State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics
-
摘要:
颗粒流是高速远程滑坡物质演化过程的一个重要阶段,也是从细观角度揭示其超常运动特性的重要手段.颗粒流所采用的主要研究方法以及取得的重要理论成果,可以为高速远程滑坡动力学机理的研究提供重要的技术手段和理论支持.本文聚焦颗粒流研究进展,从颗粒流基本概念、流态特征及流变本构模型、颗粒流粒径分选机制等方面进行了系统梳理;进而,从理论、实验及数值计算模型3个方面对高速远程滑坡研究中颗粒流理论及方法的应用进行了系统性述评;在此基础上,提出了从颗粒流角度研究高速远程滑坡动力学机理涉及的关键科学问题:高速远程滑坡高流动性的起源涉及哪些物理过程?如何量化和模拟其多分散性和破碎过程?如何量化描述颗粒尺寸分布的时空演变及其与流动的耦合?如何从其沉积特征中探究流动的传播机制?针对这些问题,从基于沉积学特征的颗粒流物理力学过程、考虑尺度效应的颗粒流动力学特性研究、基于颗粒流力学过程的滑坡运动机理及其本构模型、新技术新方法的应用4个方面提出下一步应重点开展的研究工作.
Abstract:Granular flow is a main stage in the propagation of rock avalanches, which is of significant importance for revealing the hypermobility of rock avalanches. The main methods and theoretical achievements of granular flow can provide important technical means and theoretical basis for the study of rock avalanche dynamics. Focusing on the research of granular flows, its current research progress is reviewed firstly from the perspectives of its concept, flow regimes and corresponding constitutive models, and size-segregation mechanisms. Then, the granular flow theories and methods involved in rock avalanche research are systematically reviewed from the aspects of theoretical analysis, experiments and numerical modeling. On these bases, the key issues involved in the research of rock avalanche dynamics are proposed from the viewpoint of granular flow, i.e., what physical processes is related to the hypermobility of rock avalanche? How to quantify and model its polydispersity and fragmentation? How to quantitatively describe the temporal and spatial evolution of its grain size distribution and related coupling processes? How to retrieve its propagated mechanisms from the deposit? Facing these problems, future works that should be focused are proposed, including research on the physical processes of granular flow from sedimentology, on granular flow dynamics with scale effect considered, on the dynamic mechanisms and their constitutive models of rock avalanche based on the physical processes, and on the application of new technologies and methods.
-
Key words:
- rock avalanche /
- granular flow /
- dynamical mechanism /
- engineering geology /
- key scientific issue
-
-
[1] Ancey, C., 2002. Dry Granular Flows down an Inclined Channel: Experimental Investigations on the Frictional-Collisional Regime. Physical Review E, 65: 011304. https://doi.org/10.1103/physreve.65.011304 [2] Andò, E., Viggiani, G., Hall, S. A., et al., 2013. Experimental Micro-Mechanics of Granular Media Studied by X-Ray Tomography: Recent Results and Challenges. Géotechnique Letters, 3(3): 142-146. https://doi.org/10.1680/geolett. 13.00036 doi: 10.1680/geolett.13.00036 [3] Bagnold, R. A., 1954. Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 225(1160): 49-63. https://doi.org/10.1098/rspa.1954.0186 [4] Baker, J. L., Johnson, C. G., Gray, J. M. N. T., 2016. Segregation-Induced Finger Formation in Granular Free-Surface Flows. Journal of Fluid Mechanics, 809: 168-212. https://doi.org/10.1017/jfm. 2016.673 doi: 10.1017/jfm.2016.673 [5] Banton, J., Villard, P., Jongmans, D., et al., 2009. Two-Dimensional Discrete Element Models of Debris Avalanches: Parameterization and the Reproducibility of Experimental Results. Journal of Geophysical Research Atmospheres, 114(4): F04013. https://doi.org/10.1029/2008jf001161 [6] Barker, T., Schaeffer, D. G., Bohorquez, P., et al., 2015. Well-Posed and Ill-Posed Behaviour of the μ(I)-Rheology for Granular Flow. Journal of Fluid Mechanics, 779: 794-818. https://doi.org/10.1017/jfm. 2015.412 doi: 10.1017/jfm.2015.412 [7] Bartali, R., Nahmad-Molinari, Y., Rodríguez-Liñán, G. M., et al., 2020. Gravity-Driven Monodisperse Avalanches: Inertial- to Frictional-Dominated Flow. Rock Mechanics and Rock Engineering, 53(8): 3507-3520. https://doi.org/10.1007/s00603-020-02144-w [8] Bocquet, L., Colin, A., Ajdari, A., 2009. Kinetic Theory of Plastic Flow in Soft Glassy Materials. Physical Review Letters, 103(3): 036001. https://doi.org/10.1103/physrevlett.103.036001 [9] Bocquet, L., Losert, W., Schalk, D., et al., 2002. Granular Shear Flow Dynamics and Forces: Experiment and Continuum Theory. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 65: 011307. https://doi.org/10.1103/PhysRevE.65.011307 [10] Bonamy, D., Mills, P., 2003. Diphasic Non-Local Model for Granular Surface Flows. Europhysics Letters, 63(1): 42-48. https://doi.org/10.1209/epl/i2003-00475-5 [11] Bridgwater, J., Foo, W. S., Stephens, D. J., 1985. Particle Mixing and Segregation in Failure Zones-Theory and Experiment. Powder Technology, 41(2): 147-158. https://doi.org/10.1016/0032-5910(85)87033-9 [12] Cagnoli, B., Manga, M., 2005. Vertical Segregation in Granular Mass Flows: A Shear Cell Study. Geophysical Research Letters, 32(10): L10402. https://doi.org/10.1029/2005gl023165 [13] Cagnoli, B., Romano, G. P., 2012. Effects of Flow Volume and Grain Size on Mobility of Dry Granular Flows of Angular Rock Fragments: A Functional Relationship of Scaling Parameters. Journal of Geophysical Research: Solid Earth, 117: B02207. https://doi.org/10.1029/2011jb008926 [14] Campbell, C. S., 1989. Self-Lubrication for Long Runout Landslides. The Journal of Geology, 97(6): 653-665. https://doi.org/10.1086/629350 [15] Campbell, C. S., 2006. Granular Material Flows: An Overview. Powder Technology, 162(3): 208-229. https://doi.org/10.1016/j.powtec.2005.12.008 [16] Campbell, C. S., Cleary, P. W., Hopkins, M., 1995. Large-Scale Landslide Simulations: Global Deformation, Velocities and Basal Friction. Journal of Geophysical Research: Solid Earth, 100(B5): 8267-8283. https://doi.org/10.1029/94jb00937 [17] Chang, K. J., Taboada, A., 2009. Discrete Element Simulation of the Jiufengershan Rock-and-Soil Avalanche Triggered by the 1999 Chi-Chi Earthquake, Taiwan. Journal of Geophysical Research Atmospheres, 114(F3): F03003. https://doi.org/10.1029/2008jf001075 [18] Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84(in Chinese with English abstract). [19] Cheng, Z., Wang, J. F., 2018. Experimental Investigation of Inter-Particle Contact Evolution of Sheared Granular Materials Using X-Ray Micro-Tomography. Soils and Foundations, 58(6): 1492-1510. https://doi.org/10.1016/j.sandf.2018.08.008 [20] Chialvo, S., Sun, J., Sundaresan, S., 2012. Bridging the Rheology of Granular Flows in Three Regimes. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 85: 021305. https://doi.org/10.1103/physreve.85.021305 [21] Crosta, G. B., Chen, H., Lee, C. F., 2004. Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology, 60(1-2): 127-146. https://doi.org/10.1016/j.geomorph.2003.07.015 [22] Cruden, D. M., Hungr, O., 1986. The Debris of the Frank Slide and Theories of Rockslide-Avalanche Mobility. Canadian Journal of Earth Sciences, 23(3): 425-432. https://doi.org/10.1139/e86-044 [23] Cundall, P. A., Strack, O. D. L., 1979. A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29(1): 47-65. https://doi.org/10.1680/geot.1979.29. 1.47 doi: 10.1680/geot.1979.29.1.47 [24] da Cruz, F., Emam, S., Prochnow, M., et al., 2005. Rheophysics of Dense Granular Materials: Discrete Simulation of Plane Shear Flows. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 72: 021309. https://doi.org/10.1103/physreve.72.021309 [25] Dasgupta, P., Manna, P., 2011. Geometrical Mechanism of Inverse Grading in Grain-Flow Deposits: An Experimental Revelation. Earth-Science Reviews, 104(1-3): 186-198. https://doi.org/10.1016/j.earscirev.2010.10.002 [26] Davies, T. R. H., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/BF01239474 [27] Davies, T. R. H., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067 [28] Davies, T. R., McSaveney, M. J., 1999. Runout of Dry Granular Avalanches. Canadian Geotechnical Journal, 36(2): 313-320. https://doi.org/10.1139/t98-108 [29] Delannay, R., Valance, A., Mangeney, A., et al., 2017. Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations. Journal of Physics D: Applied Physics, 50(5): 053001. https://doi.org/10.1088/1361-6463/50/5/053001 [30] Deng, Q. H., Gong, L. X., Zhang, L. P., et al., 2017. Simulating Dynamic Processes and Hypermobility Mechanisms of the Wenjiagou Rock Avalanche Triggered by the 2008 Wenchuan Earthquake Using Discrete Element Modelling. Bulletin of Engineering Geology and the Environment, 76(3): 923-936. https://doi.org/10.1007/s10064-016-0914-2 [31] Denlinger, R. P., Iverson, R. M., 2004. Granular Avalanches across Irregular Three-Dimensional Terrain: 1. Theory and Computation. Journal of Geophysical Research: Earth Surface, 109: F01014. https://doi.org/10.1029/2003jf000085 [32] Dufresne, A., 2012. Granular Flow Experiments on the Interaction with Stationary Runout Path Materials and Comparison to Rock Avalanche Events. Earth Surface Processes and Landforms, 37(14): 1527-1541. https://doi.org/10.1002/esp.3296 [33] Dufresne, A., Dunning, S. A., 2017. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides, 14(5): 1555-1563. https://doi.org/10.1007/s10346-017-0806-y [34] Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches(Sturzstroms)in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334. https://doi.org/10.1139/t79-032 [35] Evans, S. G., Hungr, O., Clague, J. J., 2001. Dynamics of the 1984 Rock Avalanche and Associated Distal Debris Flow on Mount Cayley, British Columbia, Canada; Implications for Landslide Hazard Assessment on Dissected Volcanoes. Engineering Geology, 61(1): 29-51. https://doi.org/10.1016/S0013-7952(00)00118-6 [36] Evans, S. G., Guthrie, R., Roberts, N., et al., 2007. The Disastrous 17 February 2006 Rockslide-Debris Avalanche on Leyte Island, Philippines: A Catastrophic Landslide in Tropical Mountain Terrain. Natural Hazards and Earth System Science, 7(1): 89-101. https://doi.org/10.5194/nhess-7-89-2007 [37] Fan, Y. Y., Wang, E. Z., Wang, S. J., 2011. Motion Simulation of Debris Flow and Research on Energy Process. Journal of Northeastern University(Natural Science), 32(9): 1344-1347(in Chinese with English abstract). [38] Farin, M., Mangeney, A., Roche, O., 2014. Fundamental Changes of Granular Flow Dynamics, Deposition, and Erosion Processes at High Slope Angles: Insights from Laboratory Experiments. Journal of Geophysical Research: Earth Surface, 119(3): 504-532. https://doi.org/10.1002/2013jf002750 [39] Félix, G., Thomas, N., 2004. Evidence of Two Effects in the Size Segregation Process in Dry Granular Media. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 70: 051307. https://doi.org/10.1103/physreve.70.051307 [40] Foda, M. A., 1994. Landslides Riding on Basal Pressure Waves. Continuum Mechanics and Thermodynamics, 6(1): 61-79. https://doi.org/10.1007/BF01138307 [41] Forterre, Y., Pouliquen, O., 2008. Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40(1): 1-24. https://doi.org/10.1146/annurev. fluid. 40.111406. 102142 doi: 10.1146/annurev.fluid.40.111406.102142 [42] Friedmann, S. J., Kwon, G., Losert, W., 2003. Granular Memory and Its Effect on the Triggering and Distribution of Rock Avalanche Events. Journal of Geophysical Research Atmospheres, 108(B8): 2380. https://doi.org/10.1029/2002jb002174 [43] Ge, Y. F., Tang, H. M., Li, W., et al., 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592(in Chinese with English abstract). [44] Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949(in Chinese with English abstract). [45] Gillemot, K. A., Somfai, E., Börzsönyi, T., 2017. Shear-Driven Segregation of Dry Granular Materials with Different Friction Coefficients. Soft Matter, 13(2): 415-420. https://doi.org/10.1039/c6sm01946c [46] Golick, L. A., Daniels, K. E., 2009. Mixing and Segregation Rates in Sheared Granular Materials. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 80: 042301. https://doi.org/10.1103/physreve.80.042301 [47] Goujon, C., Dalloz-Dubrujeaud, B., Thomas, N., 2007. Bidisperse Granular Avalanches on Inclined Planes: A Rich Variety of Behaviors. The European Physical Journal E, Soft Matter, 23(2): 199-215. https://doi.org/10.1140/epje/i2006-10175-0 [48] Goujon, C., Thomas, N., Dalloz-Dubrujeaud, B., 2003. Monodisperse Dry Granular Flows on Inclined Planes: Role of Roughness. The European Physical Journal E, Soft Matter, 11(2): 147-157. https://doi.org/10.1140/epje/i2003-10012-0 [49] Gray, J. M. N. T., 2018. Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50(1): 407-433. https://doi.org/10.1146/annurev-fluid-122316-045201 [50] Gray, J. M. N. T., Ancey, C., 2009. Segregation, Recirculation and Deposition of Coarse Particles near Two-Dimensional Avalanche Fronts. Journal of Fluid Mechanics, 629: 387-423. https://doi.org/10.1017/s0022112009006466 [51] Hao, M. H., Xu, Q., Yang, X. G., et al., 2015. Physical Modeling Tests on Inverse Grading of Particles in High Speed Landslide Debris. Chinese Journal of Rock Mechanics and Engineering, 34(3): 472-479(in Chinese with English abstract). [52] Heim, A., 1932. Landslides and Human Lives. Bitech Publishers, Vancouver, 93-94. [53] Hirshfeld, D., Rapaport, D. C., 1997. Molecular Dynamics Studies of Grain Segregation in Sheared Flow. Physical Review E, 56(2): 2012-2018. https://doi.org/10.1103/physreve.56.2012 [54] Hsü, K. J., 1975. Catastrophic Debris Streams(Sturzstroms)Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 1291-1240. https://doi.org/10.1130/0016-7606(1975)86129:cdssgb>2.0.co;2 doi: 10.1130/0016-7606(1975)86129:cdssgb>2.0.co;2 [55] Hsu, L., Dietrich, W. E., Sklar, L. S., 2014. Mean and Fluctuating Basal Forces Generated by Granular Flows: Laboratory Observations in a Large Vertically Rotating Drum. Journal of Geophysical Research: Earth Surface, 119(6): 1283-1309. https://doi.org/10.1002/2013jf003078 [56] Huang, Y., Hao, L., Xie, P., 2009. Numerical Simulation of Large Deformation of Soil Flow Based on SPH Method. Chinese Journal of Geotechnical Engineering, 31(10): 1520-1524 (in Chinese with English abstract). [57] Hunger, O., Morgenstern, N. R., 1984. Experiments on the Flow Behaviour of Granular Materials at High Velocity in an Open Channel. Géotechnique, 34(3): 405-413. https://doi.org/10.1680/geot.1984.34.3.405 [58] Hungr, O., 1995. A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches. Canadian Geotechnical Journal, 32(4): 610-623. https://doi.org/10.1139/t95-063 [59] Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y [60] Hutchinson, J. N., 1988. General Report: Morphological and Geotechnical Parameters of Landslides in Relation to Geology and Hydrogeology. Proceedings of the 5th International Symposium on Landslides, Lausanne. [61] Hutter, K., Koch, T., 1991. Motion of a Granular Avalanche in an Exponentially Curved Chute: Experiments and Theoretical Predictions. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 334(1633): 93-138. https://doi.org/10.1098/rsta.1991.0004 [62] Hutter, K., Koch, T., Plüss, C., et al., 1995. The Dynamics of Avalanches of Granular Materials from Initiation to Runout. Part Ⅱ. Experiments. Acta Mechanica, 109(1): 127-165. https://doi.org/10.1007/BF01176820 [63] Iverson, R. M., Denlinger, R. P., 1987. The Physics of Debris Flows-A Conceptual Assessment. In: Beschta, R. L., Blinn, T., Grant, G. E., et al., eds., Erosion and Sedimentation in the Pacific Rim. IAHS Press, Oxford. [64] Iverson, R. M., Logan, M., Denlinger, R. P., 2004. Granular Avalanches across Irregular Three-Dimensional Terrain: 2. Experimental Tests. Journal of Geophysical Research: Earth Surface, 109(F1): 537-552. https://doi.org/10.1029/2003jf000084 [65] Iverson, R. M., Vallance, J. W., 2001. New Views of Granular Mass Flows. Geology, 29(2): 115-118. https://doi.org/10.1130/0091-7613(2001)0290115:nvogmf>2.0.co;2 doi: 10.1130/0091-7613(2001)0290115:nvogmf>2.0.co;2 [66] Johnson, C. G., Kokelaar, B. P., Iverson, R. M., et al., 2012. Grain-Size Segregation and Levee Formation in Geophysical Mass Flows. Journal of Geophysical Research: Earth Surface, 117: F01032. https://doi.org/10.1029/2011jf002185 [67] Jop, P., Forterre, Y., Pouliquen, O., 2006. A Constitutive Law for Dense Granular Flows. Nature, 441(7094): 727-730. https://doi.org/10.1038/nature04801 [68] Kamrin, K., Koval, G., 2012. Nonlocal Constitutive Relation for Steady Granular Flow. Physical Review Letters, 108(17): 178301. https://doi.org/10.1103/physrevlett.108.178301 [69] Kennedy, D., Norman, C., 2005. What Don't We Know? Science, 309(5731): 75. https://doi.org/10.1126/science.309.5731.75 [70] Koch, T., Hutter, K., 1994. Unconfined Flow of Granular Avalanches along a Partly Curved Surface. Ⅱ. Experiments and Numerical Computations. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 445(1924): 415-435. https://doi.org/10.1098/rspa.1994.0069 [71] Kokelaar, B. P., Graham, R. L., Gray, J. M. N. T., et al., 2014. Fine-Grained Linings of Leveed Channels Facilitate Runout of Granular Flows. Earth and Planetary Science Letters, 385: 172-180. https://doi.org/10.1016/j.epsl.2013.10.043 [72] Komatsu, T. S., Inagaki, S., Nakagawa, N., et al., 2001. Creep Motion in a Granular Pile Exhibiting Steady Surface Flow. Physical Review Letters, 86(9): 1757-1760. https://doi.org/10.1103/physrevlett.86.1757 [73] Koval, G., Roux, J. N., Corfdir, A., et al., 2009. Annular Shear of Cohesionless Granular Materials: From the Inertial to Quasistatic Regime. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 79: 021306. https://doi.org/10.1103/PhysRevE.79.021306 [74] Lai, Z. Q., Vallejo, L. E., Zhou, W., et al., 2017. Collapse of Granular Columns with Fractal Particle Size Distribution: Implications for Understanding the Role of Small Particles in Granular Flows. Geophysical Research Letters, 44(24): 12181-12189. https://doi.org/10.1002/2017gl075689 [75] Lajeunesse, E., Mangeney, C. A., Vilotte, J. P., 2004. Spreading of a Granular Mass on a Horizontal Plane. Physics of Fluids, 16(7): 2371-2381. https://doi.org/10.1063/1.1736611 [76] Le Roux, J. P., 2003. Can Dispersive Pressure Cause Inverse Grading in Grain Flows?: Discussion. Journal of Sedimentary Research, 73(2): 333-334. https://doi.org/10.1306/043002730333 [77] Legros, F., 2002a. Can Dispersive Pressure Cause Inverse Grading in Grain Flows? Journal of Sedimentary Research, 72(1): 166-170. https://doi.org/10.1306/041301720166 [78] Legros, F., 2002b. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331. https://doi.org/10.1016/S0013-7952(01)00090-4 [79] LeVeque, R. J., George, D. L., Berger, M. J., 2011. Tsunami Modelling with Adaptively Refined Finite Volume Methods. Acta Numerica, 20: 211-289. https://doi.org/10.1017/s0962492911000043 [80] Li, K., Wang, Y. F., Cheng, Q. G., et al., 2021. Effects of Fractal Particle Size Distribution on Segregation of Granular Flows. Chinese Journal of Rock Mechanics and Engineering, 40(2): 330-343(in Chinese with English abstract). [81] Li, K., Wang, Y. F., Lin, Q. W., et al., 2021. Experiments on Granular Flow Behavior and Deposit Characteristics: Implications for Rock Avalanche Kinematics. Landslides, 18(5): 1779-1799. https://doi.org/10.1007/s10346-020-01607-z [82] Li, X. L., Tang, H. M., Xiong, C. R., et al., 2012. Influence of Substrate Ploughing and Erosion Effect on Process of Rock Avalanche. Rock and Soil Mechanics, 33(5): 1527-1534(in Chinese with English abstract). [83] Li, X. P., He, S. M., Luo, Y., et al., 2012. Simulation of the Sliding Process of Donghekou Landslide Triggered by the Wenchuan Earthquake Using a Distinct Element Method. Environmental Earth Sciences, 65(4): 1049-1054. https://doi.org/10.1007/s12665-011-0953-8 [84] Liang, D. F., He, X. Z., 2014. A Comparison of Conventional and Shear-Rate Dependent Mohr-Coulomb Models for Simulating Landslides. Journal of Mountain Science, 11(6): 1478-1490. https://doi.org/10.1007/s11629-014-3041-1 [85] Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019jb019296 [86] Lin, Q. W., Cheng, Q. G., Li, K., et al., 2021. Review on Fragmentation-Related Dynamics of Rock Avalanches. Journal of Engineering Geology, Online(in Chinese with English abstract). https://doi.org/10.13544/j.cnki.jeg.2021-0035 [87] Liu, C. Z., 2017. Research on High Speed and Long-Distance of the Avalanches or Landslide-Debris Streams. Geological Review, 63(6): 1563-1575(in Chinese with English abstract). [88] Liu, C., Fan, X. M., Zhu, C. G., et al., 2019. Discrete Element Modeling and Simulation of 3-Dimensional Large-Scale Landslide-Taking Xinmocun Landslide as an Example. Journal of Engineering Geology, 27(6): 1362-1370(in Chinese with English abstract). [89] Longchamp, C., Abellan, A., Jaboyedoff, M., et al., 2016. 3-D Models and Structural Analysis of Analogue Rock Avalanche Deposits: A Kinematic Analysis of the Propagation Mechanism. Earth Surface Dynamics, 4(3): 743-755. https://doi.org/10.5194/esurf-4-743-2016 [90] Losert, W., Géminard, J. C., Nasuno, S., et al., 2000. Mechanisms for Slow Strengthening in Granular Materials. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(4): 4060-4068. https://doi.org/10.1103/physreve.61.4060 [91] Majmudar, T. S., Behringer, R. P., 2005. Contact Force Measurements and Stress-Induced Anisotropy in Granular Materials. Nature, 435(7045): 1079-1082. https://doi.org/10.1038/nature03805 [92] Manzella, I., Labiouse, V., 2013. Empirical and Analytical Analyses of Laboratory Granular Flows to Investigate Rock Avalanche Propagation. Landslides, 10(1): 23-36. https://doi.org/10.1007/s10346-011-0313-5 [93] McDougall, S. D., Hungr, O., 2004. A Model for the Analysis of Rapid Landslide Motion across Three-Dimensional Terrain. Canadian Geotechnical Journal, 41(6): 1084-1097. https://doi.org/10.1139/t04-052 [94] McDougall, S., 2006. A New Continuum Dynamic Model for the Analysis of Extremely Rapid Landslide Motion across Complex Three-Dimensional Terrain(Dissertation), The University of British Columbia, Vancouver. [95] Medina, V., Hürlimann, M., Bateman, A., 2008. Application of FLATModel, a 2D Finite Volume Code, to Debris Flows in the Northeastern Part of the Iberian Peninsula. Landslides, 5(1): 127-142. https://doi.org/10.1007/s10346-007-0102-3 [96] Melosh, H. J., 1978. Acoustic Fluidization. American Scientist, 71(B13): 158-168. doi: 10.1016/0167-8809(83)90034-8 [97] Middleton, G. V., 1970. Experimental Studies Related to the Problems of Flysch Sedimentation. Geological Association of Canada, 7: 253-269. [98] Midi, G. D. R., 2004. On Dense Granular Flows. The European Physical Journal E, 14(4): 341-365. https://doi.org/10.1140/epje/i2003-10153-0 [99] Möbius, M. E., Lauderdale, B. E., Nagel, S. R., et al., 2001. Size Separation of Granular Particles. Nature, 414(6861): 270. https://doi.org/10.1038/35104697 [100] Mueth, D. M., Debregeas, G. F., Karczmar, G. S., et al., 2000. Signatures of Granular Microstructure in Dense Shear Flows. Nature, 406(6794): 385-389. https://doi.org/10.1038/35019032 [101] Orpe, A. V., Khakhar, D. V., 2007. Rheology of Surface Granular Flows. Journal of Fluid Mechanics, 571: 1-32. https://doi.org/10.1017/s002211200600320x [102] Phillips, J. C., Hogg, A. J., Kerswell, R. R., et al., 2006. Enhanced Mobility of Granular Mixtures of Fine and Coarse Particles. Earth and Planetary Science Letters, 246(3-4): 466-480. https://doi.org/10.1016/j.epsl.2006.04. 007 doi: 10.1016/j.epsl.2006.04.007 [103] Pouliquen, O., 1999. Scaling Laws in Granular Flows down Rough Inclined Planes. Physics of Fluids, 11(3): 542-548. https://doi.org/10.1063/1.869928 [104] Pouliquen, O., Forterre, Y., 2009. A Non-Local Rheology for Dense Granular Flows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 367(1909): 5091-5107. https://doi.org/10.1098/rsta.2009.0171 [105] Preuth, T., Bartelt, P., Korup, O., et al., 2010. A Random Kinetic Energy Model for Rock Avalanches: Eight Case Studies. Journal of Geophysical Research Atmospheres, 115(F3): F03036. https://doi.org/10.1029/2009jf001640 [106] Savage, S. B., 1989. Flow of Granular Materials. In: Germain, P., Piau, M., Caillerie, D., eds., Theoretical and Applied Mechanics. Elsevier, New York. [107] Savage, S. B., Hutter, K., 1989. The Motion of a Finite Mass of Granular Material down a Rough Incline. Journal of Fluid Mechanics, 199: 177-215. https://doi.org/10.1017/s0022112089000340 [108] Savage, S. B., Lun, C. K. K., 1988. Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids. Journal of Fluid Mechanics, 189: 311-335. https://doi.org/10.1017/s002211208800103x [109] Savage, S. B., Sayed, M., 1984. Stresses Developed by Dry Cohesionless Granular Materials Sheared in an Annular Shear Cell. Journal of Fluid Mechanics, 142: 391-430. https://doi.org/10.1017/s0022112084001166 [110] Scheidegger, A. E., 1973. On the Prediction of the Reach and Velocity of Catastrophic Landslides. Rock Mechanics, 5(4): 231-236. https://doi.org/10.1007/BF01301796 [111] Schilirò, L., Esposito, C., de Blasio, F. V., et al., 2019. Sediment Texture in Rock Avalanche Deposits: Insights from Field and Experimental Observations. Landslides, 16(9): 1629-1643. https://doi.org/10.1007/s10346-019-01210-x [112] Shea, T., Benjamin, V. W. D. V., 2008. Structural Analysis and Analogue Modeling of the Kinematics and Dynamics of Rockslide Avalanches. Geosphere, 4(4): 657-686. https://doi.org/10.1130/ges00131.1 [113] Shreve, R. L., 1968. Leakage and Fluidization in Air-Layer Lubricated Avalanches. Geological Society of America Bulletin, 79(5): 653-658. https://doi.org/10.1130/0016-7606(1968)79[653:lafial]2.0.co;2 [114] Silbert, L. E., Ertaş, D., Grest, G. S., et al., 2001. Granular Flow down an Inclined Plane: Bagnold Scaling and Rheology. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 64(5): 051302. https://doi.org/10.1103/physreve.64.051302 [115] Strom, A. L., Abdrakhmatov, K., 2018. Rockslides and Rock Avalanches of Central Asia: Distribution, Morphology, and Internal Structure. Elsevier, Amsterdam, 190-214. [116] Sun, Q. C., Wang, G. Q., 2008. Review on Granular Flow Dynamics and Its Discrete Element Method. Advances in Mechanics, 38(1): 87-100(in Chinese with English abstract). [117] Taboada, A., Estrada, N., 2009. Rock-and-Soil Avalanches: Theory and Simulation. Journal of Geophysical Research Atmospheres, 114: F03004. https://doi.org/10.1029/2008jf001072 [118] Takagi, D., McElwaine, J. N., Huppert, H. E., 2011. Shallow Granular Flows. Physical Review E, 83(3): 031306. https://doi.org/10.1103/physreve.83.031306 [119] Takahashi, T., 1980. Debris Flow on Prismatic Open Channel. Journal of the Hydraulics Division, 106(3): 381-396. https://doi.org/10.1061/jyceaj.0005381 [120] Tang, C. L., Hu, J. C., Lin, M. L., et al., 2009. The Tsaoling Landslide Triggered by the Chi-Chi Earthquake, Taiwan: Insights from a Discrete Element Simulation. Engineering Geology, 106(1-2): 1-19. https://doi.org/10.1016/j.enggeo. 2009.02. 011 doi: 10.1016/j.enggeo.2009.02.011 [121] Tang, C. L., Yuan, R. M., Hu, J. C., et al., 2012. 3-D Distinct Element Modeling of Sliding Process and Depositing Behavior in Jiufengershan Landslide induced by 1999 Taiwan Chi-Chi Earthquake. Journal of Engineering Geology, 20(6): 940-953(in Chinese with English abstract). [122] Taylor, S., Brodsky, E. E., 2017. Granular Temperature Measured Experimentally in a Shear Flow by Acoustic Energy. Physical Review E, 96: 032913. https://doi.org/10.1103/physreve.96.032913 [123] Thomas, N., 2000. Reverse and Intermediate Segregation of Large Beads in Dry Granular Media. Physical Review E, 62(1): 961-974. https://doi.org/10.1103/physreve.62.961 [124] Valderrama, P., Roche, O., Samaniego, P., et al., 2018. Granular Fingering as a Mechanism for Ridge Formation in Debris Avalanche Deposits: Laboratory Experiments and Implications for Tutupaca Volcano, Peru. Journal of Volcanology and Geothermal Research, 349: 409-418. https://doi.org/10.1016/j.jvolgeores. 2017.12. 004 doi: 10.1016/j.jvolgeores.2017.12.004 [125] Varnes, D. J., 1978. Slope Movement Types and Process. In: Schuster, R. L., Krizek, R. J., eds., Landslides, Analysis and Control, Special Report. National Academy of Sciences, Washington, D. C. . [126] Veje, C. T., Howell, D. W., Behringer, R. P., 1999. Kinematics of a Two-Dimensional Granular Couette Experiment at the Transition to Shearing. Physical Review E. , 59(1): 739. https://doi.org/10.1103/physreve.59.739 [127] Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018a. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche(Tibetan Plateau, China)Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05. 025 doi: 10.1016/j.geomorph.2018.05.025 [128] Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2018b. Sedimentary Deformation Structures in the Nyixoi Chongco Rock Avalanche: Implications on Rock Avalanche Transport Mechanisms. Landslides, 16(3): 523-532. https://doi.org/10.1007/s10346-018-1117-7 [129] Wang, Y. F., Cheng, Q. G., Zhu, Q., 2012. Inverse Grading Analysis of Deposit from Rock Avalanches Triggered by Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1089-1106(in Chinese with English abstract). [130] Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284 [131] Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181(in Chinese with English abstract). [132] Wang, Y. F., Xu, Q., Cheng, Q. G., et al., 2016. Experimental Study on the Propagation and Deposit Features of Rock Avalanche along 3D Complex Topography. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1776-1791(in Chinese with English abstract). [133] Wang, Y. F., Xu, Q., Cheng, Q. G., et al., 2016. Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche across 3D Topography: Experimental Study. Rock Mechanics and Rock Engineering, 49(11): 4349-4370. https://doi.org/10.1007/s00603-016-1052-7 [134] Yuan, R. M., Tang, C. L., Hu, J. C., et al., 2014. Mechanism of the Donghekou Landslide Triggered by the 2008 Wenchuan Earthquake Revealed by Discrete Element Modeling. Natural Hazards and Earth System Sciences, 14(5): 1195-1205. https://doi.org/10.5194/nhess-14-1195-2014 [135] Zadeh, A. A., Bares, J. T., Brzinski, T. A., et al., 2019. Enlightening Force Chains: A Review of Photoelasticimetry in Granular Matter. Granular Matter, 21(4): 1-12. https://doi.org/10.1007/s10035-019-0942-2 [136] Zhang, M., Yin, Y. P., Wu, S. R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6): 805-817(in Chinese with English abstract). [137] Zhao, Y. Q., Barés, J., Zheng, H., et al., 2019. Shear-Jammed, Fragile, and Steady States in Homogeneously Strained Granular Materials. Physical Review Letters, 123(15): 158001. https://doi.org/10.1103/physrevlett.123.158001 [138] Zheng, H., Dijksman, J. A., Behringer, R. P., 2014. Shear Jamming in Granular Experiments without Basal Friction. Europhysics Letters, 107(3): 34005. https://doi.org/10.1209/0295-5075/107/34005 [139] Zheng, H., Niu, W. Q., Mao, W. W., et al., 2021. Mechanics of Granular Material and the Application in Engineering Geology. Journal of Engineering Geology, 29(1): 12-24(in Chinese with English abstract). [140] Zheng, H., Wang, D., Behringer, R. P., 2019. Experimental Study on Granular Biaxial Test Based on Photoelastic Technique. Engineering Geology, 260: 105208. https://doi.org/10.1016/j.enggeo. 2019.105208 doi: 10.1016/j.enggeo.2019.105208 [141] Zheng, L., Mo, S. P., Li, Y. X., et al., 2019. Analysis of Dynamic Characteristics of Two-Component Granular Mixture Segregation in Thin Shear Cell. Acta Physica Sinica, 68(16): 164703(in Chinese with English abstract). doi: 10.7498/aps.68.20190322 [142] Zhou, G. D., Sun, Q. C., Cui, P., 2013. Study on the Mechanisms of Solids Segregation in Granular Debris Flows. Journal of Sichuan University(Engineering Science Edition), 45(1): 28-36(in Chinese with English abstract). [143] Zhou, G. G. D., Ng, C. W. W., 2010. Numerical Investigation of Reverse Segregation in Debris Flows by DEM. Granular Matter, 12(5): 507-516. https://doi.org/10.1007/s10035-010-0209-4 [144] Zhou, W., Lai, Z. Q., Ma, G., et al., 2016. Effect of Base Roughness on Size Segregation in Dry Granular Flows. Granular Matter, 18(4): 1-14. https://doi.org/10.1007/s10035-016-0680-7 [145] 程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84. doi: 10.3969/j.issn.1008-2786.2007.01.007 [146] 樊赟赟, 王恩志, 王思敬, 2011. 碎屑流运动模拟及能量过程研究. 东北大学学报(自然科学版), 32(9): 1344-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201109031.htm [147] 葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117 [148] 葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589 [149] 郝明辉, 许强, 杨兴国, 等, 2015. 高速滑坡‒碎屑流颗粒反序试验及其成因机制探讨. 岩石力学与工程学报, 34(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm [150] 黄雨, 郝亮, 谢攀, 等, 2009. 土体流动大变形的SPH数值模拟. 岩土工程学报, 31(10): 1520-1524. doi: 10.3321/j.issn:1000-4548.2009.10.007 [151] 李坤, 王玉峰, 程谦恭, 等, 2021. 分形粒径分布对颗粒流粒径分选的影响规律. 岩石力学与工程学报, 40(2): 330-343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102009.htm [152] 李祥龙, 唐辉明, 熊承仁, 等, 2012. 基底刮铲效应对岩石碎屑流停积过程的影响. 岩土力学, 33(5): 1527-1534. doi: 10.3969/j.issn.1000-7598.2012.05.039 [153] 林棋文, 程谦恭, 李坤, 等, 2021. 高速远程滑坡碎屑化运动机理研究综述, 网络首发, 工程地质学报. https: //doi.org/10.13544/j.cnki.jeg.2021-0035 [154] 刘传正, 2017. 论崩塌滑坡‒碎屑流高速远程问题. 地质论评, 63(6): 1563-1575. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706012.htm [155] 刘春, 范宣梅, 朱晨光, 等, 2019. 三维大规模滑坡离散元建模与模拟研究——以茂县新磨村滑坡为例. 工程地质学报, 27(6): 1362-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906018.htm [156] 孙其诚, 王光谦, 2008. 颗粒流动力学及其离散模型评述. 力学进展, 38(1): 87-100. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200801007.htm [157] 唐昭荣, 袁仁茂, 胡植庆, 等, 2012. 台湾集集地震九份二山滑坡发生机制的三维数值模拟分析. 工程地质学报, 20(6): 940-954. doi: 10.3969/j.issn.1004-9665.2012.06.006 [158] 王玉峰, 程谦恭, 朱圻, 2012. 汶川地震触发高速远程滑坡‒碎屑流堆积反粒序特征及机制分析. 岩石力学与工程学报, 31(6): 1089-1106. doi: 10.3969/j.issn.1000-6915.2012.06.002 [159] 王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202101012.htm [160] 王玉峰, 许强, 程谦恭, 等, 2016. 复杂三维地形条件下滑坡‒碎屑流运动与堆积特征物理模拟实验研究. 岩石力学与工程学报, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm [161] 张明, 殷跃平, 吴树仁, 等, 2010. 高速远程滑坡‒碎屑流运动机理研究发展现状与展望. 工程地质学报, 18(6): 805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001 [162] 郑虎, 牛文清, 毛无卫, 等, 2021. 颗粒物质力学及其在工程地质领域中的应用初探. 工程地质学报, 29(1): 12-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101002.htm [163] 郑麟, 莫松平, 李玉秀, 等, 2019. 薄层剪切二元颗粒分离过程动力学特性分析. 物理学报, 68(16): 164703. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201916027.htm [164] 周公旦, 孙其诚, 崔鹏, 2013. 泥石流颗粒物质分选机理和效应. 四川大学学报(工程科学版), 45(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201301006.htm