Petrogenesis and Tectonic Setting of the Late Carboniferous Igneous Rocks in the Baluntai Region of the Chinese Western Tianshan
-
摘要:
位于中亚造山带西段和塔里木克拉通之间的天山造山带的古生代构造演化历史目前还存在很大争议,其广泛发育的古生代岩浆岩则是揭示俯冲增生过程和构造体制转换的重要岩石探针.本文对我国西天山巴仑台地区的7个古生代岩浆岩进行了系统的年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年限定它们的结晶年龄在319~307 Ma之间,均形成于晚石炭世.地球化学特征显示晚石炭世的镁铁质岩浆岩主要起源于软流圈地幔或者受俯冲交代富集的岩石圈地幔;而同期花岗质岩石总体上均属于准铝质‒弱过铝质的中钾钙碱性和高钾钙碱性I型花岗岩,主要起源于下地壳基性岩的部分熔融.根据西天山地区古生代岩浆岩的时空分布规律及变质岩、蛇绿岩和沉积岩的研究成果,本文提出320~310 Ma的岩浆岩形成于板片断离的构造背景,标志着由大陆碰撞向后碰撞的构造体制转换;而310~307 Ma的岩浆岩形成于后碰撞伸展的构造背景.
Abstract:The Paleozoic tectonic evolution of the Tianshan orogenic belt, which is situated between the western Central Asian Orogenic Belt and the Tarim Craton, is still in heated debate. The widespread Paleozoic igneous rocks in the Tianshan orogen are a powerful tool to reveal the subduction and accretion processes as well as the tectonic switching. In this paper, detailed geochronological and geochemical studies were presented for seven suites of Paleozoic igneous rocks in the Baluntai domain of the Chinese western Tianshan. Zircon LA-ICP-MS U-Pb dating reveals that their crystallization ages are in the range of ca. 319-307 Ma, i.e., Late Carboniferous. Geochemical characteristics indicate that the Late Carboniferous mafic igneous rocks were mainly derived from asthenosphere mantle or subduction-modified lithospheric mantle; while the coeval granitoid rocks are generally metaluminous to weak peraluminous medium- and high-K calc-alkaline I-type granites that were mainly originated from partial melting of the lower crustal meta-basic rocks. In combination with the tempo-spatial distribution of the Paleozoic igneous rocks and published results of the metamorphic, ophiolitic and sedimentary rocks in the western Tianshan, we propose that the ca. 320-310 Ma igneous rocks were generated during slab breakoff, marking the tectonic transition from continental collision to post-collision settings. By inference, the subsequent 310-307 Ma magmatism was formed in a post-collisional extensional setting caused by lithospheric delamination.
-
Key words:
- Central Asian Orogenic Belt /
- Tianshan /
- magmatism /
- slab breakoff /
- geochemistry
-
图 2 西天山巴仑台地区地质简图
图据Wang et al.(2021a)修改.年龄数据来源:1. 据Wang et al.(2021a);2. 据Tang et al.(2012);3. 据朱永峰等(2006);4. 据黄河等(2015);5. 据Jin et al.(2014);6. 据王守敬和王居里(2010);7. 据Ma et al.(2014);8. 据Ma et al.(2013);9. 据尹继元等(2015);10. 据杨天南等(2006);11. 据李平等(2018);12. 据Shi et al.(2014);13. 据Ma et al.(2013);14. 据Ma et al.(2015);15. 本次研究
Fig. 2. Geological map of the Baluntai domain in the Chinese western Tianshan
图 6 TAS图解(a;Cox et al., 1979);A/CNK-A/NK图解(b;Maniar and Piccoli, 1989);SiO2-FeOtotal/(FeOtotal+MgO)图解(c)和SiO2-(Na2O+K2O‒CaO)图解(d;Frost et al., 2001)
已发表数据来源同图 2;图b~d中数据点的SiO2 > 56%
Fig. 6. TAS diagram (a; Cox et al., 1979); A/CNK-A/NK plot (b; Maniar and Piccoli, 1989); SiO2-FeOtotal/(FeOtotal+MgO) diagram (c); SiO2-(Na2O+K2O‒CaO) plot (d; Frost et al., 2001)
图 8 西天山巴仑台地区古生代花岗质岩类(SiO2 > 56%)的SiO2-K2O图解(a);SiO2-P2O5相关关系图(b);Rb-Th协变图解(c;Chappell and White, 1992);10 000×Ga/Al-FeO*/MgO图解(d;Whalen et al., 1987)
图b中阴影区代表澳大利亚Lachlan造山带早古生代I型花岗岩的分布范围,据李献华等(2007).图d中FG代表分异型花岗岩;OGT代表未分异的M-/I-/S型花岗岩
Fig. 8. SiO2-K2O diagram (a); SiO2-P2O5 diagram (b); Rb-Th plot (c; Chappell and White, 1992); and 10 000×Ga/Al-FeO*/MgO (d; Whalen et al., 1987) discrimination diagram for the Paleozoic granitoid rocks (SiO2 > 56%) in the Baluntai domain of the Chinese western Tianshan
图 9 西南天山地区古生代岩浆岩结晶年龄、蛇绿岩形成时代和阿克牙孜高压变质岩变质作用时代统计
标准引用数据来源参考Wan et al.(2021)、Wang et al.(2018a,2021a)
Fig. 9. Compilation of the crystallization ages for the Paleozoic igneous rocks, the formation ages for the ophiolites, and the metamorphic ages for the Akeyazi high-pressure metamorphic terrane in the Chinese southwestern Tianshan
-
[1] Abuduxun, N., Xiao, W. J., Windley, B. F., et al., 2021. Terminal Suturing between the Tarim Craton and the Yili-Central Tianshan Arc: Insights from Mélange-Ocean Plate Stratigraphy, Detrital Zircon Ages, and Provenance of the South Tianshan Accretionary Complex. Tectonics, 40(7): e2021TC006705. https://doi.org/10.1029/2021tc006705 [2] Agard, P., Yamato, P., Jolivet, L., et al., 2009. Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones: Timing and Mechanisms. Earth-Science Reviews, 92(1-2): 53-79. https://doi.org/10.1016/j.earscirev.2008.11.002 [3] Alexeiev, D. V., Biske, Y. S., Djenchuraeva, A. V., et al., 2019a. Late Carboniferous (Kasimovian) Closure of the South Tianshan Ocean: No Triassic Subduction. Journal of Asian Earth Sciences, 173: 54-60. https://doi.org/10.1016/j.jseaes.2019.01.021 [4] Alexeiev, D. V., Kröner, A., Kovach, V. P., et al., 2019b. Evolution of Cambrian and Early Ordovician Arcs in the Kyrgyz North Tianshan: Insights from U-Pb Zircon Ages and Geochemical Data. Gondwana Research, 66: 93-115. https://doi.org/10.1016/j.gr.2018.09.005 [5] Allen, M. B., Windley, B. F., Zhang, C., 1993. Palaeozoic Collisional Tectonics and Magmatism of the Chinese Tien Shan, Central Asia. Tectonophysics, 220(1-4): 89-115. https://doi.org/10.1016/0040-1951(93)90225-9 [6] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That Do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [7] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1 [8] Brun, J. P., Faccenna, C., 2008. Exhumation of High-Pressure Rocks Driven by Slab Rollback. Earth and Planetary Science Letters, 272(1-2): 1-7. https://doi.org/10.1016/j.epsl.2008.02.038 [9] Cao, Y. C., Wang, B., Jahn, B. M., et al., 2017. Late Paleozoic Arc Magmatism in the Southern Yili Block (NW China): Insights to the Geodynamic Evolution of the Balkhash-Yili Continental Margin, Central Asian Orogenic Belt. Lithos, 278-281: 111-125. https://doi.org/10.1016/j.lithos.2017.01.023 [10] Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1 [11] Chambefort, I., Dilles, J. H., Longo, A. A., 2013. Amphibole Geochemistry of the Yanacocha Volcanics, Peru: Evidence for Diverse Sources of Magmatic Volatiles Related to Gold Ores. Journal of Petrology, 54(5): 1017-1046. https://doi.org/10.1093/petrology/egt004 [12] Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3 [13] Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous I-Type Granites. Lithos, 153: 142-153. https://doi.org/10.1016/j.lithos.2012.07.008 [14] Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 [15] Charvet, J., Shu, L. S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1 [16] Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253-266. https://doi.org/10.1007/s12583-021-1404-4 [17] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 [18] Cox, K. G., Bell, J. D., Pankhurst, R. J., 1979. The Interpretation of Igneous Rocks. George Allen and Unwin, London. [19] Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S [20] Dolgopolova, A., Seltmann, R., Konopelko, D., et al., 2017. Geodynamic Evolution of the Western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP Geochronology and Sr-Nd-Pb-Hf Isotope Mapping of Granitoids. Gondwana Research, 47: 76-109. https://doi.org/10.1016/j.gr.2016.10.022 [21] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [22] Gao, J., Li, M. S., Xiao, X. C., et al., 1998. Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China. Tectonophysics, 287(1-4): 213-231. https://doi.org/10.1016/S0040-1951(98)80070-X [23] Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8 [24] Gao, J., Qian, Q., Long, L. L., et al., 2009. Accretionary Orogenic Process of Western Tianshan, China. Geological Bulletin of China, 28(12): 1804-1816 (in Chinese with English abstract). http://www.researchgate.net/profile/Jilei_Li/publication/279571465_Accretionary_orogenic_process_of_Western_Tianshan_China/links/559a0a2e08ae5d8f393649cc.pdf [25] Gao, J., Zhu, M. T., Wang, X. S., et al., 2019. Large-Scale Porphyry-Type Mineralization in the Central Asian Metallogenic Domain: Tectonic Background, Fluid Feature and Metallogenic Deep Dynamic Mechanism. Acta Geologica Sinica, 93(1): 24-71 (in Chinese with English abstract). [26] Garzanti, E., Radeff, G., Malusà, M. G., 2018. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth-Science Reviews, 177: 303-319. https://doi.org/10.1016/j.earscirev.2017.11.012 [27] Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2012. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active? Lithos, 142-143: 1-15. https://doi.org/10.1016/j.lithos.2012.02.010 [28] Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001 [29] Han, B. F., Guo, Z. J., Zhang, Z. C., et al., 2010. Age, Geochemistry, and Tectonic Implications of a Late Paleozoic Stitching Pluton in the North Tian Shan Suture Zone, Western China. Geological Society of America Bulletin, 122(3-4): 627-640. https://doi.org/10.1130/b26491.1 [30] Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001 [31] Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev.2017.09.012 [32] Huang, H., Wang, T., Qin, Q., et al., 2015. Zircon Hf Isotopic Characteristics of Granitoids from the Baluntai Region, Central Tianshan: Implications for Tectonic Evolution and Continental Growth. Acta Geologica Sinica, 89(12): 2286-2313 (in Chinese with English abstract). [33] Huang, H., Wang, T., Tong, Y., et al., 2020. Rejuvenation of Ancient Micro-Continents during Accretionary Orogenesis: Insights from the Yili Block and Adjacent Regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 208: 103255. https://doi.org/10.1016/j.earscirev.2020.103255 [34] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82-92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 [35] Jiang, T., Gao, J., Klemd, R., et al., 2014. Paleozoic Ophiolitic Mélanges from the South Tianshan Orogen, NW China: Geological, Geochemical and Geochronological Implications for the Geodynamic Setting. Tectonophysics, 612-613: 106-127. https://doi.org/10.1016/j.tecto.2013.11.038 [36] Jin, Z. L., Zhang, Z. C., Huang, H., et al., 2014. Geochronology and Geochemistry of the Airikenqiken Granite, Central Tianshan Terrane, Xinjiang, China: Implications for Petrogenesis and Continental Growth. International Geology Review, 56(7): 801-822. https://doi.org/10.1080/00206814.2014.901159 [37] Klemd, R., Bröcker, M., Hacker, B. R., et al., 2005. New Age Constraints on the Metamorphic Evolution of the High-Pressure/Low-Temperature Belt in the Western Tianshan Mountains, NW China. The Journal of Geology, 113(2): 157-168. https://doi.org/10.1086/427666 [38] Klemd, R., John, T., Scherer, E. E., et al., 2011. Changes in Dip of Subducted Slabs at Depth: Petrological and Geochronological Evidence from HP-UHP Rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310(1-2): 9-20. https://doi.org/10.1016/j.epsl.2011.07.022 [39] Laurent-Charvet, S., Charvet, J., Monié, P., et al., 2003. Late Paleozoic Strike-Slip Shear Zones in Eastern Central Asia (NW China): New Structural and Geochronological Data. Tectonics, 22(2): 1009. https://doi.org/10.1029/2001tc901047 [40] Li, J. L., Gao, J., Wang, X. S., 2016. A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China. Science in China (Series D), 47(1): 23-39 (in Chinese). [41] Li, P. F., Sun, M., Rosenbaum, G., et al., 2020. Tectonic Evolution of the Chinese Tianshan Orogen from Subduction to Arc-Continent Collision: Insight from Polyphase Deformation along the Gangou Section, Central Asia. GSA Bulletin, 132(11-12): 2529-2552. https://doi.org/10.1130/b35353.1 [42] Li, P., Zhao, T. Y., Mu, L. X., et al., 2018. The Paleozoic Intrusive Magmatic Sequence and Tectonic Evolution of Central Tianshan Mountains in Xinjiang, NW China. Geological Review, 64(1): 91-107 (in Chinese with English abstract). [43] Li, X. H., Li, W. X., Li, Z. X., 2007. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(9): 981-991 (in Chinese). doi: 10.1360/csb2007-52-9-981 [44] Li, Y. J., Wu, L., Li, S. L., et al., 2017. Tectonic Evolution of Yining Block: Insights from Carboniferous Volcanic Rocks. Acta Petrologica Sinica, 33(1): 1-15 (in Chinese with English abstract). [45] Liégeois, J. P., 1998. Preface: Some Words on the Post-Collisional Magmatism. Lithos, 45: XV-XVIII. [46] Lin, L., Qian, Q., Wang, Y. L., et al., 2015. Gabbroic Pluton in the Dahalajunshan Formation Volcanic Rocks from Northern Zhaosu, Western Tianshan: Age, Geochemistry and Geological Implications. Acta Petrologica Sinica, 31(6): 1749-1760 (in Chinese with English abstract). [47] Long, L. L., Gao, J., Klemd, R., et al., 2011. Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt. Lithos, 126(3-4): 321-340. https://doi.org/10.1016/j.lithos.2011.07.015 [48] Ludwig, K. R., 2003. User's Manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [49] Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228-243. https://doi.org/10.1016/j.gr.2013.09.018 [50] Ma, X. X., Shu, L. S., Meert, J. G., et al., 2014. The Paleozoic Evolution of Central Tianshan: Geochemical and Geochronological Evidence. Gondwana Research, 25(2): 797-819. https://doi.org/10.1016/j.gr.2013.05.015 [51] Ma, X. X., Shu, L. S., Santosh, M., et al., 2013. Petrogenesis and Tectonic Significance of an Early Palaeozoic Mafic-Intermediate Suite of Rocks from the Central Tianshan, Northwest China. International Geology Review, 55(5): 548-573. https://doi.org/10.1080/00206814.2012.727575 [52] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 [53] Qian, Q., Gao, J., Klemd, R., et al., 2009. Early Paleozoic Tectonic Evolution of the Chinese South Tianshan Orogen: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemistry of Basaltic and Dioritic Rocks from Xiate, NW China. International Journal of Earth Sciences, 98(3): 551-569. https://doi.org/10.1007/s00531-007-0268-x [54] Sang, M., Xiao, W. J., Orozbaev, R., et al., 2018. Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex, Atbashi Ridge, Kyrgyzstan: Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes. Journal of Asian Earth Sciences, 153: 9-41. https://doi.org/10.1016/j.jseaes.2017.07.052 [55] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [56] Şengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2018. The Tectonics of the Altaids: Crustal Growth during the Construction of the Continental Lithosphere of Central Asia between ~750 and ~130 Ma Ago. Annual Review of Earth and Planetary Sciences, 46: 439-494. https://doi.org/10.1146/annurev-earth-060313-054826 [57] Shi, Y. R., Jian, P., Kröner, A., et al., 2014. Zircon Ages and Hf Isotopic Compositions of Plutonic Rocks from the Central Tianshan (Xinjiang, Northwest China) and Their Significance for Early to Mid-Palaeozoic Crustal Evolution. International Geology Review, 56(11): 1413-1434. https://doi.org/10.1080/00206814.2014.942807 [58] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [59] Tan, Z., Agard, P., Monié, P., et al., 2019. Architecture and P-T-Deformation-Time Evolution of the Chinese SW-Tianshan HP/UHP Complex: Implications for Subduction Dynamics. Earth-Science Reviews, 197: 102894. https://doi.org/10.1016/j.earscirev.2019.102894 [60] Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142-154. https://doi.org/10.1016/j.epsl.2017.02.022 [61] Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Metasomatized Lithosphere-Asthenosphere Interaction during Slab Roll-Back: Evidence from Late Carboniferous Gabbros in the Luotuogou Area, Central Tianshan. Lithos, 155: 67-80. https://doi.org/10.1016/j.lithos.2012.08.015 [62] Wan, B., Wang, X. S., Liu, X. J., et al., 2021. Long-Lived Seamount Subduction in Ancient Orogens: Evidence from the Paleozoic South Tianshan. Geology, 49(5): 531-535. https://doi.org/10.1130/g48547.1 [63] Wan, B., Xiao, W. J., Windley, B. F., et al., 2017. Contrasting Ore Styles and Their Role in Understanding the Evolution of the Altaids. Ore Geology Reviews, 80: 910-922. https://doi.org/10.1016/j.oregeorev.2016.08.025 [64] Wang, B., Liu, H. S., Shu, L. S., et al., 2014. Early Neoproterozoic Crustal Evolution in Northern Yili Block: Insights from Migmatite, Orthogneiss and Leucogranite of the Wenquan Metamorphic Complex in the NW Chinese Tianshan. Precambrian Research, 242: 58-81. https://doi.org/10.1016/j.precamres.2013.12.006 [65] Wang, B., Shu, L. S., Cluzel, D., et al., 2007. Geochemical Constraints on Carboniferous Volcanic Rocks of the Yili Block (Xinjiang, NW China): Implication for the Tectonic Evolution of Western Tianshan. Journal of Asian Earth Sciences, 29(1): 148-159. https://doi.org/10.1016/j.jseaes.2006.02.008 [66] Wang, B., Shu, L. S., Faure, M., et al., 2011. Paleozoic Tectonics of the Southern Chinese Tianshan: Insights from Structural, Chronological and Geochemical Studies of the Heiyingshan Ophiolitic Mélange (NW China). Tectonophysics, 497(1-4): 85-104. https://doi.org/10.1016/j.tecto.2010.11.004 [67] Wang, B., Zhai, Y. Z., Kapp, P., et al., 2018b. Accretionary Tectonics of Back-Arc Oceanic Basins in the South Tianshan: Insights from Structural, Geochronological, and Geochemical Studies of the Wuwamen Ophiolite Mélange. GSA Bulletin, 130(1-2): 284-306. https://doi.org/10.1130/b31397.1 [68] Wang, J. M., Lanari, P., Wu, F. Y., et al., 2021b. First Evidence of Eclogites Overprinted by Ultrahigh Temperature Metamorphism in Everest East, Himalaya: Implications for Collisional Tectonics on Early Earth. Earth and Planetary Science Letters, 558: 116760. https://doi.org/10.1016/j.epsl.2021.116760 [69] Wang, S. J., Wang, J. L., 2010. The Geochemical Characteristics and Chronology of the K-Feldspar Granite in Baluntai Area, Xinjiang. Journal of Northwest University (Natural Science Edition), 40(1): 105-110 (in Chinese with English abstract). [70] Wang, T., Hou, Z. Q., 2018. Isotopic Mapping and Deep Material Probing (Ⅰ): Revealing the Compositional Evolution of the Lithosphere and Crustal Growth Processes. Earth Science Frontiers, 25(6): 1-19 (in Chinese with English abstract). [71] Wang, X. S., Gao, J., Klemd, R., et al., 2017. The Central Tianshan Block: A Microcontinent with a Neoarchean-Paleoproterozoic Basement in the Southwestern Central Asian Orogenic Belt. Precambrian Research, 295: 130-150. https://doi.org/10.1016/j.precamres.2017.03.030 [72] Wang, X. S., Klemd, R., Gao, J., et al., 2018a. Final Assembly of the Southwestern Central Asian Orogenic Belt as Constrained by the Evolution of the South Tianshan Orogen: Links with Gondwana and Pangea. Journal of Geophysical Research: Solid Earth, 123(9): 7361-7388. https://doi.org/10.1029/2018jb015689 [73] Wang, X. S., Klemd, R., Gao, J., et al., 2021a. Early Devonian Tectonic Conversion from Contraction to Extension in the Chinese Western Tianshan: A Response to Slab Rollback. GSA Bulletin, 133(7-8): 1613-1633. https://doi.org/10.1130/b35760.1 [74] Wang, X. S., Zhang, X., Gao, J., et al., 2018c. A Slab Break-Off Model for the Submarine Volcanic-Hosted Iron Mineralization in the Chinese Western Tianshan: Insights from Paleozoic Subduction-Related to Post-Collisional Magmatism. Ore Geology Reviews, 92: 144-160. https://doi.org/10.1016/j.oregeorev.2017.11.015 [75] Warren, C. J., Beaumont, C., Jamieson, R. A., 2008. Modelling Tectonic Styles and Ultra-High Pressure (UHP) Rock Exhumation during the Transition from Oceanic Subduction to Continental Collision. Earth and Planetary Science Letters, 267(1-2): 129-145. https://doi.org/10.1016/j.epsl.2007.11.025 [76] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 [77] Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). [78] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese). [79] Xia, B., Zhang, L. F., Bader, T., 2014. Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the 'Paired Metamorphic Belt' in Chinese SW Tianshan: Constraints on Partial Melting Associated with Orogeny. Lithos, 192-195: 158-179. https://doi.org/10.1016/j.lithos.2014.02.003 [80] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019a. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract). [81] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12 [82] Xiao, W. J., Shu, L. S., Gao, J., et al., 2008. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny. Xinjiang Geology, 26(1): 4-8 (in Chinese with English abstract). [83] Xiao, W. J., Song, D. F., Windley, B. F., et al., 2019b. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science in China (Series D), 49(10): 1512-1545 (in Chinese). [84] Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 [85] Xu, W. L., Sun, C. Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). [86] Xu, W. L., Zhao, Z. F., Dai, L. Q., 2020. Post-Collisional Mafic Magmatism: Record of Lithospheric Mantle Evolution in Continental Orogenic Belt. Science in China (Series D), 50(12): 1906-1918 (in Chinese). [87] Yang, T. N., Wang, Y., Li, J. Y., et al., 2007. Vertical and Horizontal Strain Partitioning of the Central Tianshan (NW China): Evidence from Structures and 40Ar/39Ar Geochronology. Journal of Structural Geology, 29(10): 1605-1621. https://doi.org/10.1016/j.jsg.2007.08.002 [88] Yang, T. N., Li, J. Y., Sun, G. H., et al., 2006. Earlier Devonian Active Continental Arc in Central Tianshan: Evidence of Geochemical Analyses and Zircon SHRIMP Dating on Mylonitized Granitic Rock. Acta Petrologica Sinica, 22(1): 41-48 (in Chinese with English abstract). [89] Yin, J. Y., Chen, W., Xiao, W. J., et al., 2015. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Dark Dykes in Central Tianshan Block. Geological Bulletin of China, 34(8): 1470-1481 (in Chinese with English abstract). [90] Zhang, L., Zhang, L. F., Xia, B., et al., 2018. Metamorphic P-T Path and Zircon U-Pb Dating of HP Mafic Granulites in the Yushugou Granulite-Peridotite Complex, Chinese South Tianshan, NW China. Journal of Asian Earth Sciences, 153: 346-364. https://doi.org/10.1016/j.jseaes.2017.05.034 [91] Zhang, L., Zhu, J. J., Xia, B., et al., 2019. Metamorphism and Zircon Geochronological Studies of Metagabbro Vein in the Yushugou Granulite-Peridotite Complex from South Tianshan, China. Journal of Earth Science, 30(6): 1215-1229. https://doi.org/10.1007/s12583-019-1254-5 [92] Zheng, Y. F., Chen, Y. X., 2016. Continental Versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049 [93] Zhong, L. L., Wang, B., Alexeiev, D. V., et al., 2017. Paleozoic Multi-Stage Accretionary Evolution of the SW Chinese Tianshan: New Constraints from Plutonic Complex in the Nalati Range. Gondwana Research, 45: 254-274. https://doi.org/10.1016/j.gr.2016.12.012 [94] Zhong, L. L., Wang, B., Shu, L. S., et al., 2015. Structural Overprints of Early Paleozoic Arc-Related Intrusive Rocks in the Chinese Central Tianshan: Implications for Paleozoic Accretionary Tectonics in SW Central Asian Orogenic Belts. Journal of Asian Earth Sciences, 113: 194-217. https://doi.org/10.1016/j.jseaes.2014.12.003 [95] Zhu, Y. F., Guo, X., Song, B., et al., 2009. Petrology, Sr-Nd-Hf Isotopic Geochemistry and Zircon Chronology of the Late Palaeozoic Volcanic Rocks in the Southwestern Tianshan Mountains, Xinjiang, NW China. Journal of the Geological Society, 166(6): 1085-1099. https://doi.org/10.1144/0016-76492008-130 [96] Zhu, Y. F., Guo, X., Zhou, J., 2006. Petrology and Geochemistry of a +εNd Gabbro Body in Baluntai Region, Central Tianshan Mountains, Xinjiang. Acta Petrologica Sinica, 22(5): 1178-1192 (in Chinese with English abstract). [97] 高俊, 钱青, 龙灵利, 等, 2009. 西天山的增生造山过程. 地质通报, 28(12): 1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013 [98] 高俊, 朱明田, 王信水, 等, 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24-71. doi: 10.3969/j.issn.0001-5717.2019.01.004 [99] 黄河, 王涛, 秦切, 等, 2015. 中天山巴仑台地区花岗质岩石的Hf同位素研究: 对构造演化及大陆生长的约束. 地质学报, 89(12): 2286-2313. doi: 10.3969/j.issn.0001-5717.2015.12.008 [100] 李继磊, 高俊, 王信水, 2017. 西南天山洋壳高压‒超高压变质岩石的俯冲隧道折返机制. 中国科学(D辑), 47(1): 23-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201701002.htm [101] 李平, 赵同阳, 穆利修, 等, 2018. 新疆中天山古生代侵入岩浆序列及构造演化. 地质论评, 64(1): 91-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201801011.htm [102] 李献华, 李武显, 李正祥, 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52(9): 981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [103] 李永军, 吴乐, 李书领, 等, 2017. 伊宁地块石炭纪火山岩及其对构造演化的约束. 岩石学报, 33(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201701001.htm [104] 林靓, 钱青, 王艳玲, 等, 2015. 西天山昭苏北部大哈拉军山组火山岩中辉长岩体的形成时代、地球化学特征及地质意义. 岩石学报, 31(6): 1749-1760. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201506018.htm [105] 王守敬, 王居里, 2010. 新疆巴伦台钾长花岗岩的地球化学及年代学. 西北大学学报(自然科学版), 40(1): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201001033.htm [106] 王涛, 侯增谦, 2018. 同位素填图与深部物质探测(Ⅰ): 揭示岩石圈组成演变与地壳生长. 地学前缘, 25(6): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806003.htm [107] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [108] 吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学(D辑), 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm [109] 肖文交, 李继亮, 宋东方, 等, 2019a. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979 [110] 肖文交, 舒良树, 高俊, 等, 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200801005.htm [111] 肖文交, 宋东方, Windley, B. F., 等, 2019b. 中亚增生造山过程与成矿作用研究进展. 中国科学(D辑), 49(10): 1512-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201910003.htm [112] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [113] 许文良, 赵子福, 戴立群, 2020. 碰撞后镁铁质岩浆作用: 大陆造山带岩石圈地幔演化的物质记录. 中国科学(D辑), 50(12): 1906-1918. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012013.htm [114] 杨天南, 李锦轶, 孙桂华, 等, 2006. 中天山早泥盆世陆弧: 来自花岗质糜棱岩地球化学及SHRIMP-U/Pb定年的证据. 岩石学报, 22(1): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601004.htm [115] 尹继元, 陈文, 肖文交, 等, 2015. 中天山地块暗色岩墙LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征. 地质通报, 34(8): 1470-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201508007.htm [116] 朱永峰, 郭璇, 周晶, 2006. 新疆中天山巴仑台地区晚石炭世+εNd辉长岩体的岩石学和同位素地球化学研究. 岩石学报, 22(5): 1178-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605010.htm -
dqkxzx-47-3-1038-附表1.xlsx dqkxzx-47-3-1038-附表2.xlsx