• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原达则错沉积物有机碳同位素特征及古气候环境意义

    李秀美 范宝伟 侯居峙 王明达 贺跃

    李秀美, 范宝伟, 侯居峙, 王明达, 贺跃, 2022. 青藏高原达则错沉积物有机碳同位素特征及古气候环境意义. 地球科学, 47(6): 2275-2286. doi: 10.3799/dqkx.2021.167
    引用本文: 李秀美, 范宝伟, 侯居峙, 王明达, 贺跃, 2022. 青藏高原达则错沉积物有机碳同位素特征及古气候环境意义. 地球科学, 47(6): 2275-2286. doi: 10.3799/dqkx.2021.167
    Li Xiumei, Fan Baowei, Hou Juzhi, Wang Mingda, He Yue, 2022. Characteristics of Compositions of Organic Matter δ13C in Lake Sediments from Dagze Co in Tibetan Plateau and Its Paleoclimatic and Paleoenvironmental Significance. Earth Science, 47(6): 2275-2286. doi: 10.3799/dqkx.2021.167
    Citation: Li Xiumei, Fan Baowei, Hou Juzhi, Wang Mingda, He Yue, 2022. Characteristics of Compositions of Organic Matter δ13C in Lake Sediments from Dagze Co in Tibetan Plateau and Its Paleoclimatic and Paleoenvironmental Significance. Earth Science, 47(6): 2275-2286. doi: 10.3799/dqkx.2021.167

    青藏高原达则错沉积物有机碳同位素特征及古气候环境意义

    doi: 10.3799/dqkx.2021.167
    基金项目: 

    国家自然科学基金项目 41901105

    详细信息
      作者简介:

      李秀美(1988-),女,副教授,博士,主要从事湖泊生物地球化学循环与气候环境变化研究.ORCID:0000-0002-7541-9776. E-mail:lixm@xynu.edu.cn

    • 中图分类号: P532

    Characteristics of Compositions of Organic Matter δ13C in Lake Sediments from Dagze Co in Tibetan Plateau and Its Paleoclimatic and Paleoenvironmental Significance

    • 摘要: 通过对达则错沉积岩心有机质碳同位素(δ13C)和碳氮比(C/N)的分析,结合岩心浮游生物记录、营养盐记录以及温度和降水记录,探讨了过去一千年达则错沉积物有机质δ13C的气候环境指示意义.结果表明,达则错沉积物有机质主要以湖泊自生的水生生物碎屑混合物为主;过去一千年,达则错在受人类活动显著影响之前,气候变化是影响沉积物有机质δ13C形成的主要因素,在1050~1200 AD和1450~1650 AD气候寒冷干燥时段有机质δ13C值显著偏重,反之则相反;过去150年,湖泊沉积物有机质δ13C显著偏重,主要受人类活动导致湖泊营养盐浓度变化影响.本研究还表明对于营养结构较为单一,且西藏拟溞为绝对优势动物物种的半对流型湖泊,应用C/N值判断湖泊有机质来源是不可靠的,需要综合湖泊地理背景谨慎判断.

       

    • 图  1  达则错地理位置(a)、湖泊水系(b)和水深示意图(c)

      Fig.  1.  Location map (a), drainage basin map (b), and bathymetry map (c) of Dagze Co

      图  2  达则错沉积物岩心年龄控制

      a.湖心顶部210Pb与137Cs测年结果;b.湖心钻孔的14C年龄校正

      Fig.  2.  Chronological controls for the Dagze sediment core

      图  3  达则错沉积物C/N值和有机质δ13C值

      Fig.  3.  C/N ratios and δ13C of Dagze Co sediments

      图  4  达则错湖泊沉积物有机质来源鉴别图

      a.达则错沉积物有机质的δ13C值与C/N比值;b. Meyers(1994)中湖泊沉积物主要来源植物的δ13C值与C/N比值

      Fig.  4.  The identification charts of organic matter source in the sediments of Dagze Co

      图  5  过去1 000年达则错西藏拟溞(a)、总氮含量(b)、δ13C值(c)、C/N比值(d)、TOC含量(e)、温度记录(f)以及叶蜡单体氢同位素记录(g)

      Fig.  5.  The number of Daphnia tibetana (a), TN content (b), δ13C (c), C/N ratio (d), TOC content (e), temperature record (f) and δDwax record (g) at Dagze Co in the past 1 000 years

      图  6  达则错沉积物有机质δ13C vs. 西藏拟溞相关性

      Fig.  6.  The correlation between δ13C and the Daphnia tibetana abundance in lake sediments of Dagze Co

    • [1] An, X. Y., Zhang, Y. J., Zhu, T. X., et al., 2020. Stable Carbon Isotope Perturbations Recorded in Triassic Tulong Group-Qulonggongba Formation of South Tibet. Earth Science, 45(8): 2964-2977(in Chinese with English abstract).
      [2] Chen, B., Zhang, X., Tao, J., et al., 2014. The Impact of Climate Change and Anthropogenic Activities on Alpine Grassland over the Qinghai-Tibet Plateau. Agricultural Forest Meteorology, 189-190: 11-18. https://doi.org/10.1016/j.agrformet.2014.01.002
      [3] Chen, F., Zhang, J., Liu, J., et al., 2020. Climate Change, Vegetation History, and Landscape Responses on the Tibetan Plateau during the Holocene: A Comprehensive Review. Quaternary Science Reviews, 243. https://doi.org/10.1016/j.quascirev.2020.106444
      [4] Fan, J. W., Xiao, J. L., Wen, R., L., et al., 2005. Holocene Environment Variations Recorded by Stable Carbon and Nitrogrn Isotopes of Sedimentary Organic Matter from Dalilake in Inner Mongolia. Quaternary Sciences, 35(4): 856-870(in Chinese with English abstract).
      [5] Grey, J., Jones, R. I., Sleep, D., 2000. Stable Isotope Analysis of the Origins of Zooplankton Carbon in Lakes of Differing Trophic State. Oecologia, 123(2): 232-240. https://doi.org/10.1007/s004420051010
      [6] He, Y. X., Zhao, C., Wang, Z., et al., 2013. Late Holocene Coupled Moisture and Temperature Changes on the Northern Tibetan Plateau. Quaternary Science Reviews, 80: 47-57. https:// doi.org/10.1016/j.quascirev.2013.08.017
      [7] Li, X. M., Hou, J. Z., Wang, M. D., et al., 2019. Influence of Monsoon and Westerlies on Holocene Climate Change in the Tibetan Plateau: Isotopic Evidence. Quaternary Sciences, 39(3): 678-686(in Chinese with English abstract).
      [8] Li, X. M., Hou, J. Z., Wang, M. D., et al., 2021. Ecolosystem Changes and Possible Mechanisms of Dagze Co in the Tibetan Plateau during the Past 1 000 Years. Journal of Lake Sciences, 33(4): 1276-1288(in Chinese with English abstract). doi: 10.18307/2021.0427
      [9] Li, X. M., Liang, J., Hou, J. Z., et al., 2015. Centennial-Scale Climate Variability during the Past 2 000 Years on the Central Tibetan Plateau. Holocene, 25(6): 892-899. https:// doi.org/10.1177/0959683615572852
      [10] Li, X. M., Wang, M. D., Hou, J. Z., 2019. Centennial-Scale Climate Variability during the Past 2000 Years Derived from Lacustrine Sediment on the Western Tibetan Plateau. Quaternary International, 510: 65-75. https://doi.org/10.1016/j.quaint.2018.12.018.
      [11] Liu, S. S., Jia, Q. X., Liu, X. F., et al., 2013. The Depositional Environment and Organic Sediment Component of Dagze Co, a Saline Lake in Tibet, China. Acta Ecologica Sinica, 33(18): 5785-5793(in Chinese with English abstract). doi: 10.5846/stxb201306071419
      [12] Liu, W. C., Wang, R., Li, C. L., 1998. C/N Ratios of Particulate Organic Matter in the East China Sea. Oceanologia et Limnologia Sinica, 29(5): 467-470(in Chinese with English abstract).
      [13] Liu, Z. H., Henderson, A. C. G., Huang, Y. S., 2006. Alkenone-Based Reconstruction of Late-Holocene Surface Temperature and Salinity Changes in Lake Qinghai, China. Geophysical Research Letters, 33: L09707. https:// doi.org/10.1029/2006GL026151.
      [14] Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114(3-4): 289-302. https://doi.org/10.1016/0009-2541(94)90059-0
      [15] Meyers, P. A., 1997. Organic Geochemical Proxies of Paleoceanographic, Paleolimnologic, and Paleoclimatic Processes. Organic Geochemistry, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
      [16] Meyers, P. A., 2003. Applications of Organic Geochemistry to Paleolimnological Reconstructions: A Summary of Examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289. https://doi.org/10.1016/s0146-6380(02)00168-7
      [17] Mooij, W. M., Hülsmann, S., de Senerpont Domis, L. N., et al., 2005. The Impact of Climate Change on Lakes in the Netherlands: A Review. Aquatic Ecology, 39(4): 381-400. https://doi.org/10.1007/s10452-005-9008-0
      [18] Ngochera, M. J., Bootsma, H. A., 2011. Temporal Trends of Phytoplankton and Zooplankton Stable Isotope Composition in Tropical Lake Malawi. Journal of Great Lakes Research, 37: 45-53. https://doi.org/10.1016/j.jglr.2010.09.004
      [19] Qian, J. L., Zhang, L. D., Yue, M. L., 1990. Determination of Total Nitrogen and Phosphorus in Soil by Persulfate Digestion. Soils, 22(5): 258-262(in Chinese with English abstract).
      [20] Qiao, C., Luo, J. C., Sheng, Y. W., et al., 2010. Analysis on Lake Changes since Ancient and Modern Ages Using Remote Sensing in Dagze Co, Tibetan Plateau. Journal of Lake Sciences, 22(1): 98-102(in Chinese with English abstract). doi: 10.18307/2010.0114
      [21] Shen, J., Liu, X. Q., Matsumoto, R., et al., 2004. A High-Resolution Climatic Change since the Late Glacial Age Inferred from Multi-Proxy of Sediments in Qinghai Lake. Science in China (Series D), 34(6): 582-589(in Chinese).
      [22] Smith, B. N., Epstein, S., Physiology, P., 1971. Two Categories of 13C/12C Ratios for Higher Plants. Plant Physiology, 47(3): 380-384. https:// doi.org/10.1104/pp.47.3.380
      [23] Stuiver, M., 1975. Climate versus Changes in 13C Content of the Organic Component of Lake Sediments during the Late Quarternary. Quaternary Research, 5(2): 251-261. https:// doi.org/10.1016/0033-5894(75)90027-7
      [24] Sun, W. W., Shen, J., Zhang, E. L., et al., 2014. Characteristics of Organic Stable Carbon Isotope and C/N Ratio of Sediments in Lake Onuma, Japan and Their Environmental Implications for the Last 400 Years. Quaternary Sciences, 34(6): 1306-1313(in Chinese with English abstract).
      [25] Tian, Q. C., Yang, T. B., Shi, P. H., 2016. Variation Characteristics and Influencing Factors of Organic Carbon Isotope from Palaeolake Sediments in Hoh Xil Area. Acta Sedimentologica Sinica, 34(2): 260-267(in Chinese with English abstract).
      [26] Thompson, L. G., Mosley-Thompson, E., Davis, D. E., et al., 2006. Ice Core Evidence for Asynchronous Glaciation on the Tibetan Plateau. Quaternary International, 154-155: 3-10. https:// doi.org/10.1016/j.quaint.2006.02.001
      [27] Wang, J. B., Zhu, L. P., 2007. The Response of Organic Mater δ13C to Cold/Warm Fluctuation of Chen Co Lake Sediment, Southern Tibet. Marine Geology & Quaternary Geology, 27(2): 113-120(in Chinese with English abstract).
      [28] Wang, M. D., Hou, J. Z., Lei, Y. B., 2014. Classification of Tibetan Lakes Based on Variations in Seasonal Lake Water Temperature. Chinese Science Bulletin, 59(31): 3095-3103(in Chinese). doi: 10.1360/csb2014-59-31-3095
      [29] Wang, S. M., Li, J. R., 1991. Lacustrine Sediments—An Indicator of Historical Climatic Variation—The Case of Qinghai Lake and Daihai Lake. Chinese Science Bulletin, 36(1): 54-56(in Chinese). doi: 10.1360/csb1991-36-1-54
      [30] Wang, S. M., Zhang, Z. K., 1999. Advance and Prospects of Lake Sediments and Environmental Changes Study in China. Chinese Science Bulletin, 44(6): 579-587(in Chinese). doi: 10.1360/csb1999-44-6-579
      [31] Wang, Y., Zhu, L. P., Wang, J. B., et al., 2012. The Spatial Distribution and Sedimentary Processes of Organic Matter in Surface Sediments of Nam Co, Central Tibetan Plateau. Chinese Science Bulletin, 57(36): 4753-4764. https://doi.org/10.1007/s11434-012-5500-9
      [32] Wu, J. L., Andereas, L., Li, S. J., et al., 2000. Modern Climatic Signals from Records of Contents of TOC and δ13C in the Xingcuo Lake Sediments in Eastern Tibetan Plateau, China. Marine Geology & Quaternary Geology, 20(4): 37-42(in Chinese with English abstract).
      [33] Wu, J. L., Wang, S. M., 1996. Climate versus Changes in δ13C Values of the Organic Matter in Lake Sediments. Marine Geology & Quaternary Geology, 16(2): 103-109(in Chinese with English abstract).
      [34] Wu, J. L., Wang, S. M., Shen, J., 1996. Informations of Climate and Environment Deduced from the Organic Matter δ13C of Lacustrine Sediments. Journal of Lake Science, 8(2): 113-118(in Chinese with English abstract). doi: 10.18307/1996.0204
      [35] Wu, Y. H., Andreas, L., Bernd, W., 2007. Lacustrine Sedimentary Geochemical Records of Holocene Climate Changes in the Central Tibetan Plateau. Science in China (Series D), 37(9): 1185-1191(in Chinese).
      [36] Yu, J. Q., Wang, X. Y., Li, J., et al., 2001. Paleoenvironmental Interpretations on Organic Carbon Isotopic Records from Lake Sediments: A Critique. Journal of Lake Science, 13(1): 72-78(in Chinese with English abstract). doi: 10.18307/20010111
      [37] Zhang, E. L., Shen, J., Xia, W. L., et al., 2002. Environmental Records from Organic Carbon and Its Isotope of Qinghai Lake Sediment. Marine Geology & Quaternary Geology, 22(2): 105-108(in Chinese with English abstract).
      [38] Zhang, H. J., Yang, G. F., Chen, Z. H., et al., 2018. Distribution of N-Alkane Indicative of Paleoclimatic Change in Paleolake of Yanqing, Beijing. Earth Science, 43(11): 4120-4127(in Chinese with English abstract).
      [39] Zhang, P., Cheng, H., Edwards, R. L., et al., 2008. A Test of Climate, Sun, and Culture Relationships from an 1810 Year Chinese Cave Record. Science, 322(5903): 940-942. https://doi.org/10.1126/science.1163965
      [40] Zheng, D., Chen, S. P., 2001. Progress and Disciplinary Frontiers of Geographical Research. Advance in Earth Sciences, 16(5): 599-606(in Chinese with English abstract).
      [41] Zhou, H., Wu, L., Ma, C. M., et al., 2020. Holocene Environmental Evolution Recorded by Multi-Proxies from Lacustrine Sediments of the Hangbu River Valley, Lake Chaohu Basin, East China. Journal of Lake Sciences, 32(6): 1869-1881(in Chinese with English abstract). doi: 10.18307/2020.0626
      [42] 安显银, 张予杰, 朱同兴, 等, 2020. 西藏聂拉木三叠系土隆群-曲龙共巴组稳定碳同位素组成及对比. 地球科学, 45(8): 2964-2977. doi: 10.3799/dqkx.2020.085
      [43] 范佳伟, 肖举乐, 温锐林, 等, 2005. 内蒙古达里湖全新世有机碳氮同位素记录与环境演变. 第四纪研究, 35(4): 856-870. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201601001033.htm
      [44] 李秀美, 侯居峙, 王明达, 等, 2019. 季风与西风对青藏高原全新世气候变化的影响: 同位素证据. 第四纪研究, 39(3): 678-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202101024.htm
      [45] 李秀美, 侯居峙, 王明达, 等, 2021. 青藏高原达则错近1 000年来生态系统变化及可能机制. 湖泊科学, 33(4): 1276-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202104027.htm
      [46] 刘沙沙, 贾沁贤, 刘喜方, 等, 2013. 西藏达则错盐湖沉积背景与有机沉积结构. 生态学报, 33(18): 5785-5793. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201318042.htm
      [47] 刘文臣, 王荣, 李超伦, 1998. 东海颗粒有机物中的碳氮比. 海洋与湖沼, 29(5): 467-470. doi: 10.3321/j.issn:0029-814X.1998.05.003
      [48] 钱君龙, 张连弟, 乐美麟, 1990. 过硫酸盐消化法测定土壤全氮全磷. 土壤, 22(5): 258-262. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA199005010.htm
      [49] 乔程, 骆剑承, 盛永伟, 等, 2010. 青藏高原湖泊古今变化的遥感分析: 以达则错为例. 湖泊科学, 22(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201001016.htm
      [50] 沈吉, 刘兴起, Matsumoto, R., 等, 2004. 晚冰期以来青海湖沉积物多指标高分辨率的古气候演化. 中国科学(D辑), 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm
      [51] 孙伟伟, 沈吉, 张恩楼, 等, 2014. 日本大沼湖沉积物碳氮比值、有机碳同位素特征及其近400年的古气候环境意义. 第四纪研究, 34(6): 1306-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201406020.htm
      [52] 田庆春, 杨太保, 石培宏, 2016. 可可西里古湖泊沉积物有机碳δ13C变化特征及其影响因素. 沉积学报, 34(2): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201602005.htm
      [53] 王君波, 朱立平, 2007. 藏南沉错沉积物有机质δ13C对湖区环境冷暖变化的响应. 海洋地质与第四纪地质, 27(2): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200702020.htm
      [54] 王明达, 侯居峙, 类延斌, 2014. 青藏高原不同类型湖泊温度季节性变化及其分类. 科学通报, 59(31): 3095-3103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201431011.htm
      [55] 王苏民, 李建仁, 1991. 湖泊沉积: 研究历史气候的有效手段: 以青海湖、岱海为例. 科学通报, 36(1): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199101016.htm
      [56] 王苏民, 张振克, 1999. 中国湖泊沉积与环境演变研究的新进展. 科学通报, 44(6): 579-587. doi: 10.3321/j.issn:0023-074X.1999.06.004
      [57] 吴敬禄, Luecke, A., 李世杰, 等, 2000. 兴措湖沉积物有机碳及其同位素记录揭示的近代气候与环境. 海洋地质与第四纪地质, 20(4): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200004008.htm
      [58] 吴敬禄, 王苏民, 1996. 湖泊沉积物中有机质碳同位素特征及其古气候. 海洋地质与第四纪地质, 16(2): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ602.013.htm
      [59] 吴敬禄, 王苏民, 沈吉, 1996. 湖泊沉积物有机质δ13C所揭示的环境气候信息. 湖泊科学, 8(2): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX199602003.htm
      [60] 吴艳宏, Lücke, A., Wünnemann, B., 等, 2007. 青藏高原中部全新世气候变化的湖泊沉积地球化学记录. 中国科学(D辑), 37(9): 1185-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709006.htm
      [61] 余俊清, 王小燕, 李军, 等, 2001. 湖泊沉积有机碳同位素与环境变化的研究进展. 湖泊科学, 13(1): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200101010.htm
      [62] 张恩楼, 沈吉, 夏威岚, 等, 2002. 青海湖沉积物有机碳及其同位素的气候环境信息. 海洋地质与第四纪地质, 22(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200202020.htm
      [63] 张慧娟, 杨桂芳, 陈正洪, 等, 2018. 北京延庆古湖正构烷烃分布特征及古气候意义. 地球科学, 43(11): 4120-4127. doi: 10.3799/dqkx.2018.512
      [64] 郑度, 陈述彭, 2001. 地理学研究进展与前沿领域. 地球科学进展, 16(5): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200105001.htm
      [65] 周慧, 吴立, 马春梅, 等, 2020. 巢湖杭埠河流域湖相沉积物多指标揭示的全新世以来环境演变. 湖泊科学, 32(6): 1869-1881. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202006026.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  308
    • HTML全文浏览量:  175
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-07-02
    • 刊出日期:  2022-06-25

    目录

      /

      返回文章
      返回