Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt
-
摘要: 为揭示中亚造山带南段洋‒陆构造演化时限及动力学背景,对中亚造山带南缘北山地区花牛山晚古生代闪长玢岩进行年代学、主微量及Sr-Nd-Pb同位素研究.闪长玢岩LA-ICP-MS锆石U-Pb年龄为287.6±7.5 Ma,SiO2为53.92%~54.84%,K2O+Na2O为6.34%~6.82%,高Al2O3(14.66%~15.23%)低MgO(3.20%~3.99%),Mg#值为40.26~46.50;轻稀土元素富集((La/Yb)N=20.07~21.33),弱负Eu异常(δEu=0.79~0.82);明显富集Cs、Rb、Ba、K、Th及Pb,弱富集Zr和Hf,亏损Nb、Ta、Ti、P和Sr;(87Sr/86Sr)i值在0.707 009~0.708 799之间,(143Nd/144Nd)i值介于0.512 248~0.512 272,εNd(t)值为-0.39~+0.09.这些特征指示闪长玢岩源于地幔物质熔融,岩浆演化过程中发生地壳同化混染.结合区域地质背景,花牛山闪长玢岩的形成与北山南部辉铜山‒帐房山洋盆北向俯冲闭合后的板内伸展构造背景相关,指示中亚造山带南缘北山南部于早二叠世时已经进入陆内构造阶段.Abstract: To reveal the tectonic dynamic setting and timing of the ocean-continent transform in the southern Central Asian Orogenic Belt (CAOB), the geochronological data, major and trace elements and Sr-Nd-Pb isotopes of Late Paleozoic Huanuishan diorite porphyrites in the Beishan area of southern CAOB are studied. The diorite porphyrites yield a magmatic crystallization of 287.6±7.5 Ma (LA-ICP-MS zircon U-Pb dating). The SiO2, K2O+Na2O contents are 53.92%-54.84%, 6.34%-6.82% respectively. The rocks have high Al2O3 (14.66%-15.23%), low MgO (3.20%-3.99%) with Mg# values of 40.26-46.50. The diorite porphyrites have high LREE enrichment ((La/Yb)N=20.07-21.33) with negative Eu anomalies (δEu=0.79-0.82), enriched in Cs, Rb, Ba, K, Th and Pb, weakly enriched in Zr and Hf, depleted in Nb, Ta, Ti, P and Sr. Their (87Sr/86Sr)i values range from 0.707 009 to 0.708 799, (143Nd/144Nd)i values 0.512 248 to 0.512 272, 206Pb/204Pb values 18.613 to 18.711 and εNd(t) values are -0.39-+0.09. These features suggest that diorite porphyrites were derived from the mantle material, with assimilation and contamination by curst. Combined with regional geological background, the diorite porphyrites were formed in an intraplate extensional tectonic stage after the northward subduction and closure of Huitongshan-Zhangfangshan Ocean. These results indicate that the southern Beishan area has completed the ocean-continent tectonic transform during the Early Permian.
-
图 6 花牛山闪长玢岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
标准化数据来自Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spider diagrams(b) for diorite porphyrite in the Huaniushan area
表 1 花牛山闪长玢岩锆石U⁃Pb同位素分析结果表
Table 1. The zircon U⁃Pb dating results of the diorite porphyrite in the Huaniushan area
样品号 Th U Th/U 同位素比值 年龄(Ma) 10‒6 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ HN2019-1-01 11 277.39 11 435.17 0.99 0.039 86 0.000 74 0.006 28 0.000 08 39 0.7 40 0.5 HN2019-1-02 3 321.27 8 859.92 0.37 0.334 63 0.004 70 0.040 65 0.000 54 293 4 257 3 HN2019-1-03 1 515.74 695.88 2.18 0.535 35 0.015 24 0.072 30 0.001 03 435 10 450 6 HN2019-1-04 68 687.60 20 222.88 3.40 0.043 78 0.000 68 0.005 76 0.000 08 43 0.7 37 0.5 HN2019-1-05 4 049.70 1 096.21 3.69 0.331 74 0.011 53 0.043 22 0.000 66 291 9 273 4 HN2019-1-06 7 718.51 2 097.15 3.68 0.32670 0.005 40 0.040 81 0.000 58 287 4 258 4 HN2019-1-07 3 234.25 972.44 3.33 0.949 56 0.018 93 0.041 14 0.000 61 678 10 260 4 HN2019-1-08 6 780.31 2 228.29 3.04 0.329 53 0.007 97 0.044 43 0.000 67 289 6 280 4 HN2019-1-09 3 768.47 1 424.16 2.65 1.345 33 0.032 86 0.142 76 0.002 18 866 14 860 12 HN2019-1-10 1 195.58 324.02 3.69 0.338 02 0.011 90 0.047 57 0.000 79 296 9 300 5 HN2019-1-11 3 802.13 1 712.54 2.22 0.569 50 0.011 30 0.072 84 0.001 16 458 7 453 7 HN2019-1-12 7 550.53 2 155.03 3.50 0.336 89 0.006 56 0.046 41 0.000 75 295 5 292 5 HN2019-1-13 3 234.56 1 277.60 2.53 0.556 14 0.012 61 0.069 93 0.001 16 449 8 436 7 HN2019-1-14 1 721.02 1 385.69 1.24 0.468 28 0.011 73 0.061 40 0.001 04 390 8 384 6 HN2019-1-15 9 913.55 3 623.35 2.74 0.328 73 0.006 84 0.045 10 0.000 78 289 5 284 5 HN2019-1-16 5 506.00 846.30 6.51 0.326 17 0.007 41 0.045 72 0.000 80 287 6 288 5 HN2019-1-17 1 303.39 1 581.63 0.82 8.192 88 0.161 57 0.450 18 0.008 01 2 253 18 2 396 36 HN2019-1-18 3 915.99 1 464.71 2.67 0.335 53 0.009 85 0.047 02 0.000 88 294 7 296 5 HN2019-1-19 4 541.37 1 754.89 2.59 0.548 13 0.013 70 0.070 98 0.001 33 444 9 442 8 HN2019-1-20 18 012.82 13 717.66 1.31 0.059 65 0.001 61 0.008 37 0.000 16 59 2 54 1 HN2019-1-21 13 590.38 12 704.35 1.07 0.335 67 0.010 06 0.051 29 0.001 04 294 8 322 6 HN2019-1-22 10 680.66 1 973.00 5.41 0.331 34 0.009 94 0.047 43 0.000 98 291 8 299 6 HN2019-1-23 9 740.26 2 739.6 3.56 0.340 25 0.009 76 0.046 71 0.000 98 297 7 294 6 HN2019-1-24 1 353.87 326.26 4.15 0.328 22 0.028 22 0.052 04 0.001 36 288 22 327 8 HN2019-1-25 14 700.73 5 845.54 2.51 0.962 02 0.027 92 0.108 54 0.002 37 684 14 664 14 表 2 花牛山闪长玢岩主量(%)、微量、稀土(10‒6)元素分析结果
Table 2. Major (%), trace and rare earth (10-6) elements analytical results of diorite porphyrite in the Huaniushan area
样品号 15L
YHB-0115L
YHB-0215L
YHB-0315L
YHB-0415L
YHB-0515L
YHB-0615L
YHB-0715L
YHB-0815L
YHB-0915L
YHB-1015L
YHB-1115L
YHB-12SiO2 54.10 54.68 54.31 54.63 54.71 54.84 53.97 54.22 54.30 54.03 54.29 53.92 Na2O 3.83 3.75 3.69 3.74 3.20 3.28 3.42 3.49 3.62 3.62 3.99 3.57 P2O5 0.86 0.85 0.85 0.87 0.90 0.86 0.85 0.86 0.86 0.85 0.86 0.85 MgO 3.73 3.91 3.92 3.82 4.04 3.92 3.92 3.68 3.74 3.79 3.80 3.60 Al2O3 14.67 14.95 14.89 14.92 14.94 14.96 14.73 14.88 15.23 14.66 14.85 14.77 Fe2O3T 8.41 8.10 8.46 8.56 8.46 8.13 8.22 7.89 8.00 8.11 8.16 7.87 MnO 0.15 0.15 0.16 0.18 0.20 0.16 0.17 0.16 0.16 0.16 0.15 0.15 TiO2 1.85 1.80 1.82 1.87 1.89 1.85 1.85 1.81 1.82 1.84 1.84 1.81 CaO 5.21 5.53 5.69 5.58 6.01 5.89 5.92 5.32 5.45 5.57 5.64 5.42 K2O 2.92 3.00 2.93 2.94 3.44 3.26 3.15 3.34 2.93 2.80 2.36 3.10 LOI 3.79 2.61 2.58 2.64 2.21 2.52 3.45 4.11 3.93 3.94 3.91 4.33 A/CNK 1.05 1.03 1.01 1.02 0.93 0.96 0.95 1.02 1.06 1.02 1.05 1.02 Mg# 44.78 45.23 43.74 43.78 40.26 41.84 42.61 44.07 44.66 44.34 46.54 44.72 Total 99.44 99.32 99.30 99.76 100.00 99.66 99.67 99.74 100.03 99.36 99.85 99.40 Be 2.78 2.80 2.67 2.78 2.72 2.88 2.81 2.82 2.81 2.85 2.89 2.83 Sc 13.3 13.5 13.3 13.3 13.5 13.4 13.5 13 13.1 13.4 13.3 13.2 V 116 117 113 116 118 118 118 115 116 116 117 118 Cr 69.8 96.4 81.7 70.7 79.6 69.6 78.1 75.8 70.7 76.4 68.2 71.7 Co 18.9 17.5 20.4 21.5 19.7 17.9 18.9 17.9 18.8 16.8 22.9 17.7 Ni 22.9 29.7 27 23.6 32.8 27.4 32.8 25.7 30.8 24.2 28.2 22.9 Cu 11.00 11.60 9.85 8.83 13.70 7.06 17.60 20.30 14.10 10.90 15.60 21.40 Zn 111.0 109.0 118.0 88.6 104.0 106.0 111.0 123.0 128.0 101.0 92.3 122.0 Ga 20.9 20.9 20.5 20.6 20.6 20.7 21 20.6 21 20.9 20.9 21.4 Rb 76.5 79.4 77.6 83.9 98.4 88.6 75.1 88.1 77.5 73.8 66.9 87.2 Sr 885 906 988 883 917 898 902 876 837 868 965 880 Y 34.2 34.5 33.8 33.6 33.7 34 34 33.9 33.6 34.3 34.2 35.2 Zr 488 488 473 487 472 487 482 487 478 497 497 502 Nb 32.5 32.3 30.0 32.3 31.6 32.3 32 32.5 31.9 32.6 32.8 33.7 Cs 2.25 2.55 3.57 2.71 3.93 2.06 1.54 4.25 4.90 3.33 4.61 3.17 Ba 1 073 1 138 1 021 960 1 084 1 108 1 021 1 148 1 033 1 039 1 049 1 065 La 83.8 87.8 83.5 86.8 84.6 82.6 85.8 84.7 83.6 86.6 88.7 87.8 Ce 173 179 171 176 174 169 175 174 170 177 178 180 Pr 22.2 22.6 21.9 22.5 22.2 21.8 22.3 22.2 21.7 22.6 22.4 23.1 Nd 77.9 79.1 76.9 78.3 77.5 76.2 78.1 77.6 76.7 78.8 78.6 80.9 Sm 12.9 13.0 12.7 12.9 12.7 12.7 12.8 12.9 12.7 13.0 12.9 13.2 Eu 3.13 3.15 3.12 3.11 3.11 3.10 3.14 3.00 3.08 3.10 3.12 3.16 Gd 10.6 10.7 10.4 10.6 10.5 10.4 10.6 10.5 10.3 10.6 10.6 10.9 Tb 1.44 1.44 1.41 1.40 1.41 1.41 1.40 1.41 1.38 1.43 1.42 1.45 Dy 6.77 6.82 6.70 6.71 6.72 6.75 6.73 6.72 6.63 6.76 6.74 6.89 Ho 1.22 1.24 1.21 1.22 1.22 1.22 1.22 1.23 1.21 1.24 1.23 1.25 Er 3.27 3.32 3.27 3.26 3.25 3.28 3.28 3.31 3.27 3.33 3.32 3.38 Tm 0.47 0.47 0.47 0.47 0.46 0.46 0.46 0.47 0.46 0.47 0.47 0.48 Yb 2.72 2.74 2.70 2.68 2.68 2.71 2.70 2.72 2.69 2.72 2.76 2.78 Lu 0.41 0.41 0.41 0.41 0.40 0.41 0.41 0.41 0.41 0.41 0.41 0.42 Hf 10.40 10.40 10.10 10.30 9.99 10.30 10.20 10.30 10.10 10.60 10.40 10.60 Ta 1.67 1.68 1.61 1.68 1.65 1.67 1.66 1.69 1.64 1.69 1.69 1.74 Pb 13.20 19.50 17.60 7.08 8.27 8.70 13.80 18.70 20.20 14.30 23.20 15.50 Th 10.30 10.40 10.10 10.10 9.83 10.20 10.20 10.30 10.00 10.40 10.20 10.50 U 2.24 2.24 2.16 2.23 2.14 2.22 2.23 2.20 2.20 2.27 2.22 2.28 ∑REE 399.83 411.79 395.69 406.36 400.75 392.04 403.94 401.17 394.13 408.06 410.67 415.71 LREEE 372.93 384.65 369.12 379.61 374.11 365.40 377.14 374.40 367.78 381.10 383.72 388.16 HREE 26.90 27.14 26.57 26.75 26.64 26.64 26.80 26.77 26.35 26.96 26.95 27.55 (La/b)N 22.11 23.00 22.19 21.32 22.65 21.87 22.80 22.35 22.30 22.85 23.06 22.66 δEu 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.79 0.82 0.81 0.82 0.81 δCe 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 表 3 花牛山闪长玢岩Sr⁃Nd⁃Pb同位素分析结果表
Table 3. Sr⁃Nd⁃Pb isotope compositions analytical results of diorite porphyrite in the Huaniushan area
样品号 87Rb/
86Sr87Sr/
86Sr(2σ)(87Sr/
86Sr)i147Sm/
144Nd143Nd/
144Nd(2σ)(143Nd/
144Nd)ifSm/Nd εNd(t) TDM(Ma) TDM2(Ma) 208Pb/
204Pb207Pb/
204 Pb206Pb/
204 Pb15-LYHB-1 0.250 124 0.709 752±
0.000 0090.708 728 0.100 063 0.512 448±
0.000 0050.512 259 ‒0.49 ‒0.16 944 1 066 38.18 15.62 18.30 15-LYHB-2 0.253 588 0.709 836±
0.000 0080.708 799 0.099 309 0.512 434±
0.000 0060.512 248 ‒0.50 ‒0.39 955 1 085 38.28 15.60 18.16 15-LYHB-3 0.227 270 0.708 766±
0.000 0070.707 836 0.099 792 0.512 447±
0.000 0040.512 259 ‒0.49 ‒0.18 943 1 068 38.25 15.62 18.34 15-LYHB-4 0.224 709 0.709 567±
0.000 0080.708 647 0.100 709 0.512 456±
0.000 0050.512 266 ‒0.49 ‒0.03 938 1 056 38.88 15.64 18.71 15-LYHB-5 0.310 501 0.709 788±
0.000 0120.708 517 0.099 020 0.512 458±
0.000 0060.512 272 ‒0.50 0.09 921 1 046 38.14 15.61 18.27 15-LYHB-6 0.285 492 0.709 164±
0.000 0090.707 996 0.100 709 0.512440±
0.000 0050.512 250 ‒0.49 ‒0.34 960 1 081 38.13 15.62 18.29 15-LYHB-7 0.240 919 0.708 698±
0.000 0100.707 713 0.099 033 0.512 447±
0.000 0070.512 260 ‒0.50 ‒0.15 937 1 065 38.27 15.62 18.37 15-LYHB-8 0.291 011 0.708 217±
0.000 0090.707 026 0.100 450 0.512 450±
0.000 0040.512 260 ‒0.49 ‒0.14 944 1 065 38.25 15.62 18.34 15-LYHB-9 0.267 925 0.708 105±
0.000 0080.707 009 0.100 053 0.512 437±
0.000 0050.512 249 ‒0.49 ‒0.37 958 1 084 38.27 15.62 18.36 15-LYHB-10 0.246 022 0.708 022±
0.000 0070.707 015 0.099 687 0.512 445±
0.000 0050.512 257 ‒0.49 ‒0.21 945 1 070 38.22 15.62 18.34 15-LYHB-11 0.200 602 0.707 861±
0.000 0090.707 040 0.099 172 0.512 446±
0.000 0070.512 260 ‒0.50 ‒0.16 938 1 066 38.26 15.62 18.38 15-LYHB-12 0.286 728 0.708 210±
0.000 0070.707 037 0.098 593 0.512 438±
0.000 0050.512 253 ‒0.50 ‒0.29 944 1 077 38.22 15.62 18.34 -
[1] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0 [2] Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2 [3] Carmichael, I. S., 2002. The Andesite Aqueduct: Perspectives on the Evolution of Intermediate Magmatism in West-Central (105-99 Degrees W) Mexico. Contributions to Mineralogy and Petrology, 143(6): 641-663. https://doi.org/10.1007/s00410-002-0370-9 [4] Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531-011-0689-4 [5] Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2019. Magmatism and Tectonic Background of Early Permian Intra-Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt. Earth Science, 44(10): 3454-3468 (in Chinese with English abstract). [6] Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515-533. https://doi.org/10.1007/s00410-003-0448-z [7] Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev.2017.09.012 [8] He, Z. Y., Klemd, R., Yan, L. L., et al., 2018. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14. https://doi.org/10.1016/j.earscirev.2018.05.012 [9] Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1-2): 119-146. https://doi.org/10.1016/S0009-2541(98)00197-1 [10] Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5 [11] Li, S., Wilde, S. A., Wang, T., 2013. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 179: 99-119. https://doi.org/10.1016/j.lithos.2013.08.002 [12] Liu, Q., Zhao, G. C., Han, Y. G., et al., 2017. Geochronology and Geochemistry of Permian to Early Triassic Granitoids in the Alxa Terrane: Constraints on the Final Closure of the Paleo-Asian Ocean. Lithosphere, L646.1. https://doi.org/10.1130/l646.1 [13] Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2012. Late Ordovician to Early Devonian Adakites and Nb-Enriched Basalts in the Liuyuan Area, Beishan, NW China: Implications for Early Paleozoic Slab-Melting and Crustal Growth in the Southern Altaids. Gondwana Research, 22(2): 534-553. https://doi.org/10.1016/j.gr.2011.06.006 [14] Niu, Y. Z., Shi, G. R., Ji, W. H., et al., 2021. Paleogeographic Evolution of a Carboniferous-Permian Sea in the Southernmost Part of the Central Asian Orogenic Belt, NW China: Evidence from Microfacies, Provenance and Paleobiogeography. Earth-Science Reviews, 220: 103738. https://doi.org/10.1016/j.earscirev.2021.103738 [15] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4 [16] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [17] Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2011. Geochemistry and Geochronology of Acidic Rocks in the Beishan Region, NW China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 41(1): 31-43. https://doi.org/10.1016/j.jseaes.2010.12.002 [18] Sun, H. R., Lü, Z. C., Yu, X. F., et al., 2020. Late Paleozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province. Journal of Jilin University (Earth Science Edition), 50(5): 1433-1449 (in Chinese with English abstract). [19] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [20] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, London. [21] Wang, G. Q., 2015. The Research of the Paleozoic Ophiolites and Volcanic Rocks and the Tectonic Evolution in the Beishan Area (Northwest China) (Dissertation). Chang'an Uiniversity, Xi'an (in Chinese with English abstract). [22] Wang, H. T., 2019. Tectono-Magmatism and Its Geological Significance in the Beishan Area of the Southern Part of the Central Asian Orogenic Belt (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [23] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [24] Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2007. The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 26(1): 77-89 (in Chinese with English abstract). [25] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553-1594. https://doi.org/10.2475/10.2010.12 [26] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [27] Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370 [28] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015 [29] Xu, W., Xu, X. Y., Lu, J. C., 2019. Geochronology, Petrogenesis and Tectonic Implications of Devonian High-K Acid Magmatic Rocks from Yemajing Area in Beishan Orogen. Earth Science, 44(8): 2775-2793 (in Chinese with English abstract). [30] Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2015. OIB-Type Rocks within West Junggar Ophiolitic Mélanges: Evidence for the Accretion of Seamounts. Earth-Science Reviews, 150: 477-496. https://doi.org/10.1016/j.earscirev.2015.09.002 [31] Yang, J., 2017. Geochemical Characteristics and Tectonic Significance of the Early Paleozoic-Early Mesozoic Granite in Huaniushan Area, Beishan (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [32] Yu, J. Y., Li, X. M., Wang, G. Q., et al., 2012. Zircon U-Pb Ages of Huitongshan and Zhangfangshan Ophiolite in Beishan of Gansu-Inner Mongolia Border Area and Their Significance. Geological Bulletin of China, 31(12): 2038-2045 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.12.013 [33] Yuan, Y., 2019. The Continental Crust Formation and Evolution of the Beishan Orogenic Belt (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [34] Zhang, H. F., Sun, M., Zhou, X. H., et al., 2002. Mesozoic Lithosphere Destruction Beneath the North China Craton: Evidence from Major-, Trace-Element and Sr-Nd-Pb Isotope Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144(2): 241-254. https://doi.org/10.1007/s00410-002-0395-0 [35] Zhang, W., Feng, J. C., Zheng, R. G., et al., 2011. LA-ICP MS Zircon U-Pb Ages of the Granites from the South of Yin'aoxia and Their Tectonic Significances. Acta Petrologica Sinica, 27(6): 1649-1661 (in Chinese with English abstract). [36] Zhang, Y. Y., Dostal, J., Zhao, Z. H., et al., 2011. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China: Implications for Crust-Mantle Interaction. Gondwana Research, 20(4): 816-830. https://doi.org/10.1016/j.gr.2011.03.008 [37] Zheng, R. G., Li, J. Y., Zhang, J., et al., 2021. A Prolonged Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from Anatomy and Tectonic Affinity for the Beishan Complex. Gondwana Research, 95: 88-112. https://doi.org/10.1016/j.gr.2021.02.022 [38] Zheng, R. G., Wang, Y. P., Zhang, Z. Y., et al., 2016. Geochronology and Geochemistry of Yinwaxia Acidic Volcanic Rocks in the Southern Beishan: New Evidence for Permian Continental Rifting. Geotectonica et Metallogenia, 40(5): 1031-1048 (in Chinese with English abstract). [39] Zheng, R. G., Wu, T. R., Zhang, W., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Yinwaxia Area, Beishan: Implications for Rift Magmatism in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 91: 39-55. https://doi.org/10.1016/j.jseaes.2014.04.022 [40] Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1991. Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3/4): 385-392. https://doi.org/10.1016/0040-1951(91)90466-6 [41] 程杨, 肖庆辉, 李廷栋, 等, 2019. 中亚造山带东缘迪彦庙俯冲增生杂岩带早二叠世洋内弧岩浆作用及构造背景. 地球科学, 44(10): 3454-3468. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201910018.htm [42] 孙海瑞, 吕志成, 于晓飞, 等, 2020. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征: 对北山造山带晚古生代构造背景的指示. 吉林大学学报(地球科学版), 50(5): 1433-1449. [43] 王国强, 2015. 北山古生代蛇绿岩、火山岩研究与构造演化(博士学位论文). 西安: 长安大学. [44] 王怀涛, 2019. 中亚造山带南段北山构造‒岩浆作用及其地质意义的研究(博士学位论文). 兰州: 兰州大学. [45] 夏林圻, 夏祖春, 徐学义, 等, 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩. 岩石矿物学杂志, 26(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701010.htm [46] 许伟, 徐学义, 卢进才, 等, 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908022.htm [47] 杨婧, 2017. 北山花牛山早古生代‒早中生代花岗岩类地球化学特征及构造意义研究(硕士学位论文). 兰州: 兰州大学. [48] 余吉远, 李向民, 王国强, 等, 2012. 甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义. 地质通报, 31(12): 2038-2045. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201212013.htm [49] 袁禹, 2019. 北山造山带大陆地壳的形成与演化(博士学位论文). 武汉: 中国地质大学. [50] 张文, 冯继承, 郑荣国, 等, 2011. 甘肃北山音凹峡南花岗岩体的锆石LA-ICP MS定年及其构造意义. 岩石学报, 27(6): 1649-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106007.htm [51] 郑荣国, 王云佩, 张昭昱, 等, 2016. 北山南带音凹峡地区酸性火山岩年代学、地球化学研究: 二叠纪裂谷岩浆作用的新证据. 大地构造与成矿学, 40(5): 1031-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201605013.htm