New Advances in Magnesium Isotope Geochemistry and Its Application to Carbonatite Rocks
-
摘要: 镁(Mg)同位素有3个,24Mg、25Mg和26Mg,其中24Mg和26Mg的相对质量差较大,高达8.33%,这种大的相对质量差使地壳活动或其他地质过程中Mg同位素因化学物理条件的变化而发生明显的同位素质量分馏.目前,自然界可观测到的δ26Mg变化范围为-5.60‰~0.92‰,约6.5‰.镁在低温地球化学过程中分馏显著,而在高温环境下分馏不明显,因而Mg同位素是地质过程的潜在地球化学指标和示踪剂,在低温风化作用、高温部分熔融与岩浆结晶分异、变质作用、板片俯冲及壳幔物质循环、热液蚀变和矿床成因等方面取得重要进展.为此,简要介绍了镁同位素分析方法,系统总结了Mg同位素在地球各储库中的组成与分布特征以及地质作用过程中的镁同位素分馏机理;其次重点介绍了镁同位素近年来在碳酸岩研究中的应用;最后对有关问题进行了探讨,包括幔源岩石低δ26Mg成因解释(与俯冲再循环的碳酸盐岩、洋壳物质有关或与矿物分离结晶有关)和Li-Mg-Ca同位素联合示踪岩浆碳酸岩岩石成因.并对碰撞反应池多接收器电感耦合等离子体质谱仪(Nu Sapphire MC-ICP-MS)分析优势和Li-Mg-Ca等金属同位素联合示踪在稀土元素富集机制的应用进行了展望.Abstract: There are three magnesium (Mg) isotopes, 24Mg, 25Mg and 26Mg, among which the relative mass difference of 26Mg and 24Mg is large, up to 8.33%. Such a large relative mass difference can cause significant mass dependent fractionation of Mg isotopes due to the changes of chemical and physical conditions during crustal activities or other geological processes. Variations of δ26Mg in nature are mainly from -5.60‰ to 0.92‰, spanning a limited range of 6.5‰. Mg isotope is a potential geochemical index and tracer for geological processes because Mg fractionates significantly in low-temperature geochemical processes, but not in high-temperature environments. Mg isotopes have made important progress in the fields of low-temperature weathering, high-temperature partial melting and magmatic crystallization differentiation, metamorphism, plate subduction, crust-mantle material recycling, hydrothermal alteration and genesis of deposits. In this paper, the analysis methods of Mg isotopes are briefly introduced firstly. Secondly, the composition and distribution characteristics of Mg isotopes in various reservoirs of the earth and the fractionation mechanism of Mg isotopes in geological processes are systematically summarized. And then, the application of magnesium isotopes in the study of carbonatites in recent years is emphatically introduced. Finally, it discusses the origin of low δ26Mg in mantle-derived rocks (related to carbonate rocks of subduction and recycling, oceanic crust materials or mineral separation crystallization) and trace the petrogenesis of magmatic carbonatites by the combination of Li, Mg and Ca isotopes. At the end of this paper, the advantages of the dual-path collision cell-capable multiple-collector inductively coupled plasma mass spectrometer (Nu Sapphire MC-ICP-MS) and the application of Li-Mg-Ca and other metal isotopes in the enrichment mechanisms of rare earth elements are prospected.
-
Key words:
- magnesium isotope /
- analytical method /
- isotope fractionation /
- combined tracer /
- carbonatites /
- geochemistry
-
图 1 地幔、陆壳、洋壳和水圈中Mg的质量分数(a); 镁同位素的质量数和天然丰度(b)(据Teng,2017)
Fig. 1. Mass fraction of Mg in the mantle, continental crust, oceanic crust and hydrosphere (a), Mass number and natural abundance of Mg isotopes (b) (modified after Teng, 2017)
图 2 地球不同储库的镁同位素组成(灰色虚线代表原始地幔的平均δ26Mg=-0.25‰±0.07‰)
据Tipper et al.(2006);Teng et al.(2010a);Huang et al.(2013);Ling et al.(2013);Teng et al.(2013);Li et al.(2016);Yang et al.(2016);Cheng et al.(2017);董爱国和韩贵琳(2017);Hu et al.(2017b);Huang et al.(2018);Guo et al.(2019);黄建等(2019);He et al.(2020);Ryu et al.(2021);Zhong et al.(2021)修改
Fig. 2. Mg isotopic compositions of different reservoirs in the Earth system (the gray dashed line represents the average δ26Mg of -0.25‰±0.07‰ for the pristine mantle)
图 3 Oldoinyo Lengai过碱性硅酸盐和钠质碳酸岩δ26Mg与MgO关系图解(据Li et al., 2016)
Fig. 3. δ26Mg with MgO for peralkaline silicate rocks and natrocarbonatites from Oldoinyo Lengai (after Li et al., 2016)
图 4 Oldoinyo Lengai钠质碳酸岩δ26Mg与CaO+SrO+BaO(a)和Na2O+K2O(b)的关系图解(据Li et al., 2016)
Fig. 4. δ26Mg with CaO+SrO+BaO (a) and Na2O+K2O (b) for natrocarbonatites from Oldoinyo Lengai (after Li et al., 2016)
图 5 白云鄂博矿床方解石和白云石碳酸岩和含矿白云岩δ26Mg与SiO2(a)和1/MgO(b)关系图解(据Ling et al., 2013)
Fig. 5. δ26Mg with SiO2 (a) and 1/MgO (b) for calcitic and dolomitic carbonatites and ore-bearing dolomites in the Bayan E'bo deposit (after Ling et al., 2013)
图 6 瓦吉里塔格镁质碳酸岩δ26Mg与MgO(a)、CaO(b)、TFe2O3(c)、P2O5(d)、La(e)和Sr(f)关系图解(据Cheng et al., 2017)
Fig. 6. Variations of δ26Mg with the MgO (a), CaO (b), TFe2O3 (c), P2O5 (d), La (e) and Sr (f) in the Wajilitage magnesiocarbonatites (after Cheng et al., 2017)
图 7 N-MORB与菱镁矿、白云石和方解石/文石间Mg和Sr同位素交换模型(a), 正常地幔和沉积碳酸盐岩间的Mg和O同位素混合模型(b)
a据Wang et al.(2016b)和Cheng et al.(2017);b据Cheng et al.(2017)
Fig. 7. Mg and Sr isotope exchange model between N-MORB and magnesite, dolomite and calcite/aragonite (a) and Mg and O isotopic mix modeling between the normal mantle and sedimentary carbonates (b)
图 8 玄武岩δ26Mg与TiO2关系图解(据Su et al., 2019a)
Fig. 8. δ26Mg vs. TiO2 contents of the basalts (after Su et al., 2019a)
表 1 不同标样相对于DSM3的值
Table 1. Values of different standard samples relative to DSM3
标样 δ26Mg δ25Mg 参考文献 SRM980 -3.980‰±0.050‰ -2.040‰±0.050‰ Bolou-Bi et al., 2009 Cambridge-1 -2.623‰±0.030‰ -1.358‰±0.030‰ Teng et al., 2015 CAGS1-Mg 0.399‰±0.100‰ 0.200‰±0.050‰ 何学贤等,2008 CAGS2-Mg 0.270‰±0.100‰ 0.150‰±0.050‰ 何学贤等,2008 GSB -2.032‰±0.038‰ -1.044‰±0.024‰ Gao et al., 2019 ERM-AE143 -3.295‰±0.040‰ -1.666‰±0.043‰ Vega et al., 2020 -
[1] Amsellem, E., Moynier, F., Bertrand, H., et al., 2020. Calcium Isotopic Evidence for the Mantle Sources of Carbonatites. Science Advances, 6(23): eaba3269. https://doi.org/10.1126/sciadv.aba3269 [2] An, Y.J., Huang, J.X., Griffin, W.L., et al., 2017. Isotopic Composition of Mg and Fe in Garnet Peridotites from the Kaapvaal and Siberian Cratons. Geochimica et Cosmochimica Acta, 200: 167-185. https://doi.org/10.1016/j.gca.2016.11.041 [3] An, Y.J., Wu, F., Xiang, Y.X., et al., 2014. High-Precision Mg Isotope Analyses of Low-Mg Rocks by MC-ICP-MS. Chemical Geology, 390: 9-21. https://doi.org/10.1016/j.chemgeo.2014.09.014 [4] Antonelli, M.A., Simon, J.I., 2020. Calcium Isotopes in High-Temperature Terrestrial Processes. Chemical Geology, 548: 119651. https://doi.org/10.1016/j.chemgeo.2020.119651 [5] Bai, Y., Su, B.X., Xiao, Y., et al., 2021. Magnesium and Iron Isotopic Evidence of Inter-Mineral Diffusion in Ultramafic Cumulates of the Peridotite Zone, Stillwater Complex. Geochimica et Cosmochimica Acta, 292: 152-169. https://doi.org/10.1016/j.gca.2020.09.023 [6] Banerjee, A., Chakrabarti, R., Simonetti, A., 2021. Temporal Evolution of δ44/40Ca and 87Sr/86Sr of Carbonatites: Implications for Crustal Recycling through Time. Geochimica et Cosmochimica Acta, 307: 168-191. https://doi.org/10.1016/j.gca.2021.05.046 [7] Bao, Z.A., Zong, C.L., Chen, K.Y., et al., 2020. Chromatographic Purification of Ca and Mg from Biological and Geological Samples for Isotope Analysis by MC-ICP-MS. International Journal of Mass Spectrometry, 448: 116268. https://doi.org/10.1016/j.ijms.2019.116268 [8] Bell, K., Simonetti, A., 2010. Source of Parental Melts to Carbonatites-Critical Isotopic Constraints. Mineralogy and Petrology, 98(1-4): 77-89. https://doi.org/10.1007/s00710-009-0059-0 [9] Bell, K., Tilton, G.R., 2002. Probing the Mantle: The Story from Carbonatites. EOS, Transactions American Geophysical Union, 83(25): 273-277. https://doi.org/10.1029/2002eo000190 [10] Bialik, O.M., Wang, X.M., Zhao, S.G., et al., 2018. Mg Isotope Response to Dolomitization in Hinterland-Attached Carbonate Platforms: Outlook of δ26Mg as a Tracer of Basin Restriction and Seawater Mg/Ca Ratio. Geochimica et Cosmochimica Acta, 235: 189-207. https://doi.org/10.1016/j.gca.2018.05.024 [11] Bolou-Bi, E.B., Vigier, N., Brenot, A., et al., 2009. Magnesium Isotope Compositions of Natural Reference Materials. Geostandards and Geoanalytical Research, 33(1): 95-109. https://doi.org/10.1111/j.1751-908X.2009.00884.x [12] Bourdon, B., Tipper, E.T., Fitoussi, C., et al., 2010. Chondritic Mg Isotope Composition of the Earth. Geochimica et Cosmochimica Acta, 74(17): 5069-5083. https://doi.org/10.1016/j.gca.2010.06.008 [13] Brenot, A., Cloquet, C., Vigier, N., et al., 2008. Magnesium Isotope Systematics of the Lithologically Varied Moselle River Basin, France. Geochimica et Cosmochimica Acta, 72(20): 5070-5089. https://doi.org/10.1016/j.gca.2008.07.027 [14] Brewer, A., Teng, F.Z., Dethier, D., 2018. Magnesium Isotope Fractionation during Granite Weathering. Chemical Geology, 501: 95-103. https://doi.org/10.1016/j.chemgeo.2018.10.013 [15] Castor, S.B., 2008. The Mountain Pass Rare-Earth Carbonatite and Associated Ultrapotassic Rocks, California. The Canadian Mineralogist, 46(4): 779-806. https://doi.org/10.3749/canmin.46.4.779 [16] Chakrabarti, R., Jacobsen, S.B., 2010. The Isotopic Composition of Magnesium in the Inner Solar System. Earth and Planetary Science Letters, 293(3-4): 349-358. https://doi.org/10.1016/j.epsl.2010.03.001 [17] Chang, V.T.C., Makishima, A., Belshaw, N.S., et al., 2003. Purification of Mg from Low-Mg Biogenic Carbonates for Isotope Ratio Determination Using Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 18(4): 296-301. https://doi.org/10.1039/b210977h [18] Chaussidon, M., Deng, Z.B., Villeneuve, J., et al., 2017. In Situ Analysis of Non-Traditional Isotopes by SIMS and LA-MC-ICP-MS: Key Aspects and the Example of Mg Isotopes in Olivines and Silicate Glasses. Reviews in Mineralogy and Geochemistry, 82(1): 127-163. https://doi.org/10.2138/rmg.2017.82.5 [19] Chen, C.F., Huang, J.X., Foley, S.F., et al., 2020b. Compositional and Pressure Controls on Calcium and Magnesium Isotope Fractionation in Magmatic Systems. Geochimica et Cosmochimica Acta, 290: 257-270. https://doi.org/10.1016/j.gca.2020.09.006 [20] Chen, X.Y., Teng, F.Z., Huang, K.J., et al., 2020a. Intensified Chemical Weathering during Early Triassic Revealed by Magnesium Isotopes. Geochimica et Cosmochimica Acta, 287: 263-276. https://doi.org/10.1016/j.gca.2020.02.035 [21] Chen, Y.X., 2019. Reversed Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel: Geochemical Evidence from the Ultrahigh-Pressure Metamorphic Whiteschist in the Western Alps. Earth Science, 44(12): 4057-4063(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.241 [22] Chen, Y.X., Demény, A., Schertl, H.P., et al., 2020c. Tracing Subduction Zone Fluids with Distinct Mg Isotope Compositions: Insights from High-Pressure Metasomatic Rocks (Leucophyllites) from the Eastern Alps. Geochimica et Cosmochimica Acta, 271: 154-178. https://doi.org/10.1016/j.gca.2019.12.025 [23] Cheng, Z.G., Zhang, Z.C., Hou, T., et al., 2017. Decoupling of Mg-C and Sr-Nd-O Isotopes Traces the Role of Recycled Carbon in Magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159-178. https://doi.org/10.1016/j.gca.2016.12.036 [24] CIAAW, 2019. Atomic Weights of the Elements 2019. https://ciaaw.org/atomic-weights.htm [25] Dai, L.Q., Zhao, K., Zhao, Z.F., et al., 2020. Magnesium-Carbon Isotopes Trace Carbon Recycling in Continental Subduction Zone. Lithos, 376-377: 105774. https://doi.org/10.1016/j.lithos.2020.105774 [26] Dai, M.N., Bao, Z.A., Chen, K.Y., et al., 2016. In-Situ Analysis of Mg Isotopic Compositions of Basalt Glasses by Femtosecond Laser Ablation Multi-Collector Inductively Coupled Mass Spectrometry. Chinese Journal of Analytical Chemistry, 44(2): 173-178(in Chinese with English abstract). doi: 10.1016/S1872-2040(16)60901-5 [27] Dessert, C., Lajeunesse, E., Lloret, E., et al., 2015. Controls on Chemical Weathering on a Mountainous Volcanic Tropical Island: Guadeloupe (French West Indies). Geochimica et Cosmochimica Acta, 171: 216-237. https://doi.org/10.1016/j.gca.2015.09.009 [28] Dong, A.G., Han, G.L., 2017. A Review of Magnesium Isotope System in Rivers. Advances in Earth Science, 32(8): 800-809(in Chinese with English abstract). [29] Dong, A.G., Zhu, X.K., 2016. Mg Isotope Geochemical Cycle in Supergene Environment. Advances in Earth Science, 31(1): 43-58(in Chinese with English abstract). [30] D'Orazio, M., Armienti, P., Cerretini, S., 1998. Phenocryst/Matrix Trace-Element Partition Coefficients for Hawaiite-Trachyte Lavas from the Ellittico Volcanic Sequence (Mt. Etna, Sicily, Italy). Mineralogy and Petrology, 64(1-4): 65-88. https://doi.org/10.1007/BF01226564 [31] Doroshkevich, A.G., Veksler, I.V., Klemd, R., et al., 2017. Trace-Element Composition of Minerals and Rocks in the Belaya Zima Carbonatite Complex (Russia): Implications for the Mechanisms of Magma Evolution and Carbonatite Formation. Lithos, 284-285: 91-108. https://doi.org/10.1016/j.lithos.2017.04.003 [32] Fan, B.L., Tao, F.X., Zhao, Z.Q., 2013. Advance of Geochemical Applications of Magnesium Isotope in Marine and Earth Surface Environments. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 114-120(in Chinese with English abstract). [33] Fan, H.R., Niu, H.C., Li, X.C., et al., 2020. The Types, Ore Genesis and Resource Perspective of Endogenic REE Deposits in China. Chinese Science Bulletin, 65(33): 3778-3793(in Chinese). doi: 10.1360/TB-2020-0432 [34] Fries, D.M., James, R.H., Dessert, C., et al., 2019. The Response of Li and Mg Isotopes to Rain Events in a Highly-Weathered Catchment. Chemical Geology, 519: 68-82. https://doi.org/10.1016/j.chemgeo.2019.04.023 [35] Galy, A., Yoffe, O., Janney, P.E., et al., 2003. Magnesium Isotope Heterogeneity of the Isotopic Standard SRM980 and New Reference Materials for Magnesium-Isotope-Ratio Measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352-1356. https://doi.org/10.1039/b309273a [36] Galy, A., Belshaw, N.S., Halicz, L., et al., 2001. High-Precision Measurement of Magnesium Isotopes by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 208(1-3): 89-98. https://doi.org/10.1016/s1387-3806(01)00380-3 doi: 10.1016/S1387-3806(01)00380-3 [37] Gao, T., Ke, S., Li, R.Y., et al., 2019. High-Precision Magnesium Isotope Analysis of Geological and Environmental Reference Materials by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 33(8): 767-777. https://doi.org/10.1002/rcm.8376 [38] Gao, T., Ke, S., Wang, S.J., et al., 2018. Contrasting Mg Isotopic Compositions between Fe-Mn Nodules and Surrounding Soils: Accumulation of Light Mg Isotopes by Mg-Depleted Clay Minerals and Fe Oxides. Geochimica et Cosmochimica Acta, 237: 205-222. https://doi.org/10.1016/j.gca.2018.06.028 [39] Geske, A., Goldstein, R.H., Mavromatis, V., et al., 2015. The Magnesium Isotope (δ26Mg) Signature of Dolomites. Geochimica et Cosmochimica Acta, 149: 131-151. https://doi.org/10.1016/j.gca.2014.11.003 [40] Gray, C.M., Compston, W., 1974. Excess 26Mg in the Allende Meteorite. Nature, 251: 495-497. https://doi.org/10.1038/251495a0 [41] Guo, B.J., Zhu, X.K., Dong A.G., et al., 2019. Mg Isotopic Systematics and Geochemical Applications: A Critical Review. Journal of Asian Earth Sciences, 176: 368-385. https://doi.org/10.1016/j.jseaes.2019.03.001 [42] Halama, R., McDonough, W.F., Rudnick, R.L., et al., 2007. The Li Isotopic Composition of Oldoinyo Lengai: Nature of the Mantle Sources and Lack of Isotopic Fractionation during Carbonatite Petrogenesis. Earth and Planetary Science Letters, 254(1-2): 77-89. https://doi.org/10.1016/j.epsl.2006.11.022 [43] Halama, R., McDonough, W.F., Rudnick, R.L., et al., 2008. Tracking the Lithium Isotopic Evolution of the Mantle Using Carbonatites. Earth and Planetary Science Letters, 265(3-4): 726-742. https://doi.org/10.1016/j.epsl.2007.11.007 [44] Hammouda, T., Keshav, S., 2015. Melting in the Mantle in the Presence of Carbon: Review of Experiments and Discussion on the Origin of Carbonatites. Chemical Geology, 418: 171-188. https://doi.org/10.1016/j.chemgeo.2015.05.018 [45] Handler, M.R., Baker, J.A., Schiller, M., et al., 2009. Magnesium Stable Isotope Composition of Earth's Upper Mantle. Earth and Planetary Science Letters, 282(1-4): 306-313. https://doi.org/10.1016/j.epsl.2009.03.031 [46] Harrison, A.L., Bénézeth, P., Schott, J., et al., 2021. Magnesium and Carbon Isotope Fractionation during Hydrated Mg-Carbonate Mineral Phase Transformations. Geochimica et Cosmochimica Acta, 293: 507-524. https://doi.org/10.1016/j.gca.2020.10.028 [47] He, R., Ning, M., Huang, K.J., et al., 2020. Mg Isotopic Systematics during Early Diagenetic Aragonite-Calcite Transition: Insights from the Key Largo Limestone. Chemical Geology, 558: 119876. https://doi.org/10.1016/j.chemgeo.2020.119876 [48] He, X.X., Zhu, X.K., Li, S.Z., et al., 2008. High-Precision Measurement of Magnesium Isotopes Using MC-ICP-MS. Acta Petrologica et Mineralogica, 27(5): 441-448 (in Chinese with English abstract). [49] Heymann, D., Dziczkaniec, M., 1976. Early Irradiation of Matter in the Solar System: Magnesium (Proton, Neutron) Scheme. Science, 191(4222): 79-81. https://doi.org/10.1126/science.191.4222.79 [50] Hindshaw, R.S., Teisserenc, R., Le Dantec, T., et al., 2019. Seasonal Change of Geochemical Sources and Processes in the Yenisei River: A Sr, Mg and Li Isotope Study. Geochimica et Cosmochimica Acta, 255: 222-236. https://doi.org/10.1016/j.gca.2019.04.015 [51] Hindshaw, R.S., Tosca, R., Tosca, N.J., et al., 2020. Experimental Constraints on Mg Isotope Fractionation during Clay Formation: Implications for the Global Biogeochemical Cycle of Mg. Earth and Planetary Science Letters, 531: 115980. https://doi.org/10.1016/j.epsl.2019.115980 [52] Hoang, T.H.A., Choi, S.H., Yu, Y., et al., 2018. Geochemical Constraints on the Spatial Distribution of Recycled Oceanic Crust in the Mantle Source of Late Cenozoic Basalts, Vietnam. Lithos, 296-299: 382-395. https://doi.org/10.1016/j.lithos.2017.11.020 [53] Hou, Z.Q., Chen, J., Zhai, M.G., 2020. Current Status and Frontiers of Research on Critical Mineral Resources. Chinese Science Bulletin, 65(33): 3651-3652(in Chinese). doi: 10.1360/TB-2020-1417 [54] Hou, Z.Q., Liu, Y., Tian, S.H., et al., 2015. Formation of Carbonatite-Related Giant Rare-Earth-Element Deposits by the Recycling of Marine Sediments. Scientific Reports, 5(1): 10231. https://doi.org/10.1038/srep10231 [55] Hu, Y., Teng, F.Z., Plank, T., et al., 2017b. Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 466: 15-31. https://doi.org/10.1016/j.chemgeo.2017.06.010 [56] Hu, Y., Teng, F.Z., Zhang, H.F., et al., 2016. Metasomatism-Induced Mantle Magnesium Isotopic Heterogeneity: Evidence from Pyroxenites. Geochimica et Cosmochimica Acta, 185: 88-111. https://doi.org/10.1016/j.gca.2015.11.001 [57] Hu, Z.Y., Hu, W.X., Liu, C., et al., 2019. Conservative Behavior of Mg Isotopes in Massive Dolostones: From Diagenesis to Hydrothermal Reworking. Sedimentary Geology, 381: 65-75. https://doi.org/10.1016/j.sedgeo.2018.12.007 [58] Hu, Z.Y., Hu, W.X., Wang, X.M., et al., 2017a. Resetting of Mg Isotopes between Calcite and Dolomite during Burial Metamorphism: Outlook of Mg Isotopes as Geothermometer and Seawater Proxy. Geochimica et Cosmochimica Acta, 208: 24-40. https://doi.org/10.1016/j.gca.2017.03.026 [59] Huang, F., Chakraborty, P., Lundstrom, C.C., et al., 2010. Isotope Fractionation in Silicate Melts by Thermal Diffusion. Nature, 464: 396-400. https://doi.org/10.1038/nature10764 doi: 10.1038/nature08840 [60] Huang, F., Glessner, J, Ianno, A., et al., 2009. Magnesium Isotopic Composition of Igneous Rock Standards Measured by MC-ICP-MS. Chemical Geology, 268(1-2): 15-23. https://doi.org/10.1016/j.chemgeo.2009.07.003 [61] Huang, F., Zhang, Z.F., Lundstrom, C.C., et al., 2011. Iron and Magnesium Isotopic Compositions of Peridotite Xenoliths from Eastern China. Geochimica et Cosmochimica Acta, 75(12): 3318-3334. https://doi.org/10.1016/j.gca.2011.03.036 [62] Huang, J., Huang, F., Xiao, Y.L., 2019. Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids. Earth Science, 44(12): 4050-4056(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.234 [63] Huang, J., Ke, S., Gao, Y.J., et al., 2015b. Magnesium Isotopic Compositions of Altered Oceanic Basalts and Gabbros from IODP Site 1256 at the East Pacific Rise. Lithos, 231: 53-61. https://doi.org/10.1016/j.lithos.2015.06.009 [64] Huang, J., Li, S.G., Xiao Y.L., et al., 2015a. Origin of Low δ26Mg Cenozoic Basalts from South China Block and Their Geodynamic Implications. Geochimica et Cosmochimica Acta, 164: 298-317. https://doi.org/10.1016/j.gca.2015.04.054 [65] Huang, J., Xiao, Y.L., 2016. Mg-Sr Isotopes of Low-δ26Mg Basalts Tracing Recycled Carbonate Species: Implication for the Initial Melting Depth of the Carbonated Mantle in Eastern China. International Geology Review, 58(11): 1350-1362. https://doi.org/10.1080/00206814.2016.1157709 [66] Huang, K.J., Shen, B., Lang, X.G., et al., 2015c. Magnesium Isotopic Compositions of the Mesoproterozoic Dolostones: Implications for Mg Isotopic Systematics of Marine Carbonates. Geochimica et Cosmochimica Acta, 164: 333-351. https://doi.org/10.1016/j.gca.2015.05.002 [67] Huang, K.J., Teng, F.Z., Elsenouy, A., et al., 2013. Magnesium Isotopic Variations in Loess: Origins and Implications. Earth and Planetary Science Letters, 374: 60-70. https://doi.org/10.1016/j.epsl.2013.05.010 [68] Huang, K.J., Teng, F.Z., Plank, T., et al., 2018. Magnesium Isotopic Composition of Altered Oceanic Crust and the Global Mg Cycle. Geochimica et Cosmochimica Acta, 238: 357-373. https://doi.org/10.1016/j.gca.2018.07.011 [69] Jiang, S.Y., Wen, H.J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118(in Chinese with English abstract). [70] Jin, M., Feng, D., Huang, K.J., et al., 2021. Behavior of Mg Isotopes during Precipitation of Methane-Derived Carbonate: Evidence from Tubular Seep Carbonates from the South China Sea. Chemical Geology, 567: 120101. https://doi.org/10.1016/j.chemgeo.2021.120101 [71] Jung, S.G., Choi, S.H., Ji, K.H., et al., 2019. Geochemistry of Volcanic Rocks from Oldoinyo Lengai, Tanzania: Implications for Mantle Source Lithology. Lithos, 350-351: 105223. https://doi.org/10.1016/j.lithos.2019.105223 [72] Ke, S., Liu, S.A., Li, W.Y., et al., 2011. Advances and Application in Magnesium Isotope Geochemistry. Acta Petrologica Sinica, 27(2): 383-397(in Chinese with English abstract). [73] Ke, S., Teng, F.Z., Li, S.G., et al., 2016. Mg, Sr, and O Isotope Geochemistry of Syenites from Northwest Xinjiang, China: Tracing Carbonate Recycling during Tethyan Oceanic Subduction. Chemical Geology, 437: 109-119. https://doi.org/10.1016/j.chemgeo.2016.05.002 [74] Kim, J.I., Choi, S.H., Koh, G.W., et al., 2019. Petrogenesis and Mantle Source Characteristics of Volcanic Rocks on Jeju Island, South Korea. Lithos, 326-327: 476-490. https://doi.org/10.1016/j.lithos.2018.12.034 [75] Ku, Y., Jacobsen, S.B., 2020. Potassium Isotope Anomalies in Meteorites Inherited from the Protosolar Molecular Cloud. Science Advances, 6(41): eabd0511. https://doi.org/10.1126/sciadv.abd0511 [76] Lai, Y.J., Pogge von Strandmann, P.A.E., Dohmen, R., et al., 2015. The Influence of Melt Infiltration on the Li and Mg Isotopic Composition of the Horoman Peridotite Massif. Geochimica et Cosmochimica Acta, 164: 318-332. https://doi.org/10.1016/j.gca.2015.05.006 [77] Lee, S.G., Ahn, I., Asahara, Y., et al., 2018. Geochemical Interpretation of Magnesium and Oxygen Isotope Systematics in Granites with the REE Tetrad Effect. Geosciences Journal, 22(5): 697-710. https://doi.org/10.1007/s12303-018-0024-1 [78] Lee, S.W., Ryu, J.S., Lee, K.S., 2014. Magnesium Isotope Geochemistry in the Han River, South Korea. Chemical Geology, 364: 9-19. https://doi.org/10.1016/j.chemgeo.2013.11.022 [79] Lee, T., Papanastassiou, D.A., 1974. Mg Isotopic Anomalies in the Allende Meteorite and Correlation with O and Sr Effects. Geophysical Research Letters, 1(6): 225-228. https://doi.org/10.1029/GL001i006p00225 [80] Li, L.B., Zhang, F., Jin, Z.D., et al., 2020. Riverine Mg Isotopes Response to Glacial Weathering within the Muztag Catchment of the Eastern Pamir Plateau. Applied Geochemistry, 118: 104626. https://doi.org/10.1016/j.apgeochem.2020.104626 [81] Li, M.Y.H., Teng, F.Z., Zhou, M.F., 2021a. Phyllosilicate Controls on Magnesium Isotopic Fractionation during Weathering of Granites: Implications for Continental Weathering and Riverine System. Earth and Planetary Science Letters, 553: 116613. https://doi.org/10.1016/j.epsl.2020.116613 [82] Li, M.L., Liu, S.G., Lee, H.Y., et al., 2021b. Magnesium and Zinc Isotopic Anomaly of Cenozoic Lavas in Central Myanmar: Origins and Implications for Deep Carbon Recycling. Lithos, 386-387: 106011. https://doi.org/10.1016/j.lithos.2021.106011 [83] Li, R.Y., Ke, S., He, Y.S., et al., 2016. High Precision Magnesium Isotope Measurement for High-Cr Samples. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 441-447(in Chinese with English abstract). [84] Li, S.G., 2015. Tracing Deep Carbon Recycling by Mg Isotopes. Earth Science Frontiers, 2015, 22(5): 143-159(in Chinese with English abstract). [85] Li, S.G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111-120. https://doi.org/10.1093/nsr/nww070 [86] Li, S.Z., Zhu, X.K., He, X.X., et al., 2008. Separation of Mg for Isotope Determination by MC-ICP-MS. Acta Petrologica et Mineralogica, 27(5): 449-456(in Chinese with English abstract). [87] Li, W.Q., Zhao, S.G., Wang, X.M., et al., 2020. Fingerprinting Hydrothermal Fluids in Porphyry Cu Deposits Using K and Mg Isotopes. Science China: Earth Sciences, 50(2): 245-257(in Chinese). [88] Li, W.Y., Teng, F.Z., Halama, R., et al., 2016. Magnesium Isotope Fractionation during Carbonatite Magmatism at Oldoinyo Lengai, Tanzania. Earth and Planetary Science Letters, 444: 26-33. https://doi.org/10.1016/j.epsl.2016.03.034 [89] Li, W.Y., Teng, F.Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030 [90] Li, W.Y., Teng, F.Z., Wing, B.A., et al., 2014. Limited Magnesium Isotope Fractionation during Metamorphic Dehydration in Metapelites from the Onawa Contact Aureole, Maine. Geochemistry, Geophysics, Geosystems, 15(2): 408-415. https://doi.org/10.1002/2013gc004992 doi: 10.1002/2013GC004992 [91] Li, W.Y., Teng, F.Z., Xiao, Y.L., et al., 2011. High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Eclogite from the Dabie Orogen, China. Earth and Planetary Science Letters, 304(1-2): 224-230. https://doi.org/10.1016/j.epsl.2011.01.035 [92] Ling, M.X., Liu, Y.L., Williams, I.S., et al., 2013. Formation of the World's Largest REE Deposit through Protracted Fluxing of Carbonatite by Subduction-Derived Fluids. Scientific Reports, 3: 1776. https://doi.org/10.1038/srep01776 [93] Litasov, K.D., Goncharov, A.F., Hemley, R.J., 2011. Crossover from Melting to Dissociation of CO2 under Pressure: Implications for the Lower Mantle. Earth and Planetary Science Letters, 309(3-4): 318-323. https://doi.org/10.1016/j.epsl.2011.07.006 [94] Liu, D., Zhao, Z.D., Zhu, D.C., et al., 2015. Identifying Mantle Carbonatite Metasomatism through Os-Sr-Mg Isotopes in Tibetan Ultrapotassic Rocks. Earth and Planetary Science Letters, 430: 458-469. https://doi.org/10.1016/j.epsl.2015.09.005 [95] Liu, F., Li, X., Wang, G.Q., et al., 2017b. Marine Carbonate Component in the Mantle beneath the Southeastern Tibetan Plateau: Evidence from Magnesium and Calcium Isotopes. Journal of Geophysical Research: Solid Earth, 122(12): 9729-9744. https://doi.org/10.1002/2017jb014206. doi: 10.1002/2017JB014206 [96] Liu, P.P., Teng, F.Z., Dick, H.J.B., et al., 2017a. Magnesium Isotopic Composition of the Oceanic Mantle and Oceanic Mg Cycling. Geochimica et Cosmochimica Acta, 206: 151-165. https://doi.org/10.1016/j.gca.2017.02.016 [97] Liu, S.A., Li, S.G., 2019. Tracing the Deep Carbon Cycle Using Metal Stable Isotopes: Opportunities and Challenges. Engineering, 5(3): 448-457. https://doi.org/10.1016/j.eng.2019.03.007 [98] Liu, S.A., Teng, F.Z., He, Y.S., et al., 2010. Investigation of Magnesium Isotope Fractionation during Granite Differentiation: Implication for Mg Isotopic Composition of the Continental Crust. Earth and Planetary Science Letters, 297(3-4): 646-654. https://doi.org/10.1016/j.epsl.2010.07.019 [99] Liu, S.A., Teng, F.Z., Yang, W., et al., 2011. High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton. Earth and Planetary Science Letters, 308(1-2): 131-140. https://doi.org/10.1016/j.epsl.2011.05.047 [100] Liu, X.M., Teng, F.Z., Rudnick, R.L., et al., 2014. Massive Magnesium Depletion and Isotope Fractionation in Weathered Basalts. Geochimica et Cosmochimica Acta, 135: 336-349. https://doi.org/10.1016/j.gca.2014.03.028 [101] Liu, Y., Chen, C., Shu, X.C., et al., 2017. The Formation Model of the Carbonatite-Syenite Complex REE Deposits in the East of Tibetan Plateau: A Case Study of Dalucao REE Deposit. Acta Petrologica Sinica, 33(7): 1978-2000. (in Chinese with English abstract). [102] Luo, H.Y., Karki, B.B., Ghosh, D.B., et al., 2020. First-Principles Computation of Diffusional Mg Isotope Fractionation in Silicate Melts. Geochimica et Cosmochimica Acta, 290: 27-40. https://doi.org/10.1016/j.gca.2020.08.028 [103] Macris, C.A., Young, E.D., Manning, C.E., 2013. Experimental Determination of Equilibrium Magnesium Isotope Fractionation between Spinel, Forsterite, and Magnesite from 600 to 800℃. Geochimica et Cosmochimica Acta, 118: 18-32. https://doi.org/10.1016/j.gca.2013.05.008 [104] Mao, J.W., Yuan, S.D., Xie, G.Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969(in Chinese with English abstract). [105] Moynier, F., Hu, Y., Dai, W., et al., 2021b. Potassium Isotopic Composition of Seven Widely Available Biological Standards Using Collision Cell (CC)-MC-ICP-MS. Journal of Analytical Atomic Spectrometry. https://doi.org/10.1039/d1ja00294e [106] Moynier, F., Hu, Y., Wang, K., et al., 2021a. Potassium Isotopic Composition of Various Samples Using a Dual-Path Collision Cell-Capable Multiple-Collector Inductively Coupled Plasma Mass Spectrometer, Nu Instruments Sapphire. Chemical Geology, 571: 120144. https://doi.org/10.1016/j.chemgeo.2021.120144 [107] Nitzsche, K.N., Kato, Y., Shin, K.C., et al., 2019. Magnesium Isotopes Reveal Bedrock Impacts on Stream Organisms. Science of the Total Environment, 688: 243-252. https://doi.org/10.1016/j.scitotenv.2019.06.209 [108] Oeser, M., Dohmen, R., Horn, I., et al., 2015. Processes and Time Scales of Magmatic Evolution as Revealed by Fe-Mg Chemical and Isotopic Zoning in Natural Olivines. Geochimica et Cosmochimica Acta, 154: 130-150. https://doi.org/10.1016/j.gca.2015.01.025 [109] Oeser, M., Weyer, S., Horn, I., et al., 2014. High-Precision Fe and Mg Isotope Ratios of Silicate Reference Glasses Determined In Situ by Femtosecond LA-MC-ICP-MS and by Solution Nebulisation MC-ICP-MS. Geostandards and Geoanalytical Research, 38(3): 311-328. https://doi.org/10.1111/j.1751-908X.2014.00288.x [110] Oi, T., Yanase, S., Kakihana, H., 1987. Magnesium Isotope Fractionation in Cation-Exchange Chromatography. Separation Science and Technology, 22(11): 2203-2215. https://doi.org/10.1080/01496398708068608 [111] Oskierski, H.C., Beinlich, A., Mavromatis, V., et al., 2019. Mg Isotope Fractionation during Continental Weathering and Low Temperature Carbonation of Ultramafic Rocks. Geochimica et Cosmochimica Acta, 262: 60-77. https://doi.org/10.1016/j.gca.2019.07.019 [112] Pang, K.N., Teng, F.Z., Sun, Y., et al., 2020. Magnesium Isotopic Systematics of the Makran Arc Magmas, Iran: Implications for Crust-Mantle Mg Isotopic Balance. Geochimica et Cosmochimica Acta, 278: 110-121. https://doi.org/10.1016/j.gca.2019.10.005 [113] Pogge von Strandmann, P.A.E., Dohmen, R., Marschall, H.R., et al., 2015. Extreme Magnesium Isotope Fractionation at Outcrop Scale Records the Mechanism and Rate at which Reaction Fronts Advance. Journal of Petrology, 56(1): 33-58. https://doi.org/10.1093/petrology/egu07 doi: 10.1093/petrology/egu070 [114] Pogge von Strandmann, P.A.E., Elliott, T., Marschall, H.R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026 [115] Pogge von Strandmann, P.A.E., Hendry, K.R., Hatton, J.E., et al., 2019. The Response of Magnesium, Silicon, and Calcium Isotopes to Rapidly Uplifting and Weathering Terrains: South Island, New Zealand. Frontiers in Earth Science, 7: 240. https://doi.org/10.3389/feart.2019.00240 [116] Richter, F.M., Watson, E.B., Mendybaev, R.A., et al., 2008. Magnesium Isotope Fractionation in Silicate Melts by Chemical and Thermal Diffusion. Geochimica et Cosmochimica Acta, 72(1): 206-220. https://doi.org/10.1016/j.gca.2007.10.016 [117] Ringwood, A.E., 1990. Slab-Mantle Interactions: 3. Petrogenesis of Intraplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82: 187-207. https://doi.org/10.1016/0009-2541(90)90081-H [118] Ryu, J.S., Vigier, N., Derry, L., et al., 2021. Variations of Mg Isotope Geochemistry in Soils over a Hawaiian 4 Myr Chronosequence. Geochimica et Cosmochimica Acta, 292: 94-114. https://doi.org/10.1016/j.gca.2020.09.024 [119] Saenger, C., Wang, Z.R., 2014. Magnesium Isotope Fractionation in Biogenic and Abiogenic Carbonates: Implications for Paleoenvironmental Proxies. Quaternary Science Reviews, 90: 1-21. https://doi.org/10.1016/j.quascirev.2014.01.014 [120] Schauble, E.A., 2011. First-Principles Estimates of Equilibrium Magnesium Isotope Fractionation in Silicate, Oxide, Carbonate and Hexaaquamagnesium(2+) Crystals. Geochimica et Cosmochimica Acta, 75(3): 844-869. https://doi.org/10.1016/j.gca.2010.09.044 [121] Sedaghatpour, F., Teng, F.Z., 2016. Magnesium Isotopic Composition of Achondrites. Geochimica et Cosmochimica Acta, 174: 167-179. https://doi.org/10.1016/j.gca.2015.11.016 [122] Seto, Y., Hamane, D., Nagai, T., et al., 2008. Fate of Carbonates within Oceanic Plates Subducted to the Lower Mantle, and a Possible Mechanism of Diamond Formation. Physics and Chemistry of Minerals, 35(4): 223-229. https://doi.org/10.1007/s00269-008-0215-9 [123] Shalev, N., Bontognali, T.R.R., Vance, D., 2021. Sabkha Dolomite as an Archive for the Magnesium Isotope Composition of Seawater. Geology, 49(3): 253-257. https://doi.org/10.1130/g47973.1 doi: 10.1130/G47973.1 [124] Shen, J., Li, W.Y., Li, S.G., et al., 2019. Crust-Mantle Interactions at Dfferent Depths in the Subduction Channel: Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges. Earth Science, 44(12): 4102-4111(in Chinese with English abstract). [125] Sio, C.K.I., Dauphas, N., Teng, F.Z., et al., 2013. Discerning Crystal Growth from Diffusion Profiles in Zoned Olivine by In Situ Mg-Fe Isotopic Analyses. Geochimica et Cosmochimica Acta, 123: 302-321. https://doi.org/10.1016/j.gca.2013.06.008 [126] Solopova, N.A., Dubrovinsky, L., Spivak, A.V., et al., 2015. Melting and Decomposition of MgCO3 at Pressures up to 84 GPa. Physics and Chemistry of Minerals, 42(1): 73-81. https://doi.org/10.1007/s00269-014-0701-1 [127] Song, W.L., Xu, C., Chakhmouradian, A.R., et al., 2017. Carbonatites of Tarim (NW China): First Evidence of Crustal Contribution in Carbonatites from a Large Igneous Province. Lithos, 282-283: 1-9. https://doi.org/10.1016/j.lithos.2017.02.018 [128] Song, W.L., Xu, C., Smith, M.P., et al., 2016. Origin of Unusual HREE-Mo-Rich Carbonatites in the Qinling Orogen, China. Scientific Reports, 6: 37377. https://doi.org/10.1038/srep37377 [129] Song, W.L., Xu, C., Wang, L.J., et al., 2013. Review of the Metallogenesis of the Endogenetic Rare Earth Elements Deposits Related to Carbonatite-Alkaline Complex. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(4): 725-740(in Chinese with English abstract). [130] Su, B.X., Hu, Y., Teng, F.Z., et al., 2017a. Chromite-Induced Magnesium Isotope Fractionation during Mafic Magma Differentiation. Science Bulletin, 62(22): 1538-1546. https://doi.org/10.1016/j.scib.2017.11.001 [131] Su, B.X., Hu, Y., Teng, F.Z., et al., 2017b. Magnesium Isotope Constraints on Subduction Contribution to Mesozoic and Cenozoic East Asian Continental Basalts. Chemical Geology, 466: 116-122. https://doi.org/10.1016/j.chemgeo.2017.05.026 [132] Su, B.X., Hu, Y., Teng, F.Z., et al., 2019a. Light Mg Isotopes in Mantle-Derived Lavas Caused by Chromite Crystallization, Instead of Carbonatite Metasomatism. Earth and Planetary Science Letters, 522: 79-86. https://doi.org/10.1016/j.epsl.2019.06.016 [133] Su, B.X., Xiao, Y., Chen, C., et al., 2018. Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites. Earth Science, 43(4): 1011-1024(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.705 [134] Su, J.H., Zhao, X.F., Li, X.C., et al., 2019b. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the Origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113: 103101. https://doi.org/10.1016/j.oregeorev.2019.103101 [135] Sun, J., Zhu, X.K., Belshaw, N.S., et al., 2021c. Ca Isotope Systematics of Carbonatites: Insights into Carbonatite Source and Evolution. Geochemical Perspectives Letters, 11-15. https://doi.org/10.7185/geochemlet.2107 [136] Sun, J., Zhu, X.K., Chen, Y.L., et al., 2012. Fe Isotope Compositions of Related Geological Formation in Bayan Obo Area and Their Constrains on the Genesis of Bayan Obo Ore Deposit. Acta Geologica Sinica, 86(5): 819-828(in Chinese with English abstract). [137] Sun, Y., Teng, F.Z., Pang, K.N., 2021b. The Presence of Paleo-Pacific Slab beneath Northwest North China Craton Hinted by Low-δ26Mg Basalts at Wulanhada. Lithos, 386-387: 106009. https://doi.org/10.1016/j.lithos.2021.106009 [138] Sun, Y., Teng, F.Z., Pang, K.N., et al., 2021a. Multistage Mantle Metasomatism Deciphered by Mg-Sr-Nd-Pb Isotopes in the Leucite Hills Lamproites. Contributions to Mineralogy and Petrology, 176(6): 1-12. https://doi.org/10.1007/s00410-021-01801-9 [139] Sun, Y., Teng, F.Z., Ying, J.F., et al., 2017. Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in LOMU-Like Potassium-Rich Volcanic Rocks. Journal of Geophysical Research: Solid Earth, 122(10): 7562-7572. https://doi.org/10.1002/2017JB014560 [140] Tang, Q.Y., Bao, J., Dang, Y.X., et al., 2018. Mg-Sr-Nd Isotopic Constraints on the Genesis of the Giant Jinchuan Ni-Cu-(PGE) Sulfide Deposit, NW China. Earth and Planetary Science Letters, 502: 221-230. https://doi.org/10.1016/j.epsl.2018.09.008 [141] Taylor, W.R., Green, D.H., 1988. Measurement of Reduced Peridotite-C-O-H Solidus and Implications for Redox Melting of the Mantle. Nature, 332(6162): 349-352. https://doi.org/10.1038/332349a0 [142] Teng, F.Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287. https://doi.org/10.2138/rmg.2017.82.7 [143] Teng, F.Z., Dauphas, N., Helz, R.T., et al., 2011. Diffusion-Driven Magnesium and Iron Isotope Fractionation in Hawaiian Olivine. Earth and Planetary Science Letters, 308(3-4): 317-324. https://doi.org/10.1016/j.epsl.2011.06.003 [144] Teng, F.Z., Dauphas, N., Watkins, J.M., 2017. Non-Traditional Stable Isotopes: Retrospective and Prospective. Reviews in Mineralogy and Geochemistry, 82(1): 1-26. https://doi.org/10.2138/rmg.2017.82.1 [145] Teng, F.Z., Hu, Y., Chauvel, C., 2016. Magnesium Isotope Geochemistry in Arc Volcanism. Proceedings of the National Academy of Sciences of the United States of America, 113(26): 7082-7087. https://doi.org/10.1073/pnas.1518456113 [146] Teng, F.Z., Li, W.Y., Ke, S., et al., 2010a. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019 [147] Teng, F.Z., Li, W.Y., Rudnick, R.L., et al., 2010b. Contrasting Lithium and Magnesium Isotope Fractionation during Continental Weathering. Earth and Planetary Science Letters, 300(1/2): 63-71. https://doi.org/10.1016/j.epsl.2010.09.036 [148] Teng, F.Z., Li, W.Y., Ke, S., et al., 2015. Magnesium Isotopic Compositions of International Geological Reference Materials. Geostandards and Geoanalytical Research, 39(3): 329-339. https://doi.org/10.1111/j.1751-908X.2014.00326.x [149] Teng, F.Z., Wadhwa, M., Helz, R.T., 2007. Investigation of Magnesium Isotope Fractionation during Basalt Differentiation: Implications for a Chondritic Composition of the Terrestrial Mantle. Earth and Planetary Science Letters, 261(1): 84-92. https://doi.org/10.1016/j.epsl.2007.06.004 [150] Teng, F.Z., Yang, W., 2014. Comparison of Factors Affecting the Accuracy of High-Precision Magnesium Isotope Analysis by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 28(1): 19-24. https://doi.org/10.1002/rcm.6752 [151] Teng, F.Z., Yang, W., Rudnick, R.L., et al., 2013. Heterogeneous Magnesium Isotopic Composition of the Lower Continental Crust: A Xenolith Perspective. Geochemistry, Geophysics, Geosystems, 14(9): 3844-3856. https://doi.org/10.1002/ggge.20238 [152] Tian, H.C., Teng, F.Z., Hou, Z.Q., et al., 2020b. Magnesium and Lithium Isotopic Evidence for a Remnant Oceanic Slab beneath Central Tibet. Journal of Geophysical Research: Solid Earth, 125(1): e2019JB018197. https://doi.org/10.1029/2019JB018197 [153] Tian, H.C., Yang, W., Li, S.G., et al., 2016. Origin of Low δ26Mg Basalts with EM-Ⅰ Component: Evidence for Interaction between Enriched Lithosphere and Carbonated Asthenosphere. Geochimica et Cosmochimica Acta, 188: 93-105. https://doi.org/10.1016/j.gca.2016.05.021 [154] Tian, H.C., Yang, W., Li, S.G., et al., 2019. Approach to Trace Hidden Paleo-Weathering of Basaltic Crust through Decoupled Mg, Sr and Nd Isotopes Recorded in Volcanic Rocks. Chemical Geology, 509: 234-248. https://doi.org/10.1016/j.chemgeo.2019.01.019 [155] Tian, S.H., Hou, Z.Q., Chen, X.Y., et al., 2020a. Magnesium Isotopic Behaviors between Metamorphic Rocks and Their Associated Leucogranites, and Implications for Himalayan Orogenesis. Gondwana Research, 87: 23-40. https://doi.org/10.1016/j.gr.2020.06.006 [156] Tipper, E.T., Calmels, D., Gaillardet, J., et al., 2012. Positive Correlation between Li and Mg Isotope Ratios in the River Waters of the Mackenzie Basin Challenges the Interpretation of Apparent Isotopic Fractionation during Weathering. Earth and Planetary Science Letters, 333/334: 35-45. https://doi.org/10.1016/j.epsl.2012.04.023 [157] Tipper, E.T., Galy, A., Bickle, M.J., 2008. Calcium and Magnesium Isotope Systematics in Rivers Draining the Himalaya-Tibetan-Plateau Region: Lithological or Fractionation Control? Geochimica et Cosmochimica Acta, 72(4): 1057-1075 doi: 10.1016/j.gca.2007.11.029 [158] Tipper, E.T., Galy, A., Gaillardet, J., et al., 2006. The Magnesium Isotope Budget of the Modern Ocean: Constraints from Riverine Magnesium Isotope Ratios. Earth and Planetary Science Letters, 250(1-2): 241-253. https://doi.org/10.1016/j.epsl.2006.07.037 [159] Twyman, J.D., Gittins, J., 1987. Alkalic Carbonatite Magmas: Parental or Derivative? Geological Society, London, Special Publications, 30(1): 85-94. https://doi.org/10.1144/gsl.sp.1987.030.01.06 doi: 10.1144/GSL.SP.1987.030.01.06 [160] Urey, H.C., 1947. The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society (Resumed), 562-581. https://doi.org/10.1039/jr9470000562 [161] U.S. Geological Survey, 2018. Mineral Commodity Summaries 2018. National Minerals Information Center, Reston. https://doi.org/10.3133/70194932. [162] Vega, C.G.D., Chernonozhkin, S.M., Grigoryan, R., et al., 2020. Characterization of the New Isotopic Reference Materials IRMM-524A and ERM-AE143 for Fe and Mg Isotopic Analysis of Geological and Biological Samples. Journal of Analytical Atomic Spectrometry, 35(11): 2517-2529. https://doi.org/10.1039/d0ja00225a doi: 10.1039/D0JA00225A [163] Wang, D.H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209. https://doi.org/10.19762/j.cnki.dizhixuebao.2019186(in Chinese with English abstract). [164] Wang, S.J., Teng, F.Z., Li, S.G., et al., 2014a. Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction. Geochimica et Cosmochimica Acta, 143: 34-48. https://doi.org/10.1016/j.gca.2014.03.029 [165] Wang, S.J., Teng, F.Z., Li, S.G., 2014b. Tracing Carbonate-Silicate Interaction during Subduction Using Magnesium and Oxygen Isotopes. Nature Communications, 5: 5328. https://doi.org/10.1038/ncomms6328 [166] Wang, S.J., Teng, F.Z., Li, S.G., et al., 2017a. Tracing Subduction Zone Fluid-Rock Interactions Using Trace Element and Mg-Sr-Nd Isotopes. Lithos, 290-291: 94-103. https://doi.org/10.1016/j.lithos.2017.08.004 [167] Wang, X.J., Chen, L.H., Hofmann, A.W., et al., 2017b. Mantle Transition Zone-Derived EM1 Component beneath NE China: Geochemical Evidence from Cenozoic Potassic Basalts. Earth and Planetary Science Letters, 465: 16-28. https://doi.org/10.1016/j.epsl.2017.02.028 [168] Wang, W.Z., Qin, T., Zhou, C., et al., 2017c. Concentration Effect on Equilibrium Fractionation of Mg-Ca Isotopes in Carbonate Minerals: Insights from First-Principles Calculations. Geochimica et Cosmochimica Acta, 208: 185-197. https://doi.org/10.1016/j.gca.2017.03.023 [169] Wang, S.J., Teng, F.Z., Rudnick, R.L., et al., 2015a. The Behavior of Magnesium Isotopes in Low-Grade Metamorphosed Mudrocks. Geochimica et Cosmochimica Acta, 165: 435-448. https://doi.org/10.1016/j.gca.2015.06.019 [170] Wang, S.J., Teng, F.Z., Bea, F., 2015b. Magnesium Isotopic Systematics of Metapelite in the Deep Crust and Implications for Granite Petrogenesis. Geochemical Perspectives Letters, 1: 75-83. https://doi.org/10.7185/geochemlet.1508 [171] Wang, S.J., Teng, F.Z., Scott, J.M., 2016a. Tracing the Origin of Continental HIMU-Like Intraplate Volcanism Using Magnesium Isotope Systematics. Geochimica et Cosmochimica Acta, 185: 78-87. https://doi.org/10.1016/j.gca.2016.01.007 [172] Wang, Z.Z., Liu, S.G., Ke, S., et al., 2016b. Magnesium Isotopic Heterogeneity across the Cratonic Lithosphere in Eastern China and Its Origins. Earth and Planetary Science Letters, 451: 77-88. https://doi.org/10.1016/j.epsl.2016.07.021 [173] Wang, X.J., Chen, L.H., Hanyu, T., et al., 2021. Magnesium Isotopic Fractionation during Basalt Differentiation as Recorded by Evolved Magmas. Earth and Planetary Science Letters, 565: 116954. https://doi.org/10.1016/j.epsl.2021.116954 [174] Wang, X.J., Chen, L.H., Hofmann, A.W., et al., 2018. Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682-8687. https://doi.org/10.1073/pnas.1719570115 [175] Wang, Z.Z., Liu, S.G., Liu, Z.C., et al., 2020. Extreme Mg and Zn Isotope Fractionation Recorded in the Himalayan Leucogranites. Geochimica et Cosmochimica Acta, 278: 305-321. https://doi.org/10.1016/j.gca.2019.09.026 [176] Watkins, J.M., DePaolo, D.J., Watson, E.B., 2017. Kinetic Fractionation of Non-Traditional Stable Isotopes by Diffusion and Crystal Growth Reactions. Reviews in Mineralogy and Geochemistry, 82(1): 85-125. https://doi.org/10.2138/rmg.2017.82.4 [177] Wendlandt, R.F., Harrison, W.J., 1979. Rare Earth Partitioning between Immiscible Carbonate and Silicate Liquids and CO2 Vapor: Results and Implications for the Formation of Light Rare Earth-Enriched Rocks. Contributions to Mineralogy and Petrology, 69(4): 409-419. https://doi.org/10.1007/BF00372266 [178] Wimpenny, J., Colla, C.A., Yin, Q.Z., et al., 2014a. Investigating the Behaviour of Mg Isotopes during the Formation of Clay Minerals. Geochimica et Cosmochimica Acta, 128: 178-194. https://doi.org/10.1016/j.gca.2013.12.012 [179] Wimpenny, J., Yin, Q.Z., Tollstrup, D., et al., 2014b. Using Mg Isotope Ratios to Trace Cenozoic Weathering Changes: A Case Study from the Chinese Loess Plateau. Chemical Geology, 376: 31-43. https://doi.org/10.1016/j.chemgeo.2014.03.008 [180] Woolley, A.R., Kjarsgaard, B.A., 2008. Paragenetic Types of Carbonatite as Indicated by the Diversity and Relative Abundances of Associated Silicate Rocks: Evidence from a Global Database. The Canadian Mineralogist, 46(4): 741-752. https://doi.org/10.3749/canmin.46.4.741 [181] Wu, H.J., He, Y.S., Teng, F.Z., et al., 2018. Diffusion-Driven Magnesium and Iron Isotope Fractionation at a Gabbro-Granite Boundary. Geochimica et Cosmochimica Acta, 222: 671-684. https://doi.org/10.1016/j.gca.2017.11.010. [182] Xiang, M., Gong, Y.L., Liu, T., et al., 2021. New Advances in Calcium Isotope Geochemistry and Its Application to Carbonatite and Associated Silicaterocks. Acta Geologica Sinica(in press)(in Chinese with English abstract). [183] Xiao, Y., Teng, F.Z., Su, B.X., et al., 2016. Iron and Magnesium Isotopic Constraints on the Origin of Chemical Heterogeneity in Podiform Chromitite from the Luobusa Ophiolite, Tibet. Geochemistry, Geophysics, Geosystems, 17(3): 940-953. https://doi.org/10.1002/2015gc006223 doi: 10.1002/2015GC006223 [184] Xiao, Y., Teng, F.Z., Zhang, H.F., et al., 2013. Large Magnesium Isotope Fractionation in Peridotite Xenoliths from Eastern North China Craton: Product of Melt-Rock Interaction. Geochimica et Cosmochimica Acta, 115: 241-261. https://doi.org/10.1016/j.gca.2013.04.011 [185] Xiao, Y.L., Sun, H., Gu, H.O., et al., 2015. Fluid/Melt in Continental Deep Subduction Zones: Compositions and Related Geochemical Fractionations. Science China: Earth Sciences, 45: 1063-1087(in Chinese). [186] Xie, L.W., Yin, Q.Z., Yang, J.H., et al., 2011. High Precision Analysis of Mg Isotopic Composition in Olivine by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26(9): 1773-1780. https://doi.org/10.1039/c1ja10034c [187] Xie, Q.H., Zhang, Z.C., Campos, E., et al., 2018. Magnesium Isotopic Composition of Continental Arc Andesites and the Implications: A Case Study from the El Laco Volcanic Complex, Chile. Lithos, 318-319: 91-103. https://doi.org/10.1016/j.lithos.2018.08.010 [188] Xie, Y.L., Hou, Z.Q., Goldfarb, R.J., et al., 2016. Rare Earth Element Deposits in China. Rare Earth and Critical Elements in Ore Deposits. Reviews in Economic Geology, 18: 115-136. https://doi.org/10.5382/rev.18.06 [189] Xie, Y.L., Qu, Y.W., Yang, Z.F., et al., 2019. Giant Bayan Obo Fe-Nb-REE Deposit: Progresses, Controversaries and New Understandings. Mineral Deposits, 38(5): 983-1003(in Chinese with English abstract). [190] Xie, Y.L., Verplanck, P.L., Hou, Z.Q., et al., 2020. Rare Earth Element Deposits in China: A Review and New Understandings. In: Chang, Z., Goldfarb, R.J., eds., Mineral Deposits of China, Volume SEG Special Publications. Society of Economic Geologists, Inc., Kansas, 22: 509-552. [191] Xie, Y.L., Xia, J.M., Cui, K., et al., 2020. Rare Earth Elements Deposits in China: Spatio-Temporal Distribution and Ore-Forming Processes. Chinese Science Bulletin, 65(33): 3794-3808(in Chinese). doi: 10.1360/TB-2020-0371 [192] Xu, C., Chakhmouradian, A.R., Taylor, R.N., et al., 2014. Origin of Carbonatites in the South Qinling Orogen: Implications for Crustal Recycling and Timing of Collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189-206. https://doi.org/10.1016/j.gca.2014.03.041 [193] Xu, C., Taylor, R.N., Kynicky, J., et al., 2011. The Origin of Enriched Mantle beneath North China Block: Evidence from Young Carbonatites. Lithos, 127(1-2): 1-9. https://doi.org/10.1016/j.lithos.2011.07.021 [194] Yang, K.F., Fan, H.R., Pirajno, F., et al., 2019. The Bayan Obo (China) Giant REE Accumulation Conundrum Elucidated by Intense Magmatic Differentiation of Carbonatite. Geology, 47(12): 1198-1202. https://doi.org/10.1130/g46674.1 doi: 10.1130/G46674.1 [195] Yang, W., Teng, F.Z., Li, W.Y., et al., 2016. Magnesium Isotopic Composition of the Deep Continental Crust. American Mineralogist, 101(2): 243-252. https://doi.org/10.2138/am-2016-5275 [196] Yang, W., Teng, F.Z., Zhang, H.F., 2009. Chondritic Magnesium Isotopic Composition of the Terrestrial Mantle: A Case Study of Peridotite Xenoliths from the North China Craton. Earth and Planetary Science Letters, 288(3-4): 475-482. https://doi.org/10.1016/j.epsl.2009.10.009 [197] Yang, W., Teng, F.Z., Zhang, H.F., et al., 2012. Magnesium Isotopic Systematics of Continental Basalts from the North China Craton: Implications for Tracing Subducted Carbonate in the Mantle. Chemical Geology, 328: 185-194. https://doi.org/10.1016/j.chemgeo.2012.05.018 [198] Zhai, M.G., Wu, F.Y., Hu, R.Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111(in Chinese with English abstract). [199] Zhang, G.L., Chen, L.H., Jackson, M.G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877 [200] Zhang, H.F., Tang, Y.J., Zhao, X.M., et al., 2007. Significance and Prospective of Non-Traditional Isotopic Systems in Mantle Geochemistry. Earth Science Frontiers, 14(2): 37-57(in Chinese with English abstract). [201] Zhao, T., Liu, W.J., Xu, Z.F., et al., 2019. The Influence of Carbonate Precipitation on Riverine Magnesium Isotope Signals: New Constrains from Jinsha River Basin, Southeast Tibetan Plateau. Geochimica et Cosmochimica Acta, 248: 172-184. https://doi.org/10.1016/j.gca.2019.01.005 [202] Zhong, Y., Chen, L.H., Wang, X.J., et al., 2017. Magnesium Isotopic Variation of Oceanic Island Basalts Generated by Partial Melting and Crustal Recycling. Earth and Planetary Science Letters, 463: 127-135. https://doi.org/10.1016/j.epsl.2017.01.040 [203] Zhong, Y., Zhang, G.L., Jin, Q.Z., et al., 2021. Sub-Basin Scale Inhomogeneity of Mantle in the South China Sea Revealed by Magnesium Isotopes. Science Bulletin, 66(7): 740-748. https://doi.org/10.1016/j.scib.2020.12.016 [204] Zhu, X.K., Wang, Y., Yan, B., et al., 2013. Developments of Non-Traditional Stable Isotope Geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651-688(in Chinese with English abstract). [205] 陈伊翔, 2019. 大陆俯冲隧道板片-地幔楔界面反向流体交代作用: 西阿尔卑斯造山带超高压变质白片岩的地球化学证据. 地球科学, 44(12): 4057-4063. doi: 10.3799/dqkx.2019.241 [206] 戴梦宁, 包志安, 陈开运, 等, 2016. 飞秒激光剥蚀-多接收等离子体质谱原位分析玄武岩玻璃样品Mg同位素组成. 分析化学, 44(2): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201602001.htm [207] 董爱国, 韩贵琳, 2017. 镁同位素体系在河流中的研究进展. 地球科学进展, 32(8): 800-809. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201708003.htm [208] 董爱国, 朱祥坤, 2016. 表生环境中镁同位素的地球化学循环. 地球科学进展, 31(1): 43-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601004.htm [209] 范百龄, 陶发祥, 赵志琦, 2013. 地表及海洋环境的镁同位素地球化学研究进展. 矿物岩石地球化学通报, 32(1): 114-120. doi: 10.3969/j.issn.1007-2802.2013.01.011 [210] 范宏瑞, 牛贺才, 李晓春, 等, 2020. 中国内生稀土矿床类型、成矿规律与资源展望. 科学通报, 65(33): 3778-3793. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033012.htm [211] 何学贤, 朱祥坤, 李世珍, 等, 2008. 多接收器等离子体质谱(MC-ICP-MS)测定Mg同位素方法研究. 岩石矿物学杂志, 27(5): 441-448. doi: 10.3969/j.issn.1000-6524.2008.05.009 [212] 侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿. 科学通报, 65(33): 3651-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033002.htm [213] 黄建, 黄方, 肖益林, 2019. 蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成. 地球科学, 44(12): 4050-4056. https://doi.org/10.3799/dqkx.2019.234 doi: 10.3799/dqkx.2019.234 [214] 蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902003.htm [215] 柯珊, 刘盛遨, 李王晔, 等, 2011. 镁同位素地球化学研究新进展及其应用. 岩石学报, 27(2): 383-397. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102004.htm [216] 李瑞瑛, 柯珊, 何永胜, 等, 2016. 高Cr地质样品的Mg同位素分析方法. 矿物岩石地球化学通报, 35(3): 441-447. doi: 10.3969/j.issn.1007-2802.2016.03.005 [217] 李世珍, 朱祥坤, 何学贤, 等, 2008. 用于多接收器等离子质谱Mg同位素测定的分离方法研究. 岩石矿物学杂志, 27(5): 449-456. doi: 10.3969/j.issn.1000-6524.2008.05.010 [218] 李曙光, 2015. 深部碳循环的Mg同位素示踪. 地学前缘, 22(5): 143-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505015.htm [219] 李伟强, 赵书高, 王小敏, 等, 2020. 斑岩铜矿热液流体的K-Mg同位素示踪. 中国科学: 地球科学, 50(2): 245-257. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202002007.htm [220] 刘琰, 陈超, 舒小超, 等, 2017. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式: 以大陆槽REE矿床为例. 岩石学报, 33(7): 1978-2000. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707002.htm [221] 毛景文, 袁顺达, 谢桂青, 等, 2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935-969. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905001.htm [222] 沈骥, 李王晔, 李曙光, 等, 2019. 俯冲隧道内不同深度的壳幔相互作用: 地幔楔超镁铁质岩的镁同位素记录. 地球科学, 44(12): 4102-4111. doi: 10.3799/dqkx.2019.286 [223] 宋文磊, 许成, 王林均, 等, 2013. 与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报(自然科学版), 49(4): 725-740. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201304025.htm [224] 苏本勋, 肖燕, 陈晨, 等, 2018. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43(4): 1011-1024. https://doi.org/10.3799/dqkx.2018.705 doi: 10.3799/dqkx.2018.705 [225] 孙剑, 朱祥坤, 陈岳龙, 等, 2012. 白云鄂博地区相关地质单元的铁同位素特征及其对白云鄂博矿床成因的制约. 地质学报, 86(5): 819-828. doi: 10.3969/j.issn.0001-5717.2012.05.014 [226] 王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003 [227] 向蜜, 龚迎莉, 刘涛, 等, 2021. 钙同位素地球化学研究新进展及其在碳酸岩-共生硅酸盐研究中的应用. 地质学报(待刊). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202112026.htm [228] 肖益林, 孙贺, 顾海欧, 等, 2015. 大陆深俯冲过程中的熔/流体成分与地球化学分异. 中国科学: 地球科学, 45(8): 1063-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201508001.htm [229] 谢玉玲, 曲云伟, 杨占峰, 等, 2019. 白云鄂博铁、铌、稀土矿床: 研究进展、存在问题和新认识. 矿床地质, 38(5): 983-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905003.htm [230] 谢玉玲, 夏加明, 崔凯, 等, 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程. 科学通报, 65(33): 3794-3808. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033013.htm [231] 翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm [232] 张宏福, 汤艳杰, 赵新苗, 等, 2007. 非传统同位素体系在地幔地球化学研究中的重要性及其前景. 地学前缘, 14(2): 37-57. doi: 10.3321/j.issn:1005-2321.2007.02.004 [233] 朱祥坤, 王跃, 闫斌, 等, 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306002.htm