Genetic Mineralogy of Monazite and Constraints on Interpretation of U-Th-Pb Ages
-
摘要: 独居石U-Pb定年在岩浆活动、变质作用和沉积作用等方面发挥着日益重要的作用,但是由于独居石成因复杂,因此从成因矿物学角度对不同成因独居石的特征进行总结将有助于解释独居石年代学数据.总结了不同成因独居石的矿物共生关系和组构特征、外部形貌-内部结构、化学元素特征,依托Th、U、Y、Ca、Pb、REE含量及其比值关系进行化学组成特点分析.结果表明:岩浆独居石边缘平直、有棱角或港湾状,存在振荡环带、扇形分区和均一的内部结构,常作为包裹体存在于长石、石英内.变质独居石分为高级变质独居石和低级变质独居石.高级变质独居石边缘平整,存在均一状、同心环状、补丁状和交叉状的内部结构,常与变质矿物(如石榴子石)共生.低级变质独居石颗粒分散,含有丰富的包裹体,常见骨架状结构.热液独居石分为两种类型,一种晶形较小(< 50 μm),呈团簇状多颗粒集合体形态存在,另一种颗粒致密,存在振荡环带、扇形分区的内部结构.从化学组成来说,由于富含轻稀土,独居石的稀土元素配分型式整体为右倾型.岩浆独居石具有最为强烈的Eu负异常,Th、U、Pb、Y、HREE含量相对较高;高级变质独居石存在明显的Eu负异常,Th、U含量高,HREE的含量和Y元素含量与其共生矿物相关;低级变质独居石的Eu负异常不明显,Th、U含量低.热液独居石的Eu负异常较弱,U含量极低,Th/U比值高.
-
关键词:
- 独居石 /
- 成因矿物学 /
- U-Th-Pb年代学 /
- 矿物学
Abstract: Monazite U-Pb geochronology plays an important role in dating magmatism, metamorphism and sedimentation. Because of its complex genesis, characterizing different types of monazite in terms of genetic mineralogy and chemistry is of great significance to interpret geochronology data. In this paper, it summarizes the occurrence (mineral paragenesis), crystal morphology and mineral geochemistry of different monazite in origins. The results show that magmatic monazite has straight edges, angular or embayment shape, showing oscillatory zoning, sector zoning and homogeneous internal structure, generally existing as inclusions that coexisting with feldspar and quartz. Metamorphic monazite is divided into high-grade and low-grade types. High-grade metamorphic monazite has straight edges, with concentric zoning, patchy zoning and intergrowth-like zoning or unzoned, generally associated with metamorphic porphyroblast (such as garnet). Low-grade metamorphic monazite occurs as discrete crystals with numerous inclusions, commonly exhibiting skeletal texture. Hydrothermal monazite has two types: the first type occurs as a cluster of multiple small monazite grain (< 50 μm) and the other type is grains showing oscillatory zoning and sector zoning. The rare earth element pattern of monazite is commonly right-leaning. Magmatic monazite has the strongest negative Eu anomalies with high Th, U, Pb, Y and HREE contents. High-grade metamorphic monazite has moderate negative Eu anomalies with high Th, U; HREE and Y are correlated with its coexisting minerals, whereas low-grade metamorphic monazite has insignificant negative Eu with low Th and U. Hydrothermal monazite has weak negative Eu, extremely low U and high Th/U ratio.-
Key words:
- monazite /
- genetic mineralogy /
- U-Th-Pb geochronology /
- mineralogy
-
图 1 岩浆独居石内部结构BSE图像及X-ray图像
a.环状振荡环带BSE图像;b.板状振荡环带BSE图像;c.扇形分区BSE图像;d.无分区BSE图像;e.环状振荡环带X-ray图像;f.板状振荡环带BSE图像;g.扇形分区X-ray图像;h.无分区X-ray图像. 数据来源:图a,c据Crowley et al.(2008);图b,f据Itano et al.(2018);图d据Zi et al.(2019);图e,g据Williams et al.(2007);图h据Moecher et al.(2019)
Fig. 1. BSE and X-ray images of the internal structure of magmatic monazite
图 2 高级变质独居石内部结构BSE图像及X-ray图像
a.同心环状分区BSE图像;b.交叉状分区BSE图像;c.补丁状分区BSE图像;d.无分区BSE图像;e.同心环状分区X-ray图像;f.交叉状分区X-ray图像;g.补丁状分区X-ray图像;h.无分区X-ray图像. 数据来源:图a,e据Foster et al.(2002);图b,f据Williams et al.(2007);图g据Williams et al.(2007);图c,d,h据Zotto et al.(2020)
Fig. 2. BSE and X-ray images of internal structures of high-grade metamorphic monazite
图 3 低级变质独居石内部结构BSE图像及X-ray图像
a.骨架状结构独居石BSE图像;b.骨架状结构独居石X-ray图像;c.碎屑独居石核-骨架状独居石边BSE图像;d.碎屑独居石核-骨架状独居石边X-ray图像. 数据来源:图a,b据Moecher et al.(2019);图c,d据Mahan et al.(2010)
Fig. 3. BSE and X-ray images of the internal structure of low-grade metamorphic monazite
图 4 热液独居石的BSE图像
a.分散分布的热液独居石,颗粒小;b.团簇状分布的热液独居石,由几十颗独居石聚集分布;c.放射状分布的热液独居石;d.含有振荡环带的热液独居石颗粒BSE图像;e.扇形分区结构的热液独居石BSE图像. 数据来源:图a据Rasmussen et al.(2006a);图b,c据Poujol et al.(2010);图d据Kempe et al.(2008);图e据Bergemann et al.(2020)
Fig. 4. BSE images of hydrothermal monazite
图 5 独居石稀土元素配分曲线
a.岩浆独居石稀土元素配分曲线(Itano et al., 2018);b.高级变质独居石稀土元素配分曲线(Wang et al., 2017;Xu et al., 2019);c.低级变质独居石稀土元素配分曲线(Alipour-Asll et al., 2012);d.热液独居石稀土元素配分曲线(Bergemann et al., 2017)
Fig. 5. Monazite rare earth element patterns
图 6 各成因类型独居石Pb、Th、U、Y、[Eu/Eu*]N、Th/U、[La/Gd]N、[Gd/Lu]N各项一元指标箱体对比
数据来源于Baldwin et al.(2006);Rasmussen et al.(2006a, 2007a);Rasmussen and Muhling(2007b);Rubatto et al.(2006);Buick et al.(2006, 2010);Chatterjee et al.(2007);Krenn and Finger(2007);Carosi et al.(2008);Crowley et al.(2008);Iizuka et al.(2010);Orejana et al.(2012);Janots et al.(2012);Holder et al.(2015);Štípská et al.(2015);Bergemann et al.(2017);Fisher et al.(2017);MacDonald et al.(2017);Wang et al.(2017);Itano et al.(2018);Xu et al.(2019);Zi et al.(2019);Deng et al.(2020);详细信息请见附表1
Fig. 6. Box diagrams of Pb, Th, U and Y contents and [Eu/Eu*]N, Th/U, [La/Gd]N and [Gd/Lu]N ratios by different types of monazite
图 7 各类型独居石化学元素二元关系
[a.[Eu/Eu*]N-Th/U;b.[Eu/Eu*]N-Y;c.[Eu/Eu*]N-[Gd/Lu]N;d.Y-[Gd/Lu]N;e.Th-Pb;f.Ca-Pb. 数据来源同图 6]
Fig. 7. Relationships of chemical elements for different types of monazite
-
[1] Aleinikoff, J.N., Schenck, W.S., Plank, M.O., et al., 2006. Deciphering Igneous and Metamorphic Events in High-Grade Rocks of the Wilmington Complex, Delaware: Morphology, Cathodoluminescence and Backscattered Electron Zoning, and SHRIMP U-Pb Geochronology of Zircon and Monazite. Geological Society of America Bulletin, 118(1/2): 39-64. https://doi.org/10.1130/b25659.1 [2] Alipour-Asll, M., Mirnejad, H., Milodowski, A.E., 2012. Occurrence and Paragenesis of Diagenetic Monazite in the Upper Triassic Black Shales of the Marvast Region, South Yazd, Iran. Mineralogy and Petrology, 104(3-4): 197-210. https://doi.org/10.1007/s00710-011-0186-2 [3] Ayers, J.C., Miller, C., Gorisch, B., et al., 1999. Textural Development of Monazite during High-Grade Metamorphism; Hydrothermal Growth Kinetics, with Implications for U, Th-Pb Geochronology. American Mineralogist, 84(11/12): 1766-1780. https://doi.org/10.2138/am-1999-11-1206 [4] Baldwin, J.A., Bowring, S.A., Williams, M.L., et al., 2006. Geochronological Constraints on the Evolution of High-Pressure Felsic Granulites from an Integrated Electron Microprobe and ID-TIMS Geochemical Study. Lithos, 88(1/2/3/4): 173-200. https://doi.org/10.1016/j.lithos.2005.08.009 [5] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi: 10.1016/ S0024-4937(98)00085-1 [6] Bergemann, C.A., Gnos, E., Berger, A., et al., 2017. Th-Pb Ion Probe Dating of Zoned Hydrothermal Monazite and Its Implications for Repeated Shear Zone Activity: An Example from the Central Alps, Switzerland. Tectonics, 36(4): 671-689. https://doi.org/10.1002/2016tc004407 doi: 10.1002/2016TC004407 [7] Bergemann, C.A., Gnos, E., Berger, A., et al., 2018. Constraining Long-Term Fault Activity in the Brittle Domain through In Situ Dating of Hydrothermal Monazite. Terra Nova, 30(6): 440-446. https://doi.org/10.1111/ter.12360 [8] Bergemann, C.A., Gnos, E., Berger, A., et al., 2020. Dating Tectonic Activity in the Lepontine Dome and Rhone-Simplon Fault Regions through Hydrothermal Monazite-(Ce). Solid Earth, 11(1): 199-222. https://doi.org/10.5194/se-11-199-2020 [9] Bingen, B., van Breemen, O.V., 1998. U-Pb Monazite Ages in Amphibolite- to Granulite-Facies Orthogneiss Reflect Hydrous Mineral Breakdown Reactions: Sveconorwegian Province of SW Norway. Contributions to Mineralogy and Petrology, 132(4): 336-353. https://doi.org/10.1007/s004100050428 [10] Boehnke, P., Watson, E.B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028 [11] Buick, I.S., Clark, C., Rubatto, D., et al., 2010. Constraints on the Proterozoic Evolution of the Aravalli-Delhi Orogenic Belt (NW India) from Monazite Geochronology and Mineral Trace Element Geochemistry. Lithos, 120(3/4): 511-528. https://doi.org/10.1016/j.lithos.2010.09.011 [12] Buick, I.S., Hermann, J., Williams, I.S., et al., 2006. A SHRIMP U-Pb and LA-ICP-MS Trace Element Study of the Petrogenesis of Garnet-Cordierite-Orthoamphibole Gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos, 88(1/2/3/4): 150-172. https://doi.org/10.1016/j.lithos.2005.09.001 [13] Carosi, R., Montomoli, C., Rubatto, D., et al., 2008. Late-Oligocene High-Temperature Shear Zones in the Core of the Higher Himalayan Crystallines (Lower Dolpo, Western Nepal). Tectonics, 29(4): TC4029. https://doi.org/10.1029/2008TC002400 [14] Catlos, E.J., Dubey, C.S., Sivasubramanian, P., 2008. Monazite Ages from Carbonatites and High-Grade Assemblages along the Kambam Fault (Southern Granulite Terrane, South India). American Mineralogist, 93(8-9): 1230-1244. https://doi.org/10.2138/am.2008.2712 [15] Catlos, E.J., Gilley, L.D., Harrison, T.M., 2002. Interpretation of Monazite Ages Obtained via In Situ Analysis. Chemical Geology, 188(3/4): 193-215. https://doi.org/10.1016/S0009-2541(02)00099-2 [16] Chatterjee, N., Mazumdar, A.C., Bhattacharya, A., et al., 2007. Mesoproterozoic Granulites of the Shillong-Meghalaya Plateau: Evidence of Westward Continuation of the Prydz Bay Pan-African Suture into Northeastern India. Precambrian Research, 152(1/2): 1-26. https://doi.org/10.1016/j.precamres.2006.08.011 [17] Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007. Electron Probe Chemical Age of Monazite in Kunzhong Belt of East Kunlun Orogenic Belt: Record of Multiple Tectonism Metamorphic Events. Chinese Science Bulletin, 52(11): 1297-1306(in Chinese). doi: 10.1360/csb2007-52-11-1297 [18] Chen, Q., Chen, N.S., Wang, Q.Y., et al., 2006. Electron Microprobe Chemical Ages of Monazite from Qinling Group in the Qinling Orogen: Evidence for Late Pan-African Metamorphism? Chinese Science Bulletin, 51(21): 2645-2650(in Chinese). doi: 10.1007/s11434-006-2152-7 [19] Clavier, N., Podor, R., Dacheux, N., 2011. Crystal Chemistry of the Monazite Structure. Journal of the European Ceramic Society, 31(6): 941-976. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019 [20] Cressey, G., Wall, F., Cressey, B.A., 1999. Differential REE Uptake by Sector Growth of Monazite. Mineralogical Magazine, 63(6): 813-828. https://doi.org/10.1180/002646199548952 [21] Crowley, J.L., Brown, R.L., Gervais, F., et al., 2008. Assessing Inheritance of Zircon and Monazite in Granitic Rocks from the Monashee Complex, Canadian Cordillera. Journal of Petrology, 49(11): 1915-1929. https://doi.org/10.1093/petrology/egn047 [22] Crowley, J.L., Waters, D.J., Searle, M.P., et al., 2009. Pleistocene Melting and Rapid Exhumation of the Nanga Parbat Massif, Pakistan: Age and P-T Conditions of Accessory Mineral Growth in Migmatite and Leucogranite. Earth and Planetary Science Letters, 288(3/4): 408-420. https://doi.org/10.1016/j.epsl.2009.09.044 [23] Deng, J., Qiu, K.F., Wang, Q.F., et al., 2020. In Situ Dating of Hydrothermal Monazite and Implications for the Geodynamic Controls on Ore Formation in the Jiaodong Gold Province, Eastern China. Economic Geology, 115(3): 671-685. https://doi.org/10.5382/econgeo.4711 [24] DeWolf, C.P., Belshaw, N.S., O'Nions, R.K., 1993. A Metamorphic History from Micronscale 207Pb/206Pb Chronometry of Archean Monazite. Earth and Planetary Science Letters, 120(3-4): 207-220. https://doi.org/10.1016/0012-821X(93)90240-A [25] Evans, J.A., Ewic, J.A.Z.I., Fletcher, I., et al., 2002. Dating Diagenetic Monazite in Mudrocks: Constraining the Oil Window? Journal of the Geological Society, 159(6): 619. doi: 10.1144/0016-764902-066 [26] Fan, D.D., Li, C.X., Yokoyama, K., et al., 2004. Monazite Age Spectra in the Late Cenozoic of the Changjiang Delta and Its Implication on the Changjiang Run-through Time. Science in China (Ser. D), 34(11): 1015-1022 (in Chinese). [27] Fisher, C.M., Hanchar, J.M., Miller, C.F., et al., 2017. Combining Nd Isotopes in Monazite and Hf Isotopes in Zircon to Understand Complex Open-System Processes in Granitic Magmas. Geology, 45(3): 267-270. https://doi.org/10.1130/g38458.1 doi: 10.1130/G38458.1 [28] Foster, G., Gibson, H.D., Parrish, R., et al., 2002. Textural, Chemical and Isotopic Insights into the Nature and Behaviour of Metamorphic Monazite. Chemical Geology, 191(1/2/3): 183-207. https://doi.org/10.1016/S0009-2541(02)00156-0 [29] Foster, G., Parrish, R.R., Horstwood, M.S.A., et al., 2004. The Generation of Prograde P-T-t Points and Paths; A Textural, Compositional, and Chronological Study of Metamorphic Monazite. Earth and Planetary Science Letters, 228(1/2): 125-142. https://doi.org/10.1016/j.epsl.2004.09.024 [30] Guo, R.H., Hu, X.M., Garzanti, E., et al., 2020. How Faithfully do the Geochronological and Geochemical Signatures of Detrital Zircon, Titanite, Rutile and Monazite Record Magmatic and Metamorphic Events? A Case Study from the Himalaya and Tibet. Earth-Science Reviews, 201: 103082. https://doi.org/10.1016/j.earscirev.2020.103082 [31] Harrison, T.M., Catlos, E.J., Montel, J.M., 2002. U-Th-Pb Dating of Phosphate Minerals. Reviews in Mineralogy and Geochemistry, 48(1): 524-558. https://doi.org/10.2138/rmg.2002.48.14 [32] Holder, R.M., Hacker, B.R., Kylander-Clark, A.R.C., et al., 2015. Monazite Trace-Element and Isotopic Signatures of (Ultra)High-Pressure Metamorphism: Examples from the Western Gneiss Region, Norway. Chemical Geology, 409: 99-111. https://doi.org/10.1016/j.chemgeo.2015.04.021 [33] Hu, G.H., Zhang, Q.Q., Li, J.F., et al., 2020. Emplacement Ages of Mesozoic Granites in Liaodong Area: Constraints from Zircon and Monazite U-Pb Dating. Earth Science, 45(11): 3962-3981 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493712001260 [34] Iizuka, T., McCulloch, M.T., Komiya, T., et al., 2010. Monazite Geochronology and Geochemistry of Meta-Sediments in the Narryer Gneiss Complex, Western Australia: Constraints on the Tectonothermal History and Provenance. Contributions to Mineralogy and Petrology, 160(6): 803-823. https://doi.org/10.1007/s00410-010-0508-0 [35] Itano, K., Iizuka, T., Hoshino, M., 2018. REE-Th-U and Nd Isotope Systematics of Monazites in Magnetite- and Ilmenite-Series Granitic Rocks of the Japan Arc: Implications for Its Use as a Tracer of Magma Evolution and Detrital Provenance. Chemical Geology, 484: 69-80. https://doi.org/10.1016/j.chemgeo.2017.11.033 [36] Janots, E., Berger, A., Gnos, E., et al., 2012. Constraints on Fluid Evolution during Metamorphism from U-Th-Pb Systematics in Alpine Hydrothermal Monazite. Chemical Geology, 326/327: 61-71. https://doi.org/10.1016/j.chemgeo.2012.07.014 [37] Kempe, U., Lehmann, B., Wolf, D., et al., 2008. U-Pb SHRIMP Geochronology of Th-Poor, Hydrothermal Monazite: An Example from the Llallagua Tin-Porphyry Deposit, Bolivia. Geochimica et Cosmochimica Acta, 72(17): 4352-4366. https://doi.org/10.1016/j.gca.2008.05.059 [38] Kingsbury, J.A., Miller, C.F., Wooden, J.L., et al., 1993. Monazite Paragenesis and U-Pb Systematics in Rocks of the Eastern Mojave Desert, California, USA: Implications for Thermochronometry. Chemical Geology, 110(1/2/3): 147-167. https://doi.org/10.1016/0009-2541(93)90251-D [39] Krenn, E., Finger, F., 2007. Formation of Monazite and Rhabdophane at the Expense of Allanite during Alpine Low Temperature Retrogression of Metapelitic Basement Rocks from Crete, Greece: Microprobe Data and Geochronological Implications. Lithos, 95(1/2): 130-147. https://doi.org/10.1016/j.lithos.2006.07.007 [40] Liu, P.H., Zou, L., Tian, Z.H., et al., 2019. Discovery and Geological Significance of an Early Paleozoic (ca. 420 Ma) Metamorphic Event from the Eastern Alxa Block: New Evidence from Monazite and Zircon LA-ICP-MS U-Pb Dating. Earth Science, 44(7): 2441-2470(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201907018.htm [41] MacDonald, R., Bagiński, B., Zozulya, D., 2017. Differing Responses of Zircon, Chevkinite-(Ce), Monazite-(Ce) and Fergusonite-(Y) to Hydrothermal Alteration: Evidence from the Keivy Alkaline Province, Kola Peninsula, Russia. Mineralogy and Petrology, 111(4): 523-545. https://doi.org/10.1007/s00710-017-0506-2 [42] Mahan, K.H., Wernicke, B.P., Jercinovic, M.J., 2010. Th-U-Total Pb Geochronology of Authigenic Monazite in the Adelaide Rift Complex, South Australia, and Implications for the Age of the Type Sturtian and Marinoan Glacial Deposits. Earth and Planetary Science Letters, 289(1-2): 76-86. https://doi.org/10.1016/j.epsl.2009.10.031 [43] Moecher, D.P., Kelly, E.A., Hietpas, J., et al., 2019. Proof of Recycling in Clastic Sedimentary Systems from Textural Analysis and Geochronology of Detrital Monazite: Implications for Detrital Mineral Provenance Analysis. Geological Society of America Bulletin, 131(7/8): 1115-1132. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/131/7-8/1115/568784/Proof-of-recycling-in-clastic-sedimentary-systems [44] Ning, W.B., Wang, J.P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952-963. https://doi.org/10.1007/s12583-019-1020-8 [45] Orejana, D., Merino, E., Villaseca, C., et al., 2012. Electron Microprobe Monazite Geochronology of Granitic Intrusions from the Montes de Toledo Batholith (Central Spain). Geological Journal, 47(1): 41-58. https://doi.org/10.1002/gj.1331 [46] Parrish, R.R., 1990. U-Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences, 27(11): 1431-1450. https://doi.org/10.1139/e90-152 [47] Piechocka, A.M., Gregory, C.J., Zi, J.W., et al., 2017. Monazite Trumps Zircon: Applying SHRIMP U-Pb Geochronology to Systematically Evaluate Emplacement Ages of Leucocratic, Low-Temperature Granites in a Complex Precambrian Orogen. Contributions to Mineralogy and Petrology, 172(8): 1-17. https://doi.org/10.1007/s00410-017-1386-5 [48] Poitrasson, F., Chenery, S., Shepherd, T.J., 2000. Electron Microprobe and LA-ICP-MS Study of Monazite Hydrothermal Alteration: Implications for U-Th-Pb Geochronology and Nuclear Ceramics. Geochimica et Cosmochimica Acta, 64(19): 3283-3297. https://doi.org/10.1016/S0016-7037(00)00433-6 [49] Poujol, M., Boulvais, P., Kosler, J., 2010. Regional-Scale Cretaceous Albitization in the Pyrenees: Evidence from In Situ U-Th-Pb Dating of Monazite, Titanite and Zircon. Journal of the Geological Society, 167(4): 751-767. https://doi.org/10.1144/0016-76492009-144 [50] Prent, A.M., Beinlich, A., Raimondo, T., et al., 2020. Apatite and Monazite: An Effective Duo to Unravel Superimposed Fluid-Flow and Deformation Events in Reactivated Shear Zones. Lithos, 376/377: 105752. https://doi.org/10.1016/j.lithos.2020.105752 [51] Pyle, J.M., Spear, F.S., Cheney, J.T., et al., 2005. Monazite Ages in the Chesham Pond Nappe, SW New Hampshire, USA: Implications for Assembly of Central New England Thrust Sheets. American Mineralogist, 90(4): 592-606. https://doi.org/10.2138/am.2005.1341 [52] Rasmussen, B., Fletcher, I.R., McNaughton, N.J., 2001. Dating Low-Grade Metamorphic Events by SHRIMP U-Pb Analysis of Monazite in Shales. Geology, 29(10): 963-966. https://doi.org/10.1130/0091-7613(2001)0290963: dlgmeb>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0963:DLGMEB>2.0.CO;2 [53] Rasmussen, B., Fletcher, I.R., Muhling, J.R., 2007a. In Situ U-Pb Dating and Element Mapping of Three Generations of Monazite: Unravelling Cryptic Tectonothermal Events in Low-Grade Terranes. Geochimica et Cosmochimica Acta, 71(3): 670-690. https://doi.org/10.1016/j.gca.2006.10.020 [54] Rasmussen, B., Fletcher, I.R., Sheppard, S., 2005. Isotopic Dating of the Migration of a Low-Grade Metamorphic Front during Orogenesis. Geology, 33(10): 773-776. https://doi.org/10.1130/g21666.1 doi: 10.1130/G21666.1 [55] Rasmussen, B., Muhling, J.R., 2007b. Monazite Begets Monazite: Evidence for Dissolution of Detrital Monazite and Reprecipitation of Syntectonic Monazite during Low-Grade Regional Metamorphism. Contributions to Mineralogy and Petrology, 154(6): 675-689. https://doi.org/10.1007/s00410-007-0216-6 [56] Rasmussen, B., Muhling, J.R., 2009. Reactions Destroying Detrital Monazite in Greenschist-Facies Sandstones from the Witwatersrand Basin, South Africa. Chemical Geology, 264(1/2/3/4): 311-327. https://doi.org/10.1016/j.chemgeo.2009.03.017 [57] Rasmussen, B., Muhling, J.R., Fletcher, I.R., et al., 2006a. In Situ SHRIMP U-Pb Dating of Monazite Integrated with Petrology and Textures: Does Bulk Composition Control whether Monazite Forms in Low-Ca Pelitic Rocks during Amphibolite Facies Metamorphism? Geochimica et Cosmochimica Acta, 70(12): 3040-3058. https://doi.org/10.1016/j.gca.2006.03.025 [58] Rasmussen, B., Sheppard, S., Fletcher, I.R., 2006b. Testing Ore Deposit Models Using In Situ U-Pb Geochronology of Hydrothermal Monazite: Paleoproterozoic Gold Mineralization in Northern Australia. Geology, 34(2): 77. https://doi.org/10.1130/g22058.1 doi: 10.1130/G22058.1 [59] Rasmussen, B., Zi, J.W., Muhling, J.R., 2019. U-Pb Evidence for a 2.15 Ga Orogenic Event in the Archean Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons. Geology, 47(12): 1131-1135. https://doi.org/10.1130/g46366.1 doi: 10.1130/G46366.1 [60] Roger, F., Teyssier, C., Whitney, D.L., et al., 2020. Age of Metamorphism and Deformation in the Montagne Noire Dome (French Massif Central): Tapping into the Memory of Fine-Grained Gneisses Using Monazite U-Th-Pb Geochronology. Tectonophysics, 776: 228316. https://doi.org/10.1016/j.tecto.2019.228316 [61] Rubatto, D., Hermann, J., Buick, I.S., 2006. Temperature and Bulk Composition Control on the Growth of Monazite and Zircon during Low-Pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47(10): 1973-1996. https://doi.org/10.1093/petrology/egl033 [62] Santosh, M., Tsunogae, T., Tsutsumi, Y., et al., 2008. Microstructurally Controlled Monazite Chronology of Ultrahigh-Temperature Granulites from Southern India: Implications for the Timing of Gondwana Assembly. Island Arc, 18(2): 248-265. https://doi.org/10.1111/j.1440-1738.2007.00601.x [63] Schandl, E.S., Gorton, M.P., 2004. A Textural and Geochemical Guide to the Identification of Hydrothermal Monazite: Criteria for Selection of Samples for Dating Epigenetic Hydrothermal Ore Deposits. Economic Geology, 99(5): 1027-1035. https://doi.org/10.2113/gsecongeo.99.5.1027 [64] Schulz, B., 2021. Monazite Microstructures and Their Interpretation in Petrochronology. Frontiers in Earth Science, 9: 668566. https://doi.org/10.3389/feart.2021.668566 [65] Sheppard, S., Rasmussen, B., Muhling, J.R., et al., 2007. Grenvillian-Aged Orogenesis in the Palaeoproterozoic Gascoyne Complex, Western Australia: 1 030-950 Ma Reworking of the Proterozoic Capricorn Orogen. Journal of Metamorphic Geology, 25(4): 477-494. https://doi.org/10.1111/j.1525-1314.2007.00708.x [66] Siégel, C., Bryan, S.E., Allen, C.M., et al., 2018. Use and Abuse of Zircon-Based Thermometers: A Critical Review and a Recommended Approach to Identify Antecrystic Zircons. Earth Science Reviews, 176: 87-116. https://doi.org/10.1016/j.earscirev.2017.08.011 [67] Spear, F.S., Pyle, J.M., 2002. Apatite, Monazite, and Xenotime in Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 48(1): 293-335. https://doi.org/10.2138/rmg.2002.48.7 [68] Štípská, P., Hacker, B.R., Racek, M., et al., 2015. Monazite Dating of Prograde and Retrograde P-T-d Paths in the Barrovian Terrane of the Thaya Window, Bohemian Massif. Journal of Petrology, 56(5): 1007-1035. https://doi.org/10.1093/petrology/egv026 [69] Wan, Y.S., Luo, Z.H., Li, L., 2004.3.8 Ma: SHRIMP U-Pb Zircon Dating of the Younger Alkali Basalt in the Qinghai-Xizang Plateau. Geochimica, 33(5): 442-446(in Chinese with English abstract). [70] Wang, J.M., Wu, F.Y., Rubatto, D., et al., 2017. Monazite Behaviour during Isothermal Decompression in Pelitic Granulites: A Case Study from Dinggye, Tibetan Himalaya. Contributions to Mineralogy and Petrology, 172(10): 1-30. https://doi.org/10.1007/s00410-017-1400-y [71] Warren, C.J., Greenwood, L.V., Argles, T.W., et al., 2019. Garnet-Monazite Rare Earth Element Relationships in Sub-Solidus Metapelites: A Case Study from Bhutan. Geological Society, London, Special Publications, 478(1): 145-166. https://doi.org/10.1144/sp478.1 doi: 10.1144/SP478.1 [72] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X [73] Weinberg, R.F., Wolfram, L.C., Nebel, O., et al., 2020. Decoupled U-Pb Date and Chemical Zonation of Monazite in Migmatites: The Case for Disturbance of Isotopic Systematics by Coupled Dissolution-Reprecipitation. Geochimica et Cosmochimica Acta, 269: 398-412. https://doi.org/10.1016/j.gca.2019.10.024 [74] White, L.T., Ireland, T.R., 2012. High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations. Chemical Geology, 306-307: 78-91. https://doi.org/10.1016/j.chemgeo.2012.02.025 [75] Williams, M.L., Jercinovic, M.J., 2002. Microprobe Monazite Geochronology: Putting Absolute Time into Microstructural Analysis. Journal of Structural Geology, 24(6/7): 1013-1028. https://doi.org/10.1016/S0191-8141(01)00088-8 [76] Williams, M.L., Jercinovic, M.J., Hetherington, C.J., 2007. Microprobe Monazite Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology. Annual Review of Earth and Planetary Sciences, 35(1): 137-175. https://doi.org/10.1146/annurev.earth.35.031306.140228 [77] Williams, M.L., Jercinovic, M.J., Terry, M.P., 1999. Age Mapping and Dating of Monazite on the Electron Microprobe: Deconvoluting Multistage Tectonic Histories. Geology, 27(11): 1023-1026. https://doi.org/10.1130/0091-7613(1999)0271023: amadom>2.3.co;2 doi: 10.1130/0091-7613(1999)027<1023:AMADOM>2.3.CO;2 [78] Wing, B.A., Ferry, J.M., Harrison, T.M., 2003. Prograde Destruction and Formation of Monazite and Allanite during Contact and Regional Metamorphism of Pelites: Petrology and Geochronology. Contributions to Mineralogy and Petrology, 145(2): 228-250. https://doi.org/10.1007/s00410-003-0446-1 [79] Wu, Y.B., Wang, H., Gao, S.C., et al., 2014. LA-ICP-MS Monazite U-Pb Age and Trace Element Constraints on the Granulite-Facies Metamorphism in the Tongbai Orogen, Central China. Journal of Asian Earth Sciences, 82: 90-102. https://doi.org/10.1016/j.jseaes.2013.12.016 [80] Xu, H.J., Lei, H.C., Xiong, Z.W., et al., 2019. Paleoproterozoic Ultrahigh-Temperature Granulite-Facies Metamorphism in the Sulu Orogen, Eastern China: Evidence from Zircon and Monazite in the Pelitic Granulite. Precambrian Research, 333: 105430. https://doi.org/10.1016/j.precamres.2019.105430 [81] Yang, P., Pattison, D., 2006. Genesis of Monazite and Y Zoning in Garnet from the Black Hills, South Dakota. Lithos, 88(1/2/3/4): 233-253. https://doi.org/10.1016/j.lithos.2005.08.012 [82] Zhang, D., Chen, Y., Mao, Q., et al., 2019. Progress and Challenge of Electron Probe Microanalysis Technique. Acta Petrologica Sinica, 35(1): 261-274(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.21 [83] Zhou, X.W., Wei, C.J., Geng, Y.S., et al., 2005. Electron Microprobe Monazite Th-Pb Dating and Its Constraints on Multi-Stage Metamorphism of Low-Pressure Pelitic Granulite from the Jingshan Group in the Jiaobei Terrane. Chinese Science Bulletin, 50(4): 369-374(in Chinese). doi: 10.1360/csb2005-50-4-369 [84] Zhu, W., Wu, C.D., Wang, J.L., et al., 2019. Provenance Analysis of Detrital Monazite, Zircon and Cr-Spinel in the Northern Tibetan Plateau: Implications for the Paleozoic Tectonothermal History of the Altyn Tagh and Qimen Tagh Ranges. Basin Research, 31(3): 539-561. https://doi.org/10.1111/bre.12333 [85] Zhu, X.K., O'Nions, R.K., 1999a. Monazite Chemical Composition: Some Implications for Monazite Geochronology. Contributions to Mineralogy and Petrology, 137(4): 351-363. https://doi.org/10.1007/s004100050555 [86] Zhu, X.K., O'Nions, R.K., 1999b. Zonation of Monazite in Metamorphic Rocks and Its Implications for High Temperature Thermochronology: A Case Study from the Lewisian Terrain. Earth and Planetary Science Letters, 171(2): 209-220. https://doi.org/10.1016/S0012-821X(99)00146-6 [87] Zi, J.W., Rasmussen, B., Muhling, J.R., et al., 2015. In Situ U-Pb Geochronology of Xenotime and Monazite from the Abra Polymetallic Deposit in the Capricorn Orogen, Australia: Dating Hydrothermal Mineralization and Fluid Flow in a Long-Lived Crustal Structure. Precambrian Research, 260: 91-112. https://doi.org/10.1016/j.precamres.2015.01.010 [88] Zi, J.W., Rasmussen, B., Muhling, J.R., et al., 2018. U-Pb Geochronology of Monazite in Precambrian Tuffs Reveals Depositional and Metamorphic Histories. Precambrian Research, 313: 109-118. https://doi.org/10.1016/j.precamres.2018.05.015 [89] Zi, J.W., Rasmussen, B., Muhling, J.R., et al., 2019. U-Pb Monazite Ages of the Kabanga Mafic-Ultramafic Intrusions and Contact Aureoles, Central Africa: Geochronological and Tectonic Implications. GSA Bulletin, 131(11/12): 1857-1870. https://doi.org/10.1130/b35142.1 [90] Zotto, S.C., Moecher, D.P., Niemi, N.A., et al., 2020. Persistence of Grenvillian Dominance in Laurentian Detrital Zircon Age Systematics Explained by Sedimentary Recycling: Evidence from Detrital Zircon Double Dating and Detrital Monazite Textures and Geochronology. Geology, 48(8): 792-797. https://doi.org/10.1130/g47530.1 doi: 10.1130/G47530.1 [91] 陈能松, 孙敏, 王勤燕, 等, 2007. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录. 科学通报, 52(11): 1297-1306. doi: 10.3321/j.issn:0023-074X.2007.11.014 [92] 陈强, 陈能松, 王勤燕, 等, 2006. 秦岭造山带秦岭岩群独居石电子探针化学年龄: 晚泛非期变质证据. 科学通报, 51(21): 2512-2516. doi: 10.3321/j.issn:0023-074X.2006.21.010 [93] 范代读, 李从先, Yokoyama, K., 等, 2004. 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究. 中国科学(D辑: 地球科学), 34(11): 1015-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200411003.htm [94] 胡国辉, 张琪琪, 李建锋, 等, 2020. 辽东地区中生代花岗岩的侵位时代: 锆石和独居石U-Pb年代学. 地球科学, 45(11): 3962-3981. doi: 10.3799/dqkx.2020.293 [95] 刘平华, 邹雷, 田忠华, 等, 2019. 阿拉善地块东部早古生代(约420 Ma)变质事件的发现及其地质意义: 来自独居石与锆石U-Pb定年的新证据. 地球科学, 44(7): 2441-2470. doi: 10.3799/dqkx.2019.092 [96] 万渝生, 罗照华, 李莉, 2004. 3.8Ma: 青藏高原年轻碱性玄武岩锆石离子探针U-Pb年龄测定. 地球化学, 33(5): 442-446. doi: 10.3321/j.issn:0379-1726.2004.05.002 [97] 张迪, 陈意, 毛骞, 等, 2019. 电子探针分析技术进展及面临的挑战. 岩石学报, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm [98] 周喜文, 魏春景, 耿元生, 等, 2005. 胶北荆山群泥质低压麻粒岩电子探针独居石Th-Pb定年及其对多阶段变质演化的制约. 科学通报, 50(4): 369-374. doi: 10.3321/j.issn:0023-074X.2005.04.012 -
梁晓 附表1.xlsx