Titanite Mineralogy and Its Implications for Nb Enrichment Mechanism of Alkaline Volcanic-Rock Hosted Nb Deposit in NW Hubei Province
-
摘要: 位于南秦岭武当地区的天宝铌矿床是我国典型的碱性火山岩型铌矿床,但其岩浆成因、演化及成矿机理等方面的研究十分薄弱.天宝碱性火山岩主要分为粗面质岩石和碱性玄武岩两大类,两者在空间上紧密共生.在详细的岩(矿)相学及榍石显微结构研究的基础上,利用LA-ICP-MS分析技术对天宝粗面质火山岩中的榍石进行原位U-Pb定年,并利用EPMA对不同岩性中不同产状的榍石进行原位地球化学成分分析,从而反演岩浆演化过程及铌富集过程.粗面质岩石中榍石原位U-Pb定年的结果为432.4±4.4 Ma(n=30,MSWD=2.4),这与区域上其他粗面岩、基性岩、碳酸岩-碱性岩杂岩体形成年龄基本一致,说明研究区在早志留世发生过大规模的碱性岩浆活动.碱性玄武岩和粗面岩中榍石均可以分为岩浆榍石及捕获榍石.不同类型的榍石具有明显的产状和地球化学特征上的差异,其中岩浆榍石以自形、粒度大、振荡环带发育为主要特征,也有部分以微小粒状的形式产于基质或斑晶榍石周围,其通常具有贫Al和低Al/Fe的特点;而捕获榍石以破碎程度高、多产在岩屑内部及周围为典型特征,部分以晶屑的形式弥散状分布,且具有富Al及高Al/Fe的特点.早期形成的碱性玄武岩中的岩浆榍石具有相对较低Nb2O5(< 0.47%)、Na2O(< 0.05%)和REE2O3(< 0.87%)的特征,但Al2O3+Fe2O3的含量变化较大(0.80%~2.91%),说明早期玄武质岩浆的Nb含量相对较低.而粗面岩中的岩浆榍石明显富集Nb2O5(0.19%~1.50%)及REE2O3(0.02%~4.06%),结合镜下观察到微细铌铁矿、易解石等铌矿物发育在粗面质岩石中,指示了碱性岩浆从玄武质到粗面质演化的过程中,Nb的含量发生了明显的提高并最终在粗面岩中富集成矿.Abstract: The Tianbao niobium deposit, located in the Wudang area of the South Qinling belt, is a typical alkaline volcanic-rock hosted Nb deposit in China. However, the research on the origin and evolution of alkaline magma as well as the enrichment mechanism of Nb is lacking. The alkaline volcanic rocks in Tianbao can be divided into trachyte series and alkaline basalt series, which are spatially associated. In this study, it presents detailed petrography observation combined with in-situ U-Pb dating of titanite by LA-ICP-MS, and in-situ element analyses of different types of titanite by EPMA, to reveal the magma evolution and the Nb enrichment processes. The trachyte rocks have titanite U-Pb age of 432.4±4.4 Ma(n=30, MSWD=2.4), which is consistent with the zircon U-Pb age of other trachytes, mafic dykes, and carbonatite-alkaline complexes in the South Qinling belt, indicating that the study area had large-scale alkaline magmatism activation in the Early Silurian. The titanite from both trachyte and alkaline basalt rock are of magmatic and detrital origins based on their occurrences and geochemical characteristics. Most magmatic titanite grains are euhedral and coarse, and have oscillating zoning, while some grains are present in the form of small particles around the titanite phenocrysts. They have lower Al contents and Al/Fe ratios compared to detrital titanites, which are typically fragmented. The magmatic titanites in the early basaltic rock have lower concentrations of Nb2O5 (< 0.47%), Na2O (< 0.05%) and REE2O3 (< 0.87%), but have a large variety of Al2O3+ Fe2O3 (0.80%-2.91%), indicating that the Nb content in the early basaltic magma is relatively low. The magmatic titanites in the trachyte are obviously enriched in Nb2O5 (0.19%-1.50%) and REE2O3 (0.02%-4.06%). Trachytes also contain fine-grained other Nb minerals such as pyrochlore, columbite, and aeschynite, indicating that the contents of Nb are significantly increased during magma fractionation from basalt to trachyte, and eventually lead to ore-grade mineralization in trachyte.
-
图 1 秦岭位置的大地构造简图(a)和南秦岭区域地质图(b)
图a据张成立等(2007)修改,图b据Wang et al.(2017)修改
Fig. 1. Schematic diagram of the structure of Qinling belt (a) and geological map of South Qinling belt (b)
图 2 天宝碱性火山岩型铌矿床矿区地质图
据刘万亮等(2015)修改
Fig. 2. Geological map of Tianbao alkaline volcanic-rock hosted Nb deposit
表 1 天宝粗面岩LA-ICP-MS榍石U-Pb定年结果
Table 1. LA-ICP-MS titanite U-Pb dating results of trachyte from Tianbao
分析点号 Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U (10-6) Ratio 1σ Ratio 1σ Ratio 1σ Age (Ma) 1σ B20-01 3.45 80.5 10.50 0.396 6 0.05 4.265 6 0.35 0.099 0 0.00 386.9 23.7 TB20-02 3.76 85.1 10.50 0.280 7 0.03 3.963 7 0.30 0.118 2 0.00 499.1 27.7 TB20-03 3.85 90.1 10.60 0.298 5 0.03 3.823 5 0.31 0.110 0 0.00 464.5 27.7 TB20-04 3.49 79.5 10.50 0.310 7 0.03 3.774 3 0.25 0.110 3 0.01 458.1 26.8 TB20-05 3.49 76.6 10.30 0.316 0 0.03 3.832 2 0.37 0.108 4 0.01 449.9 26.7 TB20-06 3.96 105.9 11.90 0.295 4 0.03 3.634 4 0.32 0.104 8 0.00 451.4 28.8 TB20-07 3.62 82.1 10.70 0.388 2 0.07 4.290 4 0.31 0.108 6 0.00 413.0 22.4 TB20-08 3.99 100.9 10.60 0.402 2 0.05 4.613 6 0.31 0.109 6 0.01 408.6 21.6 TB20-09 3.68 88.8 10.20 0.321 6 0.03 4.261 6 0.31 0.114 3 0.01 462.2 25.4 TB20-10 3.40 81.4 10.40 0.401 4 0.06 4.367 9 0.33 0.107 6 0.00 404.6 21.9 TB20-11 3.83 90.1 10.60 0.394 4 0.04 4.961 3 0.37 0.111 4 0.00 416.3 21.7 TB20-12 3.66 89.0 10.70 0.347 3 0.03 4.556 6 0.35 0.108 7 0.00 433.6 24.7 TB20-13 3.64 85.0 10.50 0.402 2 0.05 4.298 3 0.31 0.106 6 0.00 402.0 22.1 TB20-14 3.64 80.2 10.10 0.396 3 0.06 4.626 7 0.44 0.110 3 0.01 412.9 21.7 TB20-15 4.14 95.0 10.30 0.348 2 0.04 4.721 3 0.32 0.127 5 0.01 477.3 21.7 TB20-16 3.45 75.0 9.45 0.405 0 0.04 4.914 0 0.40 0.108 9 0.00 405.8 21.5 TB20-17 3.12 79.7 9.91 0.425 8 0.07 4.201 6 0.39 0.094 2 0.00 364.1 23.2 TB20-18 3.05 71.9 9.84 0.400 5 0.05 3.862 7 0.29 0.100 6 0.00 389.0 23.2 TB20-19 3.51 80.6 10.80 0.432 2 0.05 4.766 5 0.32 0.101 1 0.00 377.2 21.6 TB20-20 4.17 81.5 10.10 0.420 6 0.04 6.413 3 0.52 0.134 7 0.01 448.2 17.2 TB20-21 3.89 92.5 11.50 0.291 4 0.03 3.741 6 0.32 0.108 7 0.00 465.1 28.4 TB20-22 3.92 96.6 11.10 0.313 4 0.03 4.212 6 0.31 0.104 5 0.00 440.6 27.6 TB20-23 3.75 86.5 11.40 0.300 6 0.02 3.930 2 0.25 0.107 5 0.00 456.2 27.9 TB20-24 4.01 78.6 10.90 0.310 1 0.02 5.077 6 0.35 0.133 1 0.01 516.5 23.4 TB20-25 3.41 75.0 10.00 0.407 8 0.06 4.146 0 0.38 0.108 5 0.01 403.7 21.5 TB20-26 3.24 72.2 9.56 0.320 4 0.05 3.709 8 0.41 0.109 5 0.01 450.3 26.2 TB20-27 3.67 75.9 10.50 0.346 6 0.03 4.809 1 0.31 0.115 3 0.00 450.2 23.7 TB20-28 4.18 97.7 11.60 0.333 5 0.04 4.593 3 0.35 0.121 7 0.01 473.3 23.5 TB20-29 4.05 108.0 11.10 0.228 3 0.03 2.971 0 0.32 0.104 9 0.01 493.5 34.4 TB20-30 3.47 83.4 10.80 0.353 1 0.03 4.555 4 0.35 0.105 7 0.00 423.1 24.9 注:利用在线Isoplot(http://www.isoplotr.com/isoplotr/)中等时线型普通铅(Isochron)法进行普通铅校正. 表 2 天宝碱性火山岩中榍石主微量元素分析结果(均值:%)
Table 2. Major and trace element compositions (%) of titanite from Tianbao alkaline volcanic rocks (average)
岩性 粗面质岩石 碱性玄武岩 类型 Ttn1-1 Ttn1-2 Ttn1-3 Ttn2-1 Ttn2-2 样品编号(数量) TB14、ZK37、ZK51(N=28) ZK51(N=5) TB14(N=8) TB8、ZK116(N=22) TB3、TB8(N=15) Al2O3 1.05 0.73 3.70 0.94 3.24 TiO2 34.60 36.80 32.80 38.10 33.90 CaO 26.90 27.50 29.60 29.50 29.60 Y2O3 0.25 0.19 0.02 0.07 0.01 Ta2O5 0.00 0.00 0.00 0.00 0.00 MnO 0.18 0.05 0.01 0.03 0.01 Nd2O3 0.57 0.21 0.07 0.10 0.04 Na2O 0.27 0.72 0.05 0.02 0.05 MgO 0.09 0.05 0.08 0.03 0.11 SiO2 29.60 31.00 31.60 30.60 31.50 Nb2O5 1.00 0.81 0.70 0.24 0.15 Fe2O3 2.35 1.91 1.48 0.84 1.47 Pr2O3 0.18 0.06 0.03 0.06 0.02 Ce2O3 1.31 0.07 0.00 0.08 0.00 La2O3 0.46 0.01 0.01 0.03 0.01 F 0.15 0.12 0.60 0.03 0.32 Cl 0.00 0.01 0.00 0.00 0.01 总量 98.60 100.00 100.40 100.60 100.20 -
[1] Aleinikoff, J.N., Wintsch, R.P., Fanning, C.M., et al., 2002. U-Pb Geochronology of Zircon and Polygenetic Titanite from the Glastonbury Complex, Connecticut, USA: An Integrated SEM, EMPA, TIMS, and SHRIMP Study. Chemical Geology, 188(1/2): 125-147. https://doi.org/10.1016/S0009-2541(02)00076-1 [2] Armstrong, J.T., 1991. Quantitative Elemental Analysis of Individual Microparticles with Electron Beam Instruments. In: Heinrich, K.F.J., Newbury, D.E., eds., Electron Probe Quantitation. Springer US, Boston, MA, 261-315. https://doi.org/10.1007/978-1-4899-2617-3_15 [3] Chakhmouradian, A.R., 2004. Crystal Chemistry and Paragenesis of Compositionally Unique (Al-, Fe-, Nb-, and Zr-Rich) Titanite from Afrikanda, Russia. American Mineralogist, 89(11-12): 1752-1762. https://doi.org/10.2138/am-2004-11-1222 [4] Chen, W., Lu, J., Jiang, S.Y., et al., 2018. Radiogenic Pb Reservoir Contributes to the Rare Earth Element (REE) Enrichment in South Qinling Carbonatites. Chemical Geology, 494: 80-95. https://doi.org/10.1016/j.chemgeo.2018.07.019 [5] Faure, M., Lin, W., Monié, P., et al., 2008. Palaeozoic Collision between the North and South China Blocks, Triassic Intracontinental Tectonics, and the Problem of the Ultrahigh-Pressure Metamorphism. Comptes Rendus Geoscience, 340(2/3): 139-150. https://doi.org/10.1016/j.crte.2007.10.007 [6] Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2001. Sphene (Titanite): Phase Relations and Role as a Geochronometer. Chemical Geology, 172(1/2): 131-148. https://doi.org/10.1016/S0009-2541(00)00240-0 [7] Gao, X.Y., Zheng, Y.F., Chen, Y.X., et al., 2012. Geochemical and U-Pb Age Constraints on the Occurrence of Polygenetic Titanites in UHP Metagranite in the Dabie Orogen. Lithos, 136/137/138/139: 93-108. https://doi.org/10.1016/j.lithos.2011.03.020 [8] He, Q., Zheng, Y.F., 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194 (in Chinese with English abstract). [9] Vuorinen, J.H., Hålenius, U., 2005. Nb-, Zr- and LREE-Rich Titanite from the Alnö Alkaline Complex: Crystal Chemistry and Its Importance as a Petrogenetic Indicator. Lithos, 83(1/2): 128-142. https://doi.org/10.1016/j.lithos.2005.01.008 [10] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j [11] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [12] King, P.L., Sham, T.K., Gordon, R.A., et al., 2013. Microbeam X-Ray Analysis of Ce3+/Ce4+ in Ti-Rich Minerals: A Case Study with Titanite (Sphene) with Implications for Multivalent Trace Element Substitution in Minerals. American Mineralogist, 98(1): 110-119. https://doi.org/10.2138/am.2013.3959 [13] Kohn, M.J., 2017. Titanite Petrochronology. Reviews in Mineralogy and Geochemistry, 83(1): 419-441. https://doi.org/10.2138/rmg.2017.83.13 [14] Li, J.K., Li, P., Wang, D.H., et al., 2019. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566 (in Chinese). doi: 10.1360/N972018-00933 [15] Li, J.W., Deng, X.D., Zhou, M.F., et al., 2010. Laser Ablation ICP-MS Titanite U-Th-Pb Dating of Hydrothermal Ore Deposits: A Case Study of the Tonglushan Cu-Fe-Au Skarn Deposit, SE Hubei Province, China. Chemical Geology, 270(1/2/3/4): 56-67. https://doi.org/10.1016/j.chemgeo.2009.11.005 [16] Liu, W.L., Liu, C.X., Yang, C., et al., 2015. Geological Characteristics and Prospecting Potential of Niobium Ore of Tianbao Area, Zhuxi, Southern Qinling. Resources Environment & Engineering, 29(6): 779-784 (in Chinese with English abstract). [17] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [18] Mitchell, R.H., 2015. Primary and Secondary Niobium Mineral Deposits Associated with Carbonatites. Ore Geology Reviews, 64: 626-641. https://doi.org/10.1016/j.oregeorev.2014.03.010 [19] Nie, X., Wang, Z.Q., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845-4863. https://doi.org/10.1002/gj.3710 [20] Pan, L.C., Hu, R.Z., Bi, X.W., et al., 2018. Titanite Major and Trace Element Compositions as Petrogenetic and Metallogenic Indicators of Mo Ore Deposits: Examples from Four Granite Plutons in the Southern Yidun Arc, SW China. American Mineralogist, 103(9): 1417-1434. https://doi.org/10.2138/am-2018-6224 [21] Simandl, G.J., Burt, R.O., Trueman, D.L., et al., 2018. Economic Geology Models 2. Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market—A Primer for Geoscientists. Geoscience Canada, 45(2): 85-96. https://doi.org/10.12789/geocanj.2018.45.135 [22] Su, J.H., Zhao, X.F., Li, X.C., et al., 2019. Geological and Geochemical Characteristics of the Miaoya Syenite-Carbonatite Complex, Central China: Implications for the Origin of REE-Nb-Enriched Carbonatite. Ore Geology Reviews, 113: 103101. https://doi.org/10.1016/j.oregeorev.2019.103101 [23] Vermeesch, P., 2018. Isoplot R: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 [24] Wan, J., Liu, C.X., Yang, C., et al., 2016. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Trachytic Volcanic Rocks in Zhushan Area of Southern Qinling Mountains and Their Significance. Geological Bulletin of China, 35(7): 1134-1143 (in Chinese with English abstract). [25] Wang, C.Z., Yang, K.G., Xu, Y., et al., 2009. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance. Geological Science and Technology Information, 28(3): 19-26 (in Chinese with English abstract). [26] Wang, K., Wang, L.X., Ma, C.Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 138: 104346. https://doi.org/10.1016/j.oregeorev.2021.104346 [27] Wang, K. M., Wang, Z. Q., Zhang, Y. L., et al., 2015. Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics. Acta Geologica Sinica, 89(1): 187-202. doi: 10.1111/1755-6724.12404 [28] Wang, R.C., Xie, L., Chen, J., et al., 2011. Titanite as an Indicator Mineral of Tin Mineralizing Potential of Granites in the Middle Nanling Range. Geological Journal of China Universities, 17(3): 368-380 (in Chinese with English abstract). [29] Wang, R.R., Xu, Z.Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270-288. https://doi.org/10.1016/j.tecto.2017.05.021 [30] Wu, Y.B., 2019. Paleozoic Magmatism in the Qinling Orogen and Its Geodynamic Significance. Earth Science, 44(12): 4173-4177 (in Chinese with English abstract). [31] Wu, Y.B., Zheng, Y.F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007 [32] Xia, L. Q., Xia, Z. C., Li, X. M., et al., 2008. Petrogenesis of Volcanic Rocks and Basic Dike Groups of Yaolinghe Group, Yunxi Group and Wudang Mountain Group in the Eastern Part of South Qinling Mountains. Northwestern Geology, (3): 1-29 (in Chinese with English abstract). [33] Xu, C., Campbell, I.H., Allen, C.M., et al., 2008. U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 105(1-2): 118-128. https://doi.org/10.1016/j.lithos.2008.03.002 [34] Yang, C., Liu, C.X., Liu, W.L., et al., 2017. Geochemical Characteristics of Trachyte and Nb Mineralization Process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, 36(5): 605-618 (in Chinese with English abstract). [35] Yao, S.Z., Ding, Z.J., Zhou, Z.G., et al., 2002. Metallogenic Systems of Qinling Orogen. Earth Science, 27(5): 599-604 (in Chinese with English abstract). [36] Ying, Y.C., Chen, W., Lu, J., et al., 2017. In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China. Lithos, 290/291: 159-171. https://doi.org/10.1016/j.lithos.2017.08.003 [37] Zhang, C. L., Gao, S., Yuan, H. L., et al., 2007. Early Paleozoic Mantle Properties in the Southern Qinling Mountains: Sr-Nd-Pb Isotopic Evidence from Ultramafic and Mafic Dike and Volcanic Rocks. Science in China (Series D), (7): 857-865 (in Chinese). [38] Zhang, G.W., Dong, Y.P., Yao, A.P., 1997. The Crustal Compositions, Structures and Tectonic Evolution of the Qinling Orogenic Belt. Geology of Shaanxi, 15(2): 1-14 (in Chinese with English abstract). [39] Zhang, G.W., Meng, Q.R., Lai, S.C., 1995. Tectonics and Structure of Qinling Orogenic Belt. Science in China (Series B), 25(9): 994-1003(in Chinese). [40] Zhang, W., Chen, W.T., Gao, J.F., et al., 2019. Two Episodes of REE Mineralization in the Qinling Orogenic Belt, Central China: In-Situ U-Th-Pb Dating of Bastnäsite and Monazite. Mineralium Deposita, 54(8): 1265-1280. https://doi.org/10.1007/s00126-019-00875-7 [41] Zhu, J., Cheng, C.H., Wang, L.X., et al., 2017. Some New Knowledge Concerning Silurian Alkaline Magmatism and Related Nb-REE Mineralization in the Zhushan Region, South Qinling. Acta Petrologica et Mineralogica, 36(5): 681-690 (in Chinese with English abstract). [42] Zou, X.W., Duan, Q.F., Tang, C.Y., et al., 2011. SHRIMP Zircon U-Pb Dating and Lithogeochemical Characteristics of Diabase from Zhenping Area in North Daba Mountain. Geology in China, 38(2): 282-291 (in Chinese with English abstract). [43] 贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267 [44] 李建康, 李鹏, 王登红, 等, 2019. 中国铌钽矿成矿规律. 科学通报, 64(15): 1545-1566. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915002.htm [45] 刘万亮, 刘成新, 杨成, 等, 2015. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析. 资源环境与工程, 29(6): 779-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201506006.htm [46] 万俊, 刘成新, 杨成, 等, 2016. 南秦岭竹山地区粗面质火山岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其大地构造意义. 地质通报, 35(7): 1134-1143. doi: 10.3969/j.issn.1671-2552.2016.07.009 [47] 王存智, 杨坤光, 徐扬, 等, 2009. 北大巴基性岩墙群地球化学特征、LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 28(3): 19-26. doi: 10.3969/j.issn.1000-7849.2009.03.004 [48] 王汝成, 谢磊, 陈骏, 等, 2011. 南岭中段花岗岩中榍石对锡成矿能力的指示意义. 高校地质学报, 17(3): 368-380. doi: 10.3969/j.issn.1006-7493.2011.03.002 [49] 吴元保, 2019. 秦岭造山带古生代岩浆作用及地球动力学意义. 地球科学, 44(12): 4173-4177. doi: 10.3799/dqkx.2019.266 [50] 夏林圻, 夏祖春, 李向民, 等, 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, (3): 1-29. doi: 10.3969/j.issn.1009-6248.2008.03.001 [51] 杨成, 刘成新, 刘万亮, 等, 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, 36(5): 605-618. doi: 10.3969/j.issn.1000-6524.2017.05.002 [52] 姚书振, 丁振举, 周宗桂, 等, 2002. 秦岭造山带金属成矿系统. 地球科学, 27(5): 599-604. doi: 10.3321/j.issn:1000-2383.2002.05.020 [53] 张成立, 高山, 袁洪林, 等, 2007. 南秦岭早古生代地幔性质: 来自超镁铁质、镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学(D辑), (7): 857-865. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200707000.htm [54] 张国伟, 董云鹏, 姚安平, 1997. 秦岭造山带基本组成与结构及其构造演化. 陕西地质, 15(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY199702000.htm [55] 张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造. 中国科学(B辑), 25(9): 994-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm [56] 朱江, 程昌红, 王连训, 等, 2017. 南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识. 岩石矿物学杂志, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008 [57] 邹先武, 段其发, 汤朝阳, 等, 2011. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 中国地质, 38(2): 282-291. doi: 10.3969/j.issn.1000-3657.2011.02.005 -
苌笙任 附表2-南秦岭地区早古生代碱性岩浆岩年龄统计.xlsx 苌笙任 附表1-榍石电子探针分析结果.docx