• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    蒙古国东部矽卡岩型铁多金属矿床成矿岩体年代学及地球化学

    张莉莉 江思宏 王怀坤 孟祥熙 张帅 武昱东

    张莉莉, 江思宏, 王怀坤, 孟祥熙, 张帅, 武昱东, 2022. 蒙古国东部矽卡岩型铁多金属矿床成矿岩体年代学及地球化学. 地球科学, 47(8): 2856-2870. doi: 10.3799/dqkx.2021.136
    引用本文: 张莉莉, 江思宏, 王怀坤, 孟祥熙, 张帅, 武昱东, 2022. 蒙古国东部矽卡岩型铁多金属矿床成矿岩体年代学及地球化学. 地球科学, 47(8): 2856-2870. doi: 10.3799/dqkx.2021.136
    Zhang Lili, Jiang Sihong, Wang Huaikun, Meng Xiangxi, Zhang Shuai, Wu Yudong, 2022. Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia. Earth Science, 47(8): 2856-2870. doi: 10.3799/dqkx.2021.136
    Citation: Zhang Lili, Jiang Sihong, Wang Huaikun, Meng Xiangxi, Zhang Shuai, Wu Yudong, 2022. Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia. Earth Science, 47(8): 2856-2870. doi: 10.3799/dqkx.2021.136

    蒙古国东部矽卡岩型铁多金属矿床成矿岩体年代学及地球化学

    doi: 10.3799/dqkx.2021.136
    基金项目: 

    《国家重点研发计划》项目 2017YFC0601303

    中国地质调查局项目《全球矿产资源储量动态评估》 DD20211410

    详细信息
      作者简介:

      张莉莉(1987-), 女, 博士, 主要从事金属矿床成矿规律研究.ORCID: 0000-0001-6406-1994.E-mail: zhanglili331@163.com

      通讯作者:

      江思宏, ORCID: 0000-0002-7969-3860.E-mail: jiangsihong1@163.com

    • 中图分类号: P595;P597;P612

    Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia

    • 摘要: 为探讨蒙古-鄂霍茨克洋演化有关的金属成矿问题,对蒙古国东部哈拉特乌拉Fe⁃Zn矿床花岗闪长斑岩和查希尔Fe⁃Mo矿床黑云母二长花岗岩开展了锆石U⁃Pb年代学、岩石地球化学和Hf同位素组成研究.成矿岩体的年龄分别为278 Ma和258 Ma,均富钾、碱,富集轻稀土元素和大离子亲石元素(K、Rb),亏损高场强元素(Nb、Ta、Ti),属高钾钙碱性I型花岗岩. 锆石εHft)值分别为6.6~9.8和6.9~11.1,Hf两阶段模式年龄分别为672~877 Ma和568~855 Ma,表明岩体母岩浆源于新元古代亏损地幔形成的新生地壳的部分熔融. 哈拉特乌拉和查希尔矽卡岩型铁多金属矿床成矿岩体应是蒙古-鄂霍茨克洋板块南东向俯冲的产物,间接证明了蒙古-鄂霍茨克洋板块开始向南东俯冲的时间应早于278 Ma.

       

    • 图  1  蒙古国主要金属矿床分布

      底图据Badarch et al.(2002)Tang et al.(2016)

      Fig.  1.  Location of main ore deposits in Mongolia

      图  2  哈拉特乌拉Fe⁃Zn矿区地质

      1. 第四系;2. 下二叠统安山岩、英安岩、流纹岩、凝灰岩、角砾岩;3. 中元古界大理岩、大理岩化灰岩、片岩;4. 花岗岩;5. 花岗闪长斑岩;6. 矽卡岩;7. 矿体及编号;8. 隐伏矿体及编号;9. 勘探线;10. 断层

      Fig.  2.  Geological map of the Haraat Uul Fe⁃Zn ore district

      图  3  哈拉特乌拉Fe⁃Zn矿床A0号勘探线剖面

      1. 第四系;2. 灰岩、大理岩化灰岩;3. 花岗闪长斑岩;4. 矽卡岩;5. 锌矿体及编号;6. 磁铁矿体及编号;7. 钻孔编号及位置;8. 钻孔深度

      Fig.  3.  Geological section along No.A0 exploration line of the Haraat Uul Fe⁃Zn ore district

      图  4  查希尔Fe⁃Mo矿区地质

      1. 新生界;2. 下泥盆统希尔嘎乌拉组:泥质、砂质灰岩和安山质凝灰岩;3. 黑云母二长花岗岩;4. 辉绿岩;5. 磁铁矿体;6. 矽卡岩;7. 钻孔及编号;8. 勘探线

      Fig.  4.  Geological map of the Tsahir Fe⁃Mo ore district

      图  5  查希尔Fe⁃Mo矿床Ⅱ号矿体100线剖面

      Fig.  5.  Geological section along No.100 exploration line of the Tsahir Fe⁃Mo ore district

      图  6  哈拉特乌拉花岗闪长斑岩(样品号: HL⁃8)和查希尔黑云母二长花岗岩(样品号: CXE⁃2)岩相学特征

      a. 采坑内的花岗闪长斑岩;b. 花岗闪长斑岩主要矿物组成(正交光);c. 花岗闪长斑岩中的角闪石和斜长石(正交光);d. 花岗闪长斑岩中的磁铁矿(反射光);e. 岩心中的黑云母二长花岗岩;f. 黑云母二长花岗岩主要矿物组成(正交光);g. 黑云母二长花岗岩中的副矿物(正交光);h. 黑云母二长花岗岩中的黄铁矿(反射光);Qtz. 石英;Kfs. 钾长石;Pl. 斜长石;Bi. 黑云母;Mt. 磁铁矿;Py. 黄铁矿;Zr. 锆石;Ap. 磷灰石;Amp. 角闪石

      Fig.  6.  Petrographic characteristic of the granodiorite porphyry (Sample No. HL⁃8)in the Haraat Uul deposit and the biotite monzogranite (Sample No. CXE⁃2) in the Tsahir deposit

      图  7  哈拉特乌拉矿区花岗闪长斑岩锆石CL图像(a)和U⁃Pb谐和图(b);查希尔矿区黑云母二长花岗岩锆石CL图像(c)U⁃Pb谐和图(d)

      Fig.  7.  Zircon CL images (a) and U⁃Pb concordia diagrams(b) for the granodiorite porphyry in Haraat Uul Fe⁃Zn deposit; zircon CL images (c) and U⁃Pb concordia diagrams(d) for thebiotite monzogranite in Tsahir Fe⁃Mo deposit

      图  8  哈拉特乌拉矿区花岗闪长斑岩和查希尔矿区黑云母二长花岗岩SiO2 vs. K2O图解(底图据Rickwood, 1989)(a); A/CNK vs. A/NK图解(底图据Irvine and Baragar, 1971)(b); 球粒陨石标准化稀土元素配分曲线(c); 原始地幔标准化微量元素蛛网图(d)

      标准化数据据Sun and Mcdonough(1989)

      Fig.  8.  Diagrams for the granodiorite porphyry in Haraat Uul Fe-Zn depositand biotite monzogranite in Tsahir Fe-Mo deposit showing: (a) SiO2 vs. K2O (modified after Rickwood, 1989); (b) A/CNK vs. A/NK (modified after Irvine and Baragar, 1971); (c) Chondrite-normalised REE patterns; and (d) primitive mantle normalised element spider patterns

      图  9  哈拉特乌拉矿区花岗闪长斑岩和查希尔矿区黑云母二长花岗岩10 000×Ga/Al vs. FeOT/MgO图解(a); SiO2 vs. FeOT/(FeOT+MgO)图解(b)

      底图依次据Whalen et al.(1987)Frost et al.(2001)

      Fig.  9.  Diagrams for the granodiorite porphyryte porphyry in Haraat Uul Fe⁃Zn deposit and biotite monzogranite in Tsahir Fe⁃Mo deposit showing: (a) 10 000×Ga/Al vs. FeOT/MgO; (b) SiO2 vs. FeOT/(FeOT+MgO)

      图  10  哈拉特乌拉矿区花岗闪长斑岩和查希尔矿区黑云母二长花岗岩Rb⁃(Y+Nb)图

      底图据Pearce et al.(1984);Syn⁃COLG. 同碰撞花岗岩;VAG. 火山弧花岗岩;WPG. 板内花岗岩;ORG.大洋中脊花岗岩

      Fig.  10.  Diagram of Rb versus (Y+Nb) for granodiorite porphyry in Haraat Uul Fe⁃Zn deposit and biotite monzogranite in Tsahir Fe⁃Mo deposit

      图  11  研究区构造-岩浆-成矿演化模式图

      Fig.  11.  Cartoon showing the proposed geodynamics⁃petrogenetic⁃metallogenic model for the study area

    • [1] Badarch, G., Cunningham, W.D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110. https://doi.org/10.1016/s1367⁃9120(2)00017⁃2
      [2] Barth, A. P., Wooden, J. L., Tosdal, R. M., et al., 1995. Crustal Contamination in the Petrogenesis of a Calc⁃Alkalic Rock Series: Josephine Mountain Intrusion, California. Geological Society of America Bulletin, 107(2): 201. https://doi.org/10.1130/0016⁃7606(1995)107<0201:ccitpo>2.3.co;2 doi: 10.1130/0016⁃7606(1995)107<0201:ccitpo>2.3.co;2
      [3] Blichert⁃Toft, J., Gleason, J. D., Télouk, P., et al., 1997. The Lu⁃Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle⁃Crust System. Earth and Planetary Science Letters, 173(1/2): 25-39. https://doi.org/10.1016/s0012⁃821x(99)00222⁃8
      [4] Bussien, D., Gombojav, N., Winkler, W., et al., 2011. The Mongol⁃Okhotsk Belt in Mongolia: an Appraisal of the Geodynamic Development by the Study of Sandstone Provenance and Detrital Zircons. Tectonophysics, 510(1/2): 132-150. https://doi.org/10.1016/j.tecto.2011.06.024
      [5] Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
      [6] Donskaya, T. V., Gladkochub, D. P., Mazukabzov, A. M., et al., 2013. Late Paleozoic⁃Mesozoic Subduction⁃Related Magmatism at the Southern Margin of the Siberian Continent and the 150 Million⁃Year History of the Mongol⁃Okhotsk Ocean. Journal of Asian Earth Sciences, 62(7): 79-97. https://doi.org/10.1016/j.jseaes.2012.07.023
      [7] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [8] Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust⁃Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009⁃2541(94)00145⁃x
      [9] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In⁃Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/s0024⁃4937(2)00082⁃8
      [10] Hanson, G. N., 1978. The Application of Trace Elements to the Petrogenesis of Igneous Rocks of Granitic Composition. Earth and Planetary Science Letters, 38(1): 26-43. https://doi.org/10.1016/0012⁃821x(78)90124⁃3
      [11] Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In situ U⁃Pb Zircon Dating Using Laser Ablation⁃Multi Ion Counting⁃ICP⁃MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract).
      [12] Hou, K. J., Li, Y. H., Zou, T. R., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf isotope Microanalysis of Zircon and Its Geological Application. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).
      [13] Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71⁃055
      [14] Jiang, S. H., Han, S. J., Chen, Z. H., et al., 2019. Summary on Metallogeny of Copper Deposits in Mongolia. Geological Science and Technology Information, 38 (5): 1-19 (in Chinese with English abstract).
      [15] Jiang, S. H., Nie, F. J., Su, Y. J., et al., 2010. Geochronology and Origin of the Erdenet Superlarge Cu⁃Mo Deposit in Mongolia. Acta Geoscientica Sinica, 31 (3): 289-306 (in Chinese with English abstract).
      [16] Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf⁃O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      [17] Kovalenko, V. I., Yarmolucyk, V. V., Sal'nikova, E. B., et al., 2006. Geology, Geochronology, and Geodynamics of the Khan Bogd Alkali Granite Pluton in Southern Mongolia. Geotectonics, 40: 450-466. https://doi.org/10.1134/S0016852106060033.
      [18] Li, Q., Cheng, X.Q., Chen, W., et al., 2021. Discovery of Early⁃Middle Triassic Andesite in Erguna Massif and Its Indication of Southward Subduction of Mongol⁃Okhotsk Ocean Plate. Earth Science, 46(8): 2768-2785(in Chinese with English abstract).
      [19] Liu, H. C., Li, Y. L., He, H. Y., et al., 2018. Two⁃Phase Southward Subduction of the Mongol⁃Okhotsk Oceanic Plate Constrained by Permian⁃Jurassic Granitoids in the Erguna and Xing'an Massifs (NE China). Lithos, 304-307: 347-361. https://doi.org/10.1016/j.lithos.2018.01.016
      [20] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [21] Ludwig, K.R., 2003. User's Manual for a Geochronological Toolkit for Microsoft Excel (Isoplot/Ex version 3.0) Berkeley Geochron Center Special Publication, Californie, 71.
      [22] Metelkin, D. V., Vernikovsky, V. A., Kazansky, A. Y., et al., 2010. Late Mesozoic Tectonics of Central Asia Based on Paleomagnetic Evidence. Gondwana Research, 18(2/3): 400-419. https://doi.org/10.1016/j.gr.2009.12.008
      [23] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [24] Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003-2032. https://doi.org/10.1093/petrology/egg068
      [25] Porter, T. M., 2016. The Geology, Structure and Mineralisation of the Oyu Tolgoi Porphyry Copper⁃Gold⁃Molybdenum Deposits, Mongolia: A Review. Geoscience Frontiers, 7(3): 375-407. https://doi.org/10.1016/j.gsf.2015.08.003
      [26] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024⁃4937(89)90028⁃5
      [27] Roberts, M. P., Clemens, J. D., 1993. Origin of High⁃Potassium, Talc⁃Alkaline, I⁃Type Granitoids. Geology, 21(9): 825. https://doi.org/10.1130/0091⁃7613(1993)021<0825:oohpta>2.3.co;2 doi: 10.1130/0091⁃7613(1993)021<0825:oohpta>2.3.co;2
      [28] Seltmann, R., Porter, T. M., Pirajno, F., 2014. Geodynamics and Metallogeny of the Central Eurasian Porphyry and Related Epithermal Mineral Systems: A Review. Journal of Asian Earth Sciences, 79(2): 810-841. https://doi.org/10.1016/j.jseaes.2013.03.030
      [29] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [30] Tang, J., Xu, W. L., Wang, F., et al., 2016. Early Mesozoic Southward Subduction History of the Mongol⁃Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 31(5): 218-240. https://doi.org/10.1016/j.gr.2014.12.010
      [31] Vervoort, J. D., Blichert⁃Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016⁃7037(98)00274⁃9
      [32] Wang, T., Tong, Y., Zhang, L., et al., 2017. Phanerozoic Granitoids in the Central and Eastern Parts of Central Asia and their Tectonic Significance. Journal of Asian Earth Sciences, 145(3): 368-392. https://doi.org/10.1016/j.jseaes.2017.06.029
      [33] Watanabe, Y., Stein, H. J., 2000. Re⁃Os Ages for the Erdenet and Tsagaan Suvarga Porphyry Cu⁃Mo Deposits, Mongolia, and Tectonic Implications. Economic Geology, 95(7): 1537-1542. https://doi.org/10.2113/gsecongeo.95.7.1537
      [34] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012⁃821x(83)90211⁃x
      [35] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      [36] Xiao, W. J., Brian, F. W., Shu, S., et al., 2015. A Tale of Amalgamation of three Permo⁃Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev⁃earth⁃060614⁃105254.
      [37] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an⁃Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract).
      [38] Zhu, M. S., Anaad, C., Baatar, M., et al., 2015. SHRIMP Zircon U⁃Pb Dating of Tsagaan Suvarga and Shuteen Porphyry Copper Deposits: Constraints on Metallogenic Time and Tectonic Setting of Porphyry⁃Type Mineralization in South Gobi, Mongolia. Geological Bulletin of China, 34(4): 675-685 (in Chinese with English abstract).
      [39] 侯可军, 李延河, 田有荣., 2009. LA⁃MC⁃ICP⁃MS锆石微区原位U⁃Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      [40] 侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
      [41] 江思宏, 韩世炯, 陈郑辉, 等, 2019. 蒙古国铜矿床成矿规律. 地质科技情报. 38 (5): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905001.htm
      [42] 江思宏, 聂凤军, 苏永江, 等, 2010. 蒙古国额尔登特特大型铜-钼矿床年代学与成因研究. 地球学报, 31(3): 289-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003005.htm
      [43] 李强, 程学芹, 陈伟, 等, 2020. 额尔古纳地块早-中三叠世安山岩的发现及其对蒙古-鄂霍茨克洋南向俯冲的指示. 地球科学, 46(8): 2768-2785. doi: 10.3799/dqkx.2020.319
      [44] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036
      [45] 朱明帅, Anaad, C., Baatar, M., 等, 2015. 蒙古国查干苏布尔加和苏廷铜矿容矿斑岩体SHRIMP锆石U⁃Pb年龄-对南戈壁斑岩型铜矿成矿时代及成矿背景的约束. 地质通报, 34(4): 675-685. doi: 10.3969/j.issn.1671-2552.2015.04.008
    • dqkxzx-47-8-2856-附表.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  271
    • HTML全文浏览量:  79
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-13
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回