其特征. 中国海上油气地质, 6(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm
      [37] 戴金星, 邹才能, 李剑, 等, 2014. 中国煤成大气田及气源. 北京: 科学出版社, 249-260.
      [38] 丁巍伟, 庞彦明, 胡安平, 2005. 莺‒琼盆地天然气成藏条件及地球化学特征. 石油勘探与开发, 32(4): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504018.htm
      [39] 郭潇潇, 徐新德, 熊小峰, 等, 2017. 莺歌海盆地中深层天然气成藏特征与有利勘探领域. 天然气地球科学, 28(12): 1864-1872. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712010.htm
      [40] 郝芳, 邹华耀, 黄保家, 2002. 莺歌海盆地天然气生成模式及其成藏流体响应. 中国科学(D辑: 地球科学), 32(11): 889-895. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200211001.htm
      [41] 何家雄, 1995. 莺歌海盆地的CO2天然气的初步研究. 天然气地球科学, 6(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199503000.htm
      [42] 何家雄, 夏斌, 刘宝明, 等, 2004. 莺歌海盆地泥底辟热流体上侵活动与天然气及CO2运聚规律剖析. 石油实验地质, 26(4): 349-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200404008.htm
      [43] 黄保家, 2002. 莺琼盆地天然气成因类型及成藏动力学研究(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所).
      [44] 黄保家, 李绪深, 易平, 等, 2005. 莺歌海盆地乐东气田天然气地化特征和成藏史. 石油与天然气地质, 26(4): 524-529. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200504024.htm
      [45] 李绪深, 裴健翔, 李彦丽, 2013. 莺歌海盆地乐东气田天然气成藏条件及富集模式. 天然气工业, 33(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201311003.htm
      [46] 林景晔, 姜涛, 宋立斌, 等, 2010. 哈尔金混合气藏成因及气体的垂向分布规律. 石油学报, 31(6): 927-932. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201006009.htm
      [47] 刘德汉, 卢焕章, 肖贤明, 2007. 油气包裹体及其在石油勘探和开发中的应用. 广州: 广东科技出版社, 9-19.
      [48] 刘娜, 吴克强, 刘立, 等, 2019. 莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示. 地球科学, 44(8): 2695-2703. doi: 10.3799/dqkx.2019.106
      [49] 刘文汇, 徐永昌, 1990. 天然气中氩同位素研究现状. 天然气地球科学, 1(2): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX199002001.htm
      [50] 刘智勤, 余意, 徐一龙, 等, 2019. 莺‒琼盆地新型高温高压水基钻井液技术. 地球科学, 44(8): 2729-2735. doi: 10.3799/dqkx.2019.102
      [51] 裴健翔, 陈杨, 郝德峰, 等, 2016. 莺歌海盆地中央坳陷中新世海底扇识别及其形成控制因素. 东北石油大学学报, 40(5): 46-54, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201605006.htm
      [52] 税蕾蕾, 梁茹, 孟祥豪, 等, 2020. 莺歌海盆地乐东地区石英裂隙内流体包裹体特征及其对天然气成藏制约. 沉积与特提斯地质, 40(1): 45-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202001005.htm
      [53] 王翠丽, 周文, 谢玉洪, 等, 2015. 莺歌海盆地泥底辟带高温热事件与储层成岩作用. 地质科技情报, 34(4): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504006.htm
      [54] 王振峰, 何家雄, 解习农, 2004. 莺歌海盆地泥‒流体底辟带热流体活动对天然气运聚成藏的控制作用. 地球科学, 29(2): 203-210. http://www.earth-science.net/article/id/1349
      [55] 王振峰, 裴健翔, 郝德峰, 等, 2015. 莺‒琼盆地中新统大型重力流储集体发育条件、沉积特征及天然气勘探有利方向. 中国海上油气, 27(4): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504002.htm
      [56] 谢玉洪, 李绪深, 童传新, 等, 2015. 莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式. 中国海上油气, 27(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504001.htm
      [57] 谢玉洪, 李绪深, 徐新德, 等, 2016. 莺‒琼盆地高温高压领域天然气成藏与勘探大突破. 中国石油勘探, 21(4): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201604003.htm
      [58] 谢玉洪, 刘平, 黄志龙, 2012. 莺歌海盆地高温超压天然气成藏地质条件及成藏过程. 天然气工业, 32(4): 19-23, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201204007.htm
      [59] 徐新德, 张迎朝, 熊小峰, 等, 2017. 南海北部莺—琼盆地CO2成因与成藏特征及其分布规律. 海洋地质前沿, 33(7): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201707005.htm
      [60] 尤丽, 范彩伟, 吴仕玖, 等, 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 578-587. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102020.htm
      [61] 朱伟林, 张功成, 杨少坤, 2007. 南海北部大陆边缘盆地天然气地质. 北京: 石油工业出版社.
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  400
    • HTML全文浏览量:  115
    • PDF下载量:  58
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-10-25
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回