Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls
-
摘要:
高位岩崩作为高山峡谷区、海岸、交通廊道、露天矿山常见的地质灾害类型之一,具有泛生性、突发性、隐蔽性及致灾严重性等基本特性.近年来,伴随全球地震频发和气候急剧变化,高位高能岩崩事件显著增多,造成严重的生命财产损失.目前,高位高能岩崩识别和预警技术、失稳和运动机理、灾害链效应成为国际地球科学领域的研究热点之一.本文从岩崩早期识别、失稳和运动机理、综合防护技术措施等方面归纳总结了目前的主要研究成果,并提出了岩桥损伤识别方法、动态监测技术、稳定性动态评价方法、早期预警模型、运动机理和综合防控技术是亟待解决的科学问题和技术难题.这些问题的解决将有助于高位高能岩崩综合防治.
Abstract:High altitude rockfalls, as one of the common types of geological disasters in mountains, coasts, traffic corridors and opencast quarries, have the characteristics of wide distribution, sudden failure, concealment and severity of disaster, etc. In recent years, with frequent earthquakes and drastic climate change around the world, the high-altitude extremely-energetic rockfalls have increased significantly, causing serious loss of life and property. Recently, the identification and early warning technology, failure and transportation mechanism as well as disaster chain effects of high-altitude extremely-energetic rockfalls have become one of the research hotspots in the field of international geosciences. This paper summarizes the current main research achievements from the aspects of early identification of rockfalls, failure and transportation mechanism, comprehensive mitigation measures, and puts forward the scientific and technical problems that need to be solved urgently, such as damage identification method of rock bridges, dynamic monitoring technology, dynamic stability evaluation method, early warning model, transportation mechanism and comprehensive prevention and control technology. The solution of these problems will contribute to the comprehensive prevention and control of high-altitude extremely-energetic rockfalls.
-
图 1 国内外高位高能崩塌灾害
a. 中国九寨沟熊猫海岩崩;b. 中国成兰铁路某工区岩崩;c. 瑞士Cengalo岩崩,据De Blasio et al.(2018);d. 法国Dru岩崩,据De Blasio et al.(2018);e. 瑞士艾格尔峰岩崩,据De Blasio et al.(2018);f. 美国Yosemite谷崩塌,据Wieczorek and Snyder(1999);g. 意大利Cima Una Fiscalina崩塌,据De Blasio et al.(2018);h. 意大利Monte Civetta崩塌,据De Blasio et al.(2018);i. 意大利Croda Rossa崩塌,据De Blasio et al.(2018);j. 意大利Monte Pelmo崩塌,据De Blasio et al.(2018);k. 意大利Gran Sasso崩塌,据De Blasio et al.(2018);l. 美国Yosemite国家公园崩塌,据Herb(2006)
Fig. 1. High-altitude extremely-energetic rockfalls in the world
图 2 高位高能岩崩地形特征及撞击碎裂过程示意图(据De Blasio et al., 2018修改)
Fig. 2. Schematic diagram of topographic features and impact fragmentation process of high-altitude extremely-energetic rockfalls (modified after De Blasio et al., 2018)
图 3 岩崩的影响因素(据Volkwein et al., 2011修改)
Fig. 3. Influencing factors of rockfalls (modified after Volkwein et al., 2011)
图 6 渝怀铁路白马1号隧道进口危岩体加固工程(肖福燕,2020)
Fig. 6. Reinforcement project of unstable rock masses at the entrance of Baima No. 1 tunnel along the Yu-Huai Railway (Xiao, 2020)
表 1 国内高位高能岩崩事件
Table 1. High-altitude extremely-energetic rockfall events in China
序号 出处 名称 时间 地点 触发因素 体积
(104 m3)高差(m) 运动距离(m) 1 柴宗新,1989 普福河支沟崩塌 1965.11.22-23 云南省禄劝县普福河 卸荷+降雨 30 900 360 8 000 2 刘传正和肖锐铧,2021 盐池河山体崩塌 1980.06.03 湖北省安远县 矿产开采 100 400 560 3 胡显明等,2011 南门湾龙头山岩崩 1987.09.01 重庆市万县地区巫溪县南门湾 卸荷 30.24 218 / 4 李玉生等,1994 乌江鸡冠岭岩崩 1994.04.30 四川省武隆县 采矿 400 325 / 5 刘传正等,2001 318国道镜山山体崩塌 2001.04.25 西藏昌都地区芒康县 卸荷 100 500 150 6 邬海艳和詹丹志,2001 贵州兴义崩塌 2001.06.02 贵州省兴义市雄武乡木咱村 降雨 60 320 / 7 冯振等,2016 甄子岩崩塌 2004.08.12 重庆市南川区 岩溶+采矿 50 240 300 8 靳亚峰,2014 汶川G213线路K87+300处崩滑 2007.05.26 四川省汶川县 降雨 30 302 / 9 赵升等,2009 老虎嘴山体崩塌 2008.05.12 四川省汶川县 地震 200 450 / 10 王全才等,2009 豆芽坪崩塌 2008.05.12 四川省汶川县 地震 500 570 1 000 11 赵艳华,2014 宝成铁路K400+000~170崩塌 2008.05.12 宝成铁路K400+000~170段 地震 12 205 / 12 何思明等,2013 都汶公路彻底关大桥崩塌 2009.07.25 四川省汶川县 降雨 1 500 / 13 周小军等,2010 大渡河猴子岩滑坡 2009.08.06 四川省雅安市 地震 90 400 / 14 陈红旗,2013 贵州凯里崩塌 2013.02.18 贵州省凯里市 岩溶+采矿 30 200 180 15 刘传正等,2016 红石崖崩塌 2014.08.03 云南省昭通市鲁甸县 地震 1 200 760 600 16 梁靖等,2020 九寨沟芦苇海崩塌 2017.08.08 四川省九寨沟县 地震 2.7 400 500 17 王毅等,2020 九寨沟则查哇沟震后崩塌 2017.08.08 四川省阿坝州九寨沟县 地震 17.8 340 / 18 盛豪等,2020 九寨沟景区五花海震后崩塌 2017.08.08 四川省阿坝州九寨沟县 地震+暴雨 31.2 500 / 19 肖锐铧,2018 贵州“8.28”纳雍山体崩塌 2017.08.28 贵州省纳雍县 采矿+降雨 60 305 840 20 唐尧等,2019 “8.14”成昆铁路山体崩塌 2019.08.14 成昆铁路四川甘洛段埃岱2号至3号隧洞附近 降雨 4.8 220 316 21 陈健,2021 洪雅山体崩塌 2021.04.05 四川省眉山市洪雅县 降雨 15 / / 表 2 落石冲击力计算方法(据蔡向阳和铁永波,2016修改)
Table 2. Calculation methods of the impact force of falling rock (modified after Cai and Tie, 2016)
算法 原理 特点 弹性理论法
(杨其新和关宝树,1996)牛顿定律和落石冲击试验 ①考虑缓冲层厚度的影响以及冲击过程落石加速度的变化;②是一种半经验半理论算法,存在求解最大加速度的困难;③结果为平均力,值比实际值偏小,对结构不安全 路基规范法
(JTGD30-2004)功能守恒原理 ①落石动能损失与冲击力所做的功相等;②冲击力的大小与落石陷入土层深度成正比;③无法反映缓冲层厚度变化对落石冲击力的影响;④计算结果为平均力,值比实际值偏小,对结构不安全 隧道手册法
(铁道第二勘测设计院,1991)冲量定理 ①考虑缓冲层厚度的影响;②落石冲击缓冲层后速度衰减为零,不发生反弹;③计算结果为平均力,值比实际值偏小,对结构不安全 日本方法和瑞士方法
(叶四桥等,2010)落石冲击试验 ①考虑正碰冲击,不涉及斜碰问题;②无法反映缓冲层厚度变化对落石冲击力的影响;③计算方法简单,但计算结果偏大 修正杨其新算法
(叶四桥等,2010)牛顿定律和冲量定理 ①杨其新算法的修正;②引入放大系数和法向恢复系数, 建立了平均冲击力和最大冲击力之间的关系 修正隧道手册法
(袁进科等,2014)冲量定理 ①隧道手册法的修正;②引入放大系数和恢复系数得到最大冲击力 表 3 落石挡墙类型汇总(据Ronco et al., 2009; Lambert and Bourrier, 2013修改)
Table 3. Summary of rockfall retaining wall types (modified after Ronco et al., 2009; Lambert and Bourrier, 2013)
地点 示意图 挡墙材料 瓦雷泽(意大利) 夯实士 瓦莱达 奥斯塔(意大利) 石块 乌迪内(意大利) 夯实士 法国 石笼 瑞士 木材、钢筋加固的夯实土 日本 土工布或土工格室加筋的夯实土 瓦莱达 奥斯塔(意大利) 土工布、土工格栅或金属网加筋的夯实土 -
[1] Ashwood, W., Hungr, O., 2016. Estimating Total Resisting Force in Flexible Barrier Impacted by a Granular Avalanche Using Physical and Numerical Modeling. Canadian Geotechnical Journal, 53(10): 1700-1717. https://doi.org/10.1139/cgj-2015-0481 [2] Asteriou, P., Tsiambaos, G., 2016. Empirical Model for Predicting Rockfall Trajectory Direction. Rock Mechanics and Rock Engineering, 49(3): 927-941. https://doi.org/10.1007/s00603-015-0798-7 [3] Azzoni, A., La Barbera, G., Zaninetti, A., 1995. Analysis and Prediction of Rockfalls Using a Mathematical Model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7): 709-724. https://doi.org/10.1016/0148-9062(95)00018-C [4] Bourrier, F., Dorren, L., Nicot, F., et al., 2009. Toward Objective Rockfall Trajectory Simulation Using a Stochastic Impact Model. Geomorphology, 110(3-4): 68-79. https://doi.org/10.1016/j.geomorph.2009.03.017 [5] Bowman, E. T., Take, W. A., 2015. The Runout of Chalk Cliff Collapses in England and France-Case Studies and Physical Model Experiments. Landslides, 12(2): 225-239. https://doi.org/10.1007/s10346-014-0472-2 [6] Bowman, E. T., Take, W. A., Rait, K. L., et al., 2012. Physical Models of Rock Avalanche Spreading Behaviour with Dynamic Fragmentation. Canadian Geotechnical Journal, 49(4): 460-476. https://doi.org/10.1139/t2012-007 [7] Breugnot, A., Lambert, S., Villard, P., et al., 2016. A Discrete/Continuous Coupled Approach for Modeling Impacts on Cellular Geostructures. Rock Mechanics and Rock Engineering, 49(5): 1831-1848. https://doi.org/10.1007/s00603-015-0886-8 [8] Brideau, M. A., Yan, M., Stead, D., 2009. The Role of Tectonic Damage and Brittle Rock Fracture in the Development of Large Rock Slope Failures. Geomorphology, 103(1): 30-49. https://doi.org/10.1016/j.geomorph.2008.04.010 [9] Budetta, P., Luca, C., Nappi, M., 2016. Quantitative Rockfall Risk Assessment for an Important Road by Means of the Rockfall Risk Management (RO. MA.) Method. Bulletin of Engineering Geology and the Environment, 75(4): 1377-1397. https://doi.org/10.1007/s10064-015-0798-6 [10] Budetta, P., Nappi, M., 2013. Comparison between Qualitative Rockfall Risk Rating Systems for a Road Affected by High Traffic Intensity. Natural Hazards and Earth System Sciences, 13(6): 1643-1653. https://doi.org/10.5194/nhess-13-1643-2013 [11] Cai, X. Y., Tie, Y. B., 2016. Overview of Calulation Model for Collapse and Rockfall Movement. Journal of Geological Hazards and Environment Preservation, 27(3): 100-104 (in Chinese with English abstract). [12] Ceccato, F., Redaelli, I., di Prisco, C., et al., 2018. Impact Forces of Granular Flows on Rigid Structures: Comparison between Discontinuous (DEM) and Continuous (MPM) Numerical Approaches. Computers and Geotechnics, 103(11): 201-217. https://doi.org/10.1016/j.compgeo.2018.07.014 [13] Chai, Z. X., 1989. Study on Landslide Disaster and Its Countermeasures. Journal of Catastrophology, (1): 72-75 (in Chinese). [14] Chen, G. Q., Zhao, C., Liu, H., et al., 2016. Acoustic Emission Characteristics of Rock Bridge Test Under Different Stress Paths. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1792-1804 (in Chinese with English abstract). [15] Chen, H. K., Qin, X., 2018. Status Quo and Trend of Unstable Rock Stability Analysis. Journal of Chongqing Jiaotong University (Natural Science), 37(10): 49-60 (in Chinese with English abstract). [16] Chen, H. K., Tang, H. M., Ye, S. Q., et al., 2006. Principle of Dangerous Rock Preventions. Seismological Press, Beijing (in Chinese). [17] Chen, H. K., Wang, S. J., Wang, Q. C., 2021. Study on Calculation Method of Anchor Bolt Number in Overhanging Rock Anchoring Works. Chinese Journal of Applied Mechanics, 38(2): 770-775 (in Chinese with English abstract). [18] Chen, H. Q., 2013. Geological Disaster of Collapse in Kaili, Guizhou. Hydrogeology & Engineering Geology, 40(2): 112 (in Chinese with English abstract). [19] Chen, J., 2021. Three People Lost Contact after a Mountain Collapse in Hongya County, Sichuan Province. Xinhua Viewpoint, [2021-04-06] (in Chinese). https://m.gmw.cn/baijia/2021-04/06/1302211920.html [20] Chen, J. Y., Yue, H. Y., Xu, Q., 2016. Dynamic Stability Analysis of Perilous Toppling Rock in Complex Environment. Chinese Journal of Rock Mechanics and Engineering, 35(10): 1965-1974 (in Chinese with English abstract). [21] Chen, L. D., Huang, B. L., Chen, Z. F., et al., 2012. Hith-Steep Tock Slope and Dangerous Rockmass in Three Gorges of Yangtze River. China University of Geosciences Press, Wuhan (in Chinese). [22] Chen, W., Xu, Z. M., Liu, W. L., 2015. Mechanical Model and Failure Mechanism of Unstable Cantilevered Rock Blocks Due to Differential Weathering. Rock and Soil Mechanics, 36(1): 195-204 (in Chinese with English abstract). [23] Corominas, J., Copons, R., Moya, J., et al., 2005. Quantitative Assessment of the Residual Risk in a Rockfall Protected Area. Landslides, 2(4): 343-357. https://doi.org/10.1007/s10346-005-0022-z [24] Crosta, G. B., Agliardi, F., Frattini, P., et al., 2015. Key Issues in Rock Fall Modeling, Hazard and Risk Assessment for Rockfall Protection. Engineering Geology for Society and Territory, 2: 43-58. https://doi.org/10.1007/978-3-319-09057-3_4 [25] Cui, Y. F., Choi, C. E., Liu, L. H. D., et al., 2018. Effects of Particle Size of Mono-Disperse Granular Flows Impacting a Rigid Barrier. Natural Hazards, 91(3): 1179-1201. https://doi.org/10.1007/s11069-018-3185-3 [26] De Blasio, F. V., Crosta, G. B., 2015. Fragmentation and Boosting of Rock Falls and Rock Avalanches. Geophysical Research Letters, 42(20): 8463-8470. https://doi.org/10.1002/2015gl064723 [27] De Blasio, F. V., Dattola, G., Crosta, G. B., 2018. Extremely Energetic Rockfalls. Journal of Geophysical Research: Earth Surface, 123(10): 2392-2421. https://doi.org/10.1029/2017jf004327 [28] Dong, X. J., Xu, Q., She, J. X., et al., 2020. Preliminary Study on Interpretation of Geological Hazards in Jiuzhaigou Based on Multi-Source Remote Sensing Data. Geomatics and Information Science of Wuhan University, 45(3): 432-441 (in Chinese with English abstract). [29] Dorren, L. K. A., 2003. A Review of Rockfall Mechanics and Modelling Approaches. Progress in Physical Geography: Earth and Environment, 27(1): 69-87. https://doi.org/10.1191/0309133303pp359ra [30] Dorren, L. K. A., 2016. Rockyfor3D (v5.2) Revealed—Transparent Description of the Complete 3D Rockfall Model. 2016-3-30 [2019-10-15]. http://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf [31] Du, Y., Xie, M. W., Jiang, Y. J., et al., 2015. Methods for Determining Early Warning Indices Based on Natural Frequency Monitoring. Rock and Soil Mechanics, 36(8): 2284-2290 (in Chinese with English abstract). [32] Du, Y., Xie, M. W., Jiang, Y. J., et al., 2019. Research Progress on Dynamic Monitoring Index for Early Warning of Rock Collapse. Chinese Journal of Engineering, 41(4): 427-435 (in Chinese with English abstract). [33] Dufresne, A., Dunning, S. A., 2017. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides, 14(5): 1555-1563. https://doi.org/10.1007/s10346-017-0806-y [34] Effeindzourou, A., Giacomini, A., Thoeni, K., et al., 2017. Numerical Investigation of Rockfall Impacts on Muckpiles for Underground Portals. Rock Mechanics and Rock Engineering, 50(6): 1569-1583. https://doi.org/10.1007/s00603-017-1183-5 [35] Elmo, D., Donati, D., Stead, D., 2018. Challenges in the Characterisation of Intact Rock Bridges in Rock Slopes. Engineering Geology, 245: 81-96. https://doi.org/10.1016/j.enggeo.2018.06.014 [36] Evans, S. G., Hungr, O., 1993. The Assessment of Rockfall Hazard at the Base of Talus Slopes. Canadian Geotechnical Journal, 30(4): 620-636. https://doi.org/10.1139/t93-054 [37] Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 [38] Feng, Z., Chen, Y. X., Li, B., et al., 2016. Failure Mechanism on the Zengziyan Collapse in Nanchuan of Chongqing. Hydrogeology & Engineering Geology, 43(1): 50-56 (in Chinese with English abstract). [39] Giacomini, A., Buzzi, O., Renard, B., et al., 2009. Experimental Studies on Fragmentation of Rock Falls on Impact with Rock Surfaces. International Journal of Rock Mechanics and Mining Sciences, 46(4): 708-715. https://doi.org/10.1016/j.ijrmms.2008.09.007 [40] Guzzetti, F., Crosta, G., Detti, R., et al., 2002. STONE: A Computer Program for the Three-Dimensional Simulation of Rock-Falls. Computers & Geosciences, 28(9): 1079-1093. https://doi.org/10.1016/S0098-3004(02)00025-0 [41] Haug, Ø. T., Rosenau, M., Leever, K., et al., 2016. On the Energy Budgets of Fragmenting Rockfalls and Rockslides: Insights from Experiments. Journal of Geophysical Research: Earth Surface, 121(7): 1310-1327. https://doi.org/10.1002/2014jf003406 [42] Havaej, M., Stead, D., 2016. Investigating the Role of Kinematics and Damage in the Failure of Rock Slopes. Computers and Geotechnics, 78(5): 181-193. https://doi.org/10.1016/j.compgeo.2016.05.014 [43] He, K., Yin, Y. P., Li, B., et al., 2019. The Mechanism of the Bottom-Crashing Rockfall of a Massive Layered Carbonate Rock Mass at Zengziyan, Chongqing, China. Journal of Earth System Science, 128(4): 1-13. https://doi.org/10.1007/s12040-019-1141-6 [44] He, M. C., 2009. Real-Time Remote Monitoring and Forecasting System for Geological Disasters of Landslides and Its Engineering Application. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1081-1090 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200906003.htm [45] He, S. M., Wang, D. P., Wu, Y., et al., 2014. Formation Mechanism and Key Prevention Technology of Rockfalls. Chinese Journal of Nature, 36(5): 336-345 (in Chinese with English abstract). [46] He, S. M., Wu, Y., Li, X.P., 2009. Research on Restitution Coefficient of Rock Fall. Rock and Soil Mechanics, 30(3): 623-627 (in Chinese with English abstract). http://ytlx.whrsm.ac.cn/EN/Y2009/V30/I3/623 [47] He, S. M., Zhuang, W. L., Zhang, X., et al., 2013. Research on Rockfall Impact Prevention of Chediguan Bridge Pier, Duwhen Road. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3421-3427 (in Chinese with English abstract). [48] Herb, D., 2006. Spectacular Rockfall in Yosemite National Park. https://geology.com/articles/yosemite-rockfall.shtml [49] Hermanns, R. L., Strecker, M. R., 1999. Structural and Lithological Controls on Large Quaternary Rock Avalanches (Sturzstroms) in Arid Northwestern Argentina. Geological Society of America Bulletin, 111(6): 934-948. https://doi.org/10.1130/0016-7606(1999)1110934:salcol>2.3.co;2 doi: 10.1130/0016-7606(1999)1110934:salcol>2.3.co;2 [50] Hertz, H., 1880. On the Contact of Elastic Solids. Journal für die reine und Angewandte Mathematik (Crelles Journal). 92: 156-171. https://doi.org/10.1515/9783112342404-004 [51] Hou, T. X., Yang, X. G., Huang, C., et al., 2015. A Calculation Method Based on Impulse Theorem to Determine Impact Force of Rockfall on Structure. Chinese Journal of Rock Mechanics and Engineering, 34(S1): 3116-3122 (in Chinese with English abstract). [52] Hu, H. T., 1989. Collapse and Rockfall. China Railway Publishing House, Beijing, 40-42 (in Chinese). [53] Hu, H. T., 2005. Research on the Collapse and Falling Stone. Journal of Railway Engineering Society, 22(S1): 387-391 (in Chinese with English abstract). [54] Hu, X. L., Tang, H. M., Zhu, L. X., 2011. Collapse Mode and Mechanism of High Magmatite Rock Slope in Wenchuan Epicentral Area. Earth Science, 36(6): 1149-1154 (in Chinese with English abstract). [55] Hu, X. M., Yan, E. C., Yang, J. G., et al., 2011. Stability Assessment of Unstable Rock Blocks at Nanmenwan in Wuxi County. Journal of Engineering Geology, 19(3): 397-403 (in Chinese with English abstract). [56] Hu, X. W., Mei, X. F., Yang, Y., et al., 2019. Dynamic Response of Pile-Plate Rock Retaining Wall under Impact of Rockfall. Journal of Engineering Geology, 27(1): 123-133 (in Chinese with English abstract). [57] Huang, B. L., Chen, L. D., Peng, X. M., et al., 2010. Assessment of the Risk of Rockfalls in Wu Gorge, Three Gorges, China. Landslides, 7(1): 1-11. https://doi.org/10.1007/s10346-009-0170-7 [58] Huang, D., Huang, R. Q., Zhou, J. P., et al., 2007. Study on Stability Evaluation of Unstable Rock Masses on Right Bank High Altitude Slope in the First Stage Jinping Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 26(1): 175-181 (in Chinese with English abstract). https://www.scientific.net/AMR.243-249.3036 [59] Huang, D., Xie, Z.Z., Song, Y.X., et al., 2021. Centrifuge Model Test Study on Toppling Deformation of Anti-Dip Soft-Hard Interbedded Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 40(7): 1357-1368 (in Chinese with English abstract). [60] Huang, R. Q., Li, Y. S., Yan, M., 2017. The Implication and Evaluation of Toppling Failure in Engineering Geology Practice. Journal of Engineering Geology, 25(5): 1165-1181 (in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201705001.htm [61] Huang, S. B., Liu, Q. S., Liu, Y. Z., et al., 2018. Frost Heaving Pressure and Characteristics of Frost Cracking in Elliptical Cavity (Crack) of Rock Mass under Coupled Thermal-Mechanical Condition at Low Temperature. Chinese Journal of Geotechnical Engineering, 40(3): 459-467 (in Chinese with English abstract). [62] Huang, Y., Sun, Q. D., Xu, Q., 2010. New Development of Rockfall Kinematics Study. Journal of Vibration and Shock, 29(10): 31-35 (in Chinese with English abstract). [63] Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y [64] Jiang, Y. J., Wang, Z. Z., Song, Y., et al., 2018. Cushion Layer Effect on the Impact of a Dry Granular Flow Against a Curved Rock Shed. Rock Mechanics and Rock Engineering, 51(7): 2191-2205. https://doi.org/10.1007/s00603-018-1478-1 [65] Jin, Y. F., 2014. Emergency Disposal Measures and Treatment Design of Large Collapse (Landslide) Body. Southwest Highway, (4): 52-54 (in Chinese). [66] Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract). [67] Kyburz, M. L., Sovilla, B., Gaume, J., et al., 2020. Decoupling the Role of Inertia, Friction, and Cohesion in Dense Granular Avalanche Pressure Build-Up Obstacles. Journal of Geophysical Research: Earth Surface, 125(2): e2019JF005192. https://doi.org/10.1029/2019jf005192 [68] Labiouse, V., Heidenreich, B., 2009. Half-Scale Experimental Study of Rockfall Impacts on Sandy Slopes. Natural Hazards and Earth System Sciences, 9(6): 1981-1993. https://doi.org/10.5194/nhess-9-1981-2009 [69] Lambert, S., Bourrier, F., 2013. Design of Rockfall Protection Embankments: A Review. Engineering Geology, 154: 77-88. https://doi.org/10.1016/j.enggeo.2012.12.012 [70] Lan, H. X., Derek Martin, C., Lim, C. H., 2007. RockFall Analyst: A GIS Extension for Three-Dimensional and Spatially Distributed Rockfall Hazard Modeling. Computers & Geosciences, 33(2): 262-279. https://doi.org/10.1016/j.cageo.2006.05.013 [71] Lan, H. X., Zhang, N., Li, L. P., et al., 2021. Risk Analysis of Major Engineering Geological Hazards for sichuan-Tibet Railway in the Phase of Feasibility Study. Journal of Engineering Geology, 29(2): 326-341 (in Chinese with English abstract). [72] Li, B., Yin, Y. P., Gao, Y., et al., 2020. Critical Issues in Rock Avalanches in the Karst Mountain Areas of Southwest China. Hydrogeology & Engineering Geology, 47(4): 5-13 (in Chinese with English abstract). [73] Li, H. B., Li, X. W., Li, W. Z., et al., 2019. Quantitative Assessment for the Rockfall Hazard in a Post-Earthquake High Rock Slope Using Terrestrial Laser Scanning. Engineering Geology, 248: 1-13. https://doi.org/10.1016/j.enggeo.2018.11.003 [74] Li, M., 2018. Study on Risk Assessment of Geological Hazard in BIZHI Railway (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract). [75] Li, P., Su, S. R., Huang, Y., et al., 2015. Research on Formation Mechanism and Deformation Law of Shattering-Sliding Collapses. Rock and Soil Mechanics, 36(12): 3576-3582 (in Chinese with English abstract). [76] Li, Y. S., Tan, K. O., Wang, X. H., 1994. Characteristics of Jiguanling Rockfall in Wulong County. The Chinese Journal of Geological Hazard and Control, (2): 92-94 (in Chinese with English abstract). [77] Liang, J., Pei, X. J., He, Y. H., et al., 2020. Analysis on Causation Mechanism of Dangerous Rock Collapse in Reed Sea Scenic Area of Jiuzhaigou Seismic Region in Sichuan Province. Water Resources and Hydropower Engineering, 51(7): 124-131 (in Chinese with English abstract). [78] Liang, Z. Z., Xiao, D. K., Li, C. C., et al., 2014. Numerical Study on Strength and Failure Modes of Rock Mass with Discontinuous Joints. Chinese Journal of Geotechnical Engineering, 36(11): 2086-2095 (in Chinese with English abstract). [79] Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019jb019296 [80] Liu, C. Z., Ge, Y. G., Jiang, X. Y., et al., 2016. Dynamic Analysis the Hongshiyan Collapse Triggered by Ludian Earthquake. Journal of Disaster Prevention and Mitigation Engineering, 36(4): 601-608 (in Chinese with English abstract). [81] Liu, C. Z., Xiao, R. H., 2021. Mechanism Analysis on Yanchihe Avalanche Disaster in Yuan'an, Hubei. Journal of Catastrophology, 36(2): 130-133 (in Chinese with English abstract). [82] Liu, C. Z., Yang, B., 2001. The Characteristics of the Slops Landslide at No. 318 Way in Jingshan Mountain Tibet. Hydrogeology and Engineering Geology, 28(6): 37-38 (in Chinese with English abstract). [83] Liu, Q. S., Huang, S. B., Kang, Y. S., et al., 2016. Preliminary Study of Frost Heave Pressure and Its Influence on Crack and Deterioration Mechanisms of Rock Mass. Rock and Soil Mechanics, 37(6): 1530-1542 (in Chinese with English abstract). https://www.researchgate.net/publication/305154649_Preliminary_study_of_frost_heave_pressure_and_its_influence_on_crack_and_deterioration_mechanisms_of_rock_mass [84] Liu, Z. X., Chen, J. P., Wang, F. Y., et al., 2019. Rapid Acquisition of Geometrical Information of Rock Mass Discontinuities Based on Portable Controller Frame. Journal of Jilin University (Earth Science Edition), 49(4): 1192-1199 (in Chinese with English abstract). [85] Locat, P., Couture, R., Leroueil, S., et al., 2006. Fragmentation Energy in Rock Avalanches. Canadian Geotechnical Journal, 43(8): 830-851. https://doi.org/10.1139/t06-045 [86] Lü, Q., Zhou, C. F., Yu, Y., et al., 2017. Experimental Study on Fragmentation Effects of Rockfall Impact Upon Slope. Chinese Journal of Rock Mechanics and Engineering, 36(S1): 3359-3366 (in Chinese with English abstract). [87] Luo, G., Hu, X. W., Du, Y., et al., 2019. A Collision Fragmentation Model for Predicting the Distal Reach of Brittle Fragmentable Rock Initiated from a Cliff. Bulletin of Engineering Geology and the Environment, 78(1): 579-592. https://doi.org/10.1007/s10064-018-1286-6 [88] Luo, G., Hu, X. W., Gu, C. Z., 2013. Study of Kinetic Failure Mechanism and Starting Velocity of Consequent Rock Slopes under Strong Earthquake. Rock and Soil Mechanics, 34(2): 483-490 (in Chinese with English abstract). [89] Luo, G., Mei, X. F., Shi, L. B., et al., 2018. Tribological Characteristics of High-Speed Rolling Limestone. Rock and Soil Mechanics, 39(2): 474-482 (in Chinese with English abstract). https://www.researchgate.net/publication/325287085_Tribological_characteristics_of_high-speed_rolling_limestone [90] Luo, G., Zhao, Y. J., Shen, W. G., et al., 2022. An Analytical Method for the Impact Force of a Cubic Rock Boulder Colliding onto a Rigid Barrier. Natural Hazards, Online. https://doi.org/10.1007/s11069-021-05196-5. [91] Ma, G. C., Sawada, K., Yashima, A., et al., 2015. Experimental Study of the Applicability of the Remotely Positioned Laser Doppler Vibrometer to Rock-Block Stability Assessment. Rock Mechanics and Rock Engineering, 48(2): 787-802. https://doi.org/10.1007/s00603-014-0577-x [92] Ma, K., Tang, C. A., Liang, Z. Z., et al., 2017. Stability Analysis and Reinforcement Evaluation of High-Steep Rock Slope by Microseismic Monitoring. Engineering Geology, 218: 22-38. https://doi.org/10.1016/j.enggeo.2016.12.020 [93] Maerz, N.H., Youssef, A., Fennessey, T.W., 2005. New Risk-Consequence Rockfall Hazard Rating System for Missouri Highways Using Digital Image Analysis. Environmental and Engineering Geoscience, 11(3): 229-249. https://doi.org/10.2113/11.3.229 [94] Majeed, Z. Z. A., Lam, N. T. K., Gad, E. F., 2021. Predictions of Localised Damage to Concrete Caused by a Low-Velocity Impact. International Journal of Impact Engineering, 149: 103799. https://doi.org/10.1016/j.ijimpeng.2020.103799 [95] Masuya, H., Amanuma, K., Nishikawa, Y., et al., 2009. Basic Rockfall Simulation with Consideration of Vegetation and Application to Protection Measure. Natural Hazards and Earth System Sciences, 9(6): 1835-1843. https://doi.org/10.5194/nhess-9-1835-2009 [96] Mavrouli, O., Corominas, J., 2020. Evaluation of Maximum Rockfall Dimensions Based on Probabilistic Assessment of the Penetration of the Sliding Planes into the Slope. Rock Mechanics and Rock Engineering, 53(5): 2301-2312. https://doi.org/10.1007/s00603-020-02060-z [97] Ng, C. W. W., Choi, C. E., Cheung, D. K. H., et al., 2019. Effects of Dynamic Fragmentation on the Impact Force Exerted on Rigid Barrier: Centrifuge Modelling. Canadian Geotechnical Journal, 56(9): 1215-1224. https://doi.org/10.1139/cgj-2018-0092 [98] Ng, C. W. W., Song, D., Choi, C. E., et al., 2016. A Novel Flexible Barrier for Landslide Impact in Centrifuge. Géotechnique Letters, 6(3): 221-225. https://doi.org/10.1680/jgele.16.00048 [99] Pan, X. H., Sun, H. Y., Wu, Z. J., et al., 2017. Study of the Failure Mechanism and Progressive Failure Process of Intact Rock Patches of Rock Slope with Weak Surfaces. Rock Mechanics and Rock Engineering, 50(4): 951-966. https://doi.org/10.1007/s00603-016-1143-5 [100] Pappalardo, G., Mineo, S., Rapisarda, F., 2014. Rockfall Hazard Assessment along a Road on the Peloritani Mountains (Northeastern Sicily, Italy). Natural Hazards and Earth System Sciences, 14(10): 2735-2748. https://doi.org/10.5194/nhess-14-2735-2014 [101] Petje, U., Ribičič, M., Mikoš, M., 2005. Computer Simulation of Stone Falls and Rockfalls. Acta Geographica Slovenica, 45(2): 93-120. https://doi.org/10.3986/ags45204 [102] Pierson, L. A., Davis, S. A., Van Vickle, R., 1990. Rockfall Hazard Rating System: Implementation Manual. Federal Highway Administration, Washington, D.C. . [103] Qi, S. W., Xu, Q., Zhang, B., et al., 2011. Source Characteristics of Long Runout Rock Avalanches Triggered by the 2008 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 896-906. https://doi.org/10.1016/j.jseaes.2010.05.010 [104] Rammer, W., Brauner, M., Dorren, L., et al., 2007. Validation of an Integrated 3D Forest-Rockfall Model. Journal of Geophysical Research-Space Physics, 9: 04634. [105] Ren, G. M., Xia, M., Li, G., et al., 2009. Study on Toppling Deformation and Failure Characteristics of Steep Bedding Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 28(S1): 3193-3200 (in Chinese with English abstract). [106] Ritchie, A.M., 1963. Evaluation of Rockfall and Its Control. Highway Research Record, 17, 13-28. [107] Ronco, C., Oggeri, C., Peila, D., 2009. Design of Reinforced Ground Embankments Used for Rockfall Protection. Natural Hazards and Earth System Sciences, 9(4): 1189-1199. https://doi.org/10.5194/nhess-9-1189-2009 [108] Ruiz-Carulla, R., Corominas, J., Mavrouli, O., 2015. A Methodology to Obtain the Block Size Distribution of Fragmental Rockfall Deposits. Landslides, 12(4): 815-825. https://doi.org/10.1007/s10346-015-0600-7 [109] Shen, W. G., Zhao, T., Tang, C., et al., 2018. Loading Rate Dependency of Impact Induced Rock Fragmentation during Rockfall. Advanced Engineering Sciences, 50(1): 43-50 (in Chinese with English abstract). [110] Shen, W. G., Zhao, T., Zhao, J. D., et al., 2018. Quantifying the Impact of Dry Debris Flow Against a Rigid Barrier by DEM Analyses. Engineering Geology, 241: 86-96. https://doi.org/10.1016/j.enggeo.2018.05.011 [111] Shen, Y. J., Yang, G. S., Wang, T., et al., 2019. Evaluation of Frost Heave Force Models of Pore/Fissure in Rock and Their Applicability. Journal of Glaciology and Geocryology, 41(1): 117-128 (in Chinese with English abstract). [112] Sheng, H., Hu, X. W., Xiong, C. C., 2020. Study on the Simulation of Debris Flow Movement Course in Wuhuahai Based on DAN3D. Sichuan Water Power, 39(3): 11-16 (in Chinese with English abstract). [113] Song, Y. M., Zhang, Y., Xu, H. L., et al., 2020. Study on Creep-Slip and Stick-Slip Deformation Evolution of Rock Based on Non-Uniform Characteristics. Rock and Soil Mechanics, 41(2): 363-371 (in Chinese with English abstract). [114] Stevens, W. D., 1998. Rocfall: A Tool for Probablistic Analysis, Design of Remedial Measures and Prediction of Rockfalls (Dissertation). University of Toronto, Toronto. [115] Tang, H.M., Han, M.M., Yan, N., 2019. The GIS-Based Danger Zoning Evaluation of Collapse Disaster in Wushan County, Chongqing. Journal of Chongqing Normal University (Natural Science), 36(5): 72-79 (in Chinese with English abstract). https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDTEMP&filename=CQSF201905010 [116] Tang, Y., Wang, L. J., Wang, Z. J., et al., 2019. Application of Remote Sensing to the Emergency Monitoring of the Mountain Collapse of Chengdu-Kunming Railway on August 14. Land and Resources Informatization, (5): 22-28 (in Chinese with English abstract). [117] The Second Railway Survey and Design Institute, 1991. Technical Manual for Railway Engineering Design for Tunnels. China Railway Press, Beijing, 141-191 (in Chinese). [118] Thornton, C., Ning, Z. M., 1998. A Theoretical Model for the Stick/Bounce Behaviour of Adhesive, Elastic-Plastic Spheres. Powder Technology, 99(2): 154-162. https://doi.org/10.1016/S0032-5910(98)00099-0 [119] Volkwein, A., Schellenberg, K., Labiouse, V., et al., 2011. Rockfall Characterisation and Structural Protection‒A Review. Natural Hazards and Earth System Sciences, 11(9): 2617-2651. https://doi.org/10.5194/nhess-11-2617-2011 [120] Wang, D. P., He, S. M., Ouyang, C. J., et al., 2013. Study of Dynamic Response of Shed Reinforced Concrete Slab to Impact Load of Rock-Fall. Rock and Soil Mechanics, 34(3): 881-886 (in Chinese with English abstract). [121] Wang, P. S., Zhou, G. Q., 2017. Study on Frost Heave Force Characteristics of Fractured Rock Mass Based on Borehole Expansion Theory. Coal Science and Technology, 45(11): 108-112 (in Chinese with English abstract). [122] Wang, Q. C., Wang, L. S., Li, Z. Y., et al., 2009. Application of Flexible Stone-Gabion Framework in Large-Scale Rock-Collapse Controlling Engineering—A Case Study of Duwen Road Douyaping Collapse Induced by Wenchuan "5·12" Earthquake. Journal of Mountain Science, 27(5): 631-636 (in Chinese with English abstract). [123] Wang, T. H., Chen, J. P., An, P. C., 2008. Mechanism of Action and Prevention Methods of Slope Rock Fall Hazard. Global Geology, 27(1): 68-72 (in Chinese with English abstract). [124] Wang, Y., Chen, Y. L., Yu, Y., 2020. Development Characteristics and Influencing Factors of "8·8" Jiuzhaigou Earthquake Collapse Disasters in Scenic Area. Science Technology and Engineering, 20(3): 1250-1255 (in Chinese with English abstract). [125] Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025 [126] Wang, Y. N., Tonon, F., 2011. Discrete Element Modeling of Rock Fragmentation Upon Impact in Rock Fall Analysis. Rock Mechanics and Rock Engineering, 44(1): 23-35. https://doi.org/10.1007/s00603-010-0110-9 [127] Wang, Y. S., Xu, M., Yang, C., et al., 2020. Effects of Elastoplastic Strengthening of Gravel Soil on Rockfall Impact Force and Penetration Depth. International Journal of Impact Engineering, 136: 103411. https://doi.org/10.1016/j.ijimpeng.2019.103411 [128] Wieczorek, G. F., Snyder, J. B., 1999. Rock Falls from Glacier Point above Camp Curry, National Park, California. U.S. Geological Survey, Reston. [129] Wu, H. Y., Zhan, D. Z., 2001. Ten People were Buried in the Mountain Collapse, and More than 1 000 Villagers in Xingyi, Guizhou were Transferred. Yangcheng Evening News, [2001-06-03] (in Chinese). [130] Wu, Y., He, S. M., Li, X. P., et al., 2015. Collapse Mechanism of Extreme Cold Dangerous Rock at High Altitude under Expansive Force of Crack Ice. Journal of Sichuan University (Engineering Science Edition), 47(6): 32-39 (in Chinese with English abstract). https://www.researchgate.net/publication/287222206_Collapse_mechanism_of_extreme_cold_dangerous_rock_at_high_altitude_under_expansive_force_of_crack_ice [131] Xiao, F. Y., 2020. The "Super Project" along the Wujiang River Puts "Steel Clothes" on the Dangerous Rocks. Chongqing Daily, [2020-08-21] (in Chinese). [132] Xiao, R. H., Chen, H. Q., Len, Y. Y., et al., 2018. Preliminary Analysis on the Failure Process and Mechanism of the August 28 Collapse in Nayong County, Guizhou Province. The Chinese Journal of Geological Hazard and Control, 29(1): 3-9 (in Chinese with English abstract). [133] Xu, N. W., Dai, F., Liang, Z. Z., et al., 2014. The Dynamic Evaluation of Rock Slope Stability Considering the Effects of Microseismic Damage. Rock Mechanics and Rock Engineering, 47(2): 621-642. https://doi.org/10.1007/s00603-013-0432-5 [134] Xu, Q., 2020. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards. Geomatics and Information Science of Wuhan University, 45(11): 1651-1659 (in Chinese with English abstract). [135] Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966 (in Chinese with English abstract). https://jtp.cnki.net/bilingual/detail/html/WHCH201907002?view=3 [136] Xu, X. W., Chen, G. H., Wang, Q. X., et al., 2017. Discussion on Seismogenic Structure of Jiuzhaigou Earthquake and Its Implication for Current Strain State in the Southeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 60(10): 4018-4026 (in Chinese with English abstract). [137] Yang, M., Fukawa, T., Ohnishi, Y., et al., 2004. The Application of 3-Dimensional DDA with A Spherical Rigid Block for Rockfall Simulation. International Journal of Rock Mechanics and Mining Sciences, 41: 611-616. https://doi.org/10.1016/j.ijrmms.2004.03.108 [138] Yang, Q. G., Wang, X. R., Ma, W. F., et al., 2021. Design of Geo-Hazard Early Warning and Forecast System Based on Micro-Service Architecture. Earth Science, 46(4): 1505-1517 (in Chinese with English abstract). [139] Yang, Q. X., Guan, B. S., 1996. Test and Research on Calculating Method of Falling Stone Impulsive Force. Journal of the China Railway Society, 18(1): 101-106 (in Chinese with English abstract). [140] Yang, T. H., Zhang, F. C., Yu, Q. L., et al., 2011. Research Situation of Open-Pit Mining High and Steep Slope Stability and Its Developing Trend. Rock and Soil Mechanics, 32(5): 1437-1451 (in Chinese with English abstract). http://ytlx.whrsm.ac.cn/EN/Y2011/V32/I5/1437 [141] Yao, W. L., Yue, R., 2015. Advance in Controversial Restitution Coefficient Study for Impact Problems. Journal of Vibration and Shock, 34(19): 43-48 (in Chinese with English abstract). [142] Ye, S. Q., Chen, H. K., Tang, H. M., 2010. The Calculation Method for the Impact Force of the Rockfall. China Railway Science, 31(6): 56-62 (in Chinese with English abstract). https://www.researchgate.net/publication/290098658_The_calculation_method_for_the_impact_force_of_the_rockfall [143] Ye, Y., Zeng, Y. W., 2017. A Size-Dependent Viscoelastic Normal Contact Model for Particle Collision. International Journal of Impact Engineering, 106: 120-132. https://doi.org/10.1016/j.ijimpeng.2017.03.020 [144] Ye, Y., Zeng, Y. W., Du, X., et al., 2020. Three-Dimensional Discrete Element Simulation of Spherical Gravel Collision Damage. Rock and Soil Mechanics, 41(S1): 368-378 (in Chinese with English abstract). [145] Ye, Y., Zeng, Y. W., Peng, Z. X., et al., 2018. Experimental Study on Normal Coefficient of Restitution and Fragmenting of Marble Spheres. Chinese Journal of Rock Mechanics and Engineering, 37(7): 1680-1690 (in Chinese with English abstract). [146] Yin, Y. P., Liu, Y., 2000. China's Research on the Prevention and Control of Geological Disasters (1990-2000), Reflections on the International Decade for Disaster Reduction Activities. Journal of Engineering Geology, 8(S1): 1-10 (in Chinese with English abstract). [147] Yu, C. H., Yu, H. W., Zhang, W., et al., 2019. Automatic Cloud Detection of Sentine l-2 Satellite Images Based on Neural Network. Bulletin of Surveying and Mapping, (8): 39-43 (in Chinese with English abstract). [148] Yuan, J. K., Huang, R. Q., Pei, X. J., 2014. Test Research on Rockfall Impact Force. Rock and Soil Mechanics, 35(1): 48-54 (in Chinese with English abstract). http://ytlx.whrsm.ac.cn/EN/Y2014/V35/I1/48 [149] Zhang, G. C., Tang, H. M., Lü, Q., et al., 2017. Study on Slope Rockfall. Science Press, Beijing (in Chinese). [150] Zhang, G. C., Tang, H. M., Xiang, X., et al., 2015. Theoretical Study of Rockfall Impacts Based on Logistic Curves. International Journal of Rock Mechanics and Mining Sciences, 78: 133-143. https://doi.org/10.1016/j.ijrmms.2015.06.001 [151] Zhang, G. C., Xiang, X., Tang, H. M., 2011. Field Test and Numerical Calculation of Restitution Coefficient of Rockfall Collision. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1266-1273 (in Chinese with English abstract). [152] Zhang, K., Tan, P., Ma, G. W., et al., 2016. Modeling of the Progressive Failure of an Overhang Slope Subject to Differential Weathering in Three Gorges Reservoir, China. Landslides, 13(5): 1303-1313. https://doi.org/10.1007/s10346-015-0672-4 [153] Zhang, L., Liao, M. S., Dong, J., et al., 2018. Early Detection of Landslide Hazards in Mountainous Areas of West Chain Using Time Series SAR Interferometry—A Case Study of Danba, Sichuan. Geomatics and Information Science of Wuhan University, 43(12): 2039-2049 (in Chinese with English abstract). [154] Zhang, Q., Huang, G. W., Yang, C. S., 2017. Precision Space Observation Technique for Geological Hazard Monitoring and Early Warning. Acta Geodaetica et Cartographica Sinica, 46(10): 1300-1307 (in Chinese with English abstract). https://doaj.org/article/f2830ae44226453cbaf7541f167f906c [155] Zhang, Y. F., Yuan, K., Zhang, C. L., et al., 2020. Study on Anchoring Mechanisms of Inclined Prestressed Steel Anchor Pipes Controlled by Multi-Stage Grouting. Chinese Journal of Rock Mechanics and Engineering, 39(7): 1297-1310 (in Chinese with English abstract). [156] Zhao, S., Zhen, M. X., Wang, Q. C., 2009. Analysis on Collapse Mechanisms and Treatment Scheme of Laohuzui Landslide on Dujiangyan-Wenchuan Highway Caused by Wenchuan Earthquake. Tunnel Construction, 29(2): 243-245 (in Chinese with English abstract). [157] Zhao, T., Crosta, G. B., Utili, S., et al., 2017. Investigation of Rock Fragmentation during Rockfalls and Rock Avalanches via 3-D Discrete Element Analyses. Journal of Geophysical Research: Earth Surface, 122(3): 678-695. https://doi.org/10.1002/2016jf004060 [158] Zhao, Y. H., 2014. Forming Qualitative Analysis and Reinforcement of Rockfall of K400+000~170 Bao-Cheng Railway (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract). [159] Zheng, Y. H., Xia, L., Yu, Q. C., 2016. Analysis of Removability and Stability of Rock Blocks by Considering the Rock Bridge Effect. Canadian Geotechnical Journal, 53(3): 384-395. https://doi.org/10.1139/cgj-2014-0503 [160] Zhong, Z., Hu, Y. J., 2015. Experimental Study of Frictional Sliding Behavior of Limestone Fracture. Rock and Soil Mechanics, 36(11): 3085-3093 (in Chinese with English abstract). [161] Zhou, C. Y., Li, W. K., Xiang, Z. M., et al., 2015. Analysis of Mesoscopic Frictional Contacts in Soft Rocks under Water-Stress Interaction. Rock and Soil Mechanics, 36(9): 2458-2466 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0168874X01000725 [162] Zhou, J. W., Yang, X. G., Fu, W. X., et al., 2010. Experimental Test and Fracture Damage Mechanical Characteristics of Brittle Rock under Uniaxial Cyclic Loading and Unloading Conditions. Chinese Journal of Rock Mechanics and Engineering, 29(6): 1172-1183 (in Chinese with English abstract). [163] Zhou, X. J., Cui, P., Ge, Y. G., et al., 2010. Dynamic Mechanism Analysis and Speed Calculation During Full Course Movements of Landslide: Taking Landslide Occurred at Hanyuan County on August 6th, 2009 as a Sample. Journal of Sichuan University(Engineering Science Edition), 42(Z1), 125-131 (in Chinese with English abstract). [164] Zhu, C., Wang, D. S., Xia, X., et al., 2018. The Effects of Gravel Cushion Particle Size and Thickness on the Coefficient of Restitution in Rockfall Impacts. Natural Hazards and Earth System Sciences, 18(6): 1811-1823. https://doi.org/10.5194/nhess-18-1811-2018 [165] 蔡向阳, 铁永波, 2016. 崩塌落石运动计算模型综述. 地质灾害与环境保护, 27(3): 100-104. doi: 10.3969/j.issn.1006-4362.2016.03.023 [166] 柴宗新, 1989. 山崩灾害及其对策研究. 灾害学, (1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU198901015.htm [167] 陈国庆, 赵聪, 刘辉, 等, 2016. 不同应力路径下岩桥试验的声发射特征研究. 岩石力学与工程学报, 35(9): 1792-1804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609008.htm [168] 陈洪凯, 秦鑫, 2018. 危岩稳定性分析研究现状及趋势. 重庆交通大学学报(自然科学版), 37(10): 49-60. doi: 10.3969/j.issn.1674-0696.2018.10.09 [169] 陈洪凯, 唐红梅, 叶四桥, 等, 2006. 危岩防治原理. 北京: 地震出版社. [170] 陈洪凯, 王圣娟, 王全才, 2021. 危岩锚固工程锚杆数量计算方法研究. 应用力学学报, 38(2): 770-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202102045.htm [171] 陈红旗, 2013. 贵州凯里发生崩塌地质灾害. 水文地质工程地质, 40(2): 112. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302022.htm [172] 陈健, 2021. 四川洪雅县发生山体崩塌3人失联. 新华视点, [2021-04-06]. https://m.gmw.cn/baijia/2021-04/06/1302211920.html [173] 陈健云, 岳红原, 徐强, 2016. 复杂环境下倾倒式危岩体的动力稳定性分析. 岩石力学与工程学报, 35(10): 1965-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610003.htm [174] 陈立德, 黄波林, 陈州丰, 等, 2012. 长江三峡高陡岩质岸坡与危岩体. 武汉: 中国地质大学出版社. [175] 陈维, 徐则民, 刘文连, 2015. 差异风化型危岩力学模型及破坏机制研究. 岩土力学, 36(1): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201501027.htm [176] 董秀军, 许强, 佘金星, 等, 2020. 九寨沟核心景区多源遥感数据地质灾害解译初探. 武汉大学学报(信息科学版), 45(3): 432-441. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202003015.htm [177] 杜岩, 谢谟文, 蒋宇静, 等, 2015. 基于自振频率的监测预警指标确定方法. 岩土力学, 36(8): 2284-2290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201508023.htm [178] 杜岩, 谢谟文, 蒋宇静, 等, 2019. 基于动力学监测指标的崩塌早期预警研究进展. 工程科学学报, 41(4): 427-435. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904002.htm [179] 冯振, 陈云霞, 李滨, 等, 2016. 重庆南川甑子岩山体崩塌机制研究. 水文地质工程地质, 43(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601009.htm [180] 何满潮, 2009. 滑坡地质灾害远程监测预报系统及其工程应用. 岩石力学与工程学报, 28(6): 1081-1090. doi: 10.3321/j.issn:1000-6915.2009.06.001 [181] 何思明, 王东坡, 吴永, 等, 2014. 崩塌滚石灾害的力学机理与防治技术. 自然杂志, 36(5): 336-345. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201405007.htm [182] 何思明, 吴永, 李新坡, 2009. 滚石冲击碰撞恢复系数研究. 岩土力学, 30(3): 623-627. doi: 10.3969/j.issn.1000-7598.2009.03.008 [183] 何思明, 庄卫林, 张雄, 等, 2013. 都汶公路彻底关大桥桥墩抗滚石冲击防护研究. 岩石力学与工程学报, 32(S2): 3421-3427. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2056.htm [184] 候天兴, 杨兴国, 黄成, 等, 2015. 基于冲量定理的滚石对构筑物冲击力计算方法. 岩石力学与工程学报, 34(S1): 3116-3122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1065.htm [185] 胡厚田, 1989. 崩塌与落石. 北京: 中国铁道出版社, 40-42. [186] 胡厚田, 2005. 崩塌落石研究. 铁道工程学报, 22(S1): 387-391. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC2005S1055.htm [187] 胡新丽, 唐辉明, 朱丽霞, 2011. 汶川震中岩浆岩高边坡破坏模式与崩塌机理. 地球科学, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121 [188] 胡显明, 晏鄂川, 杨建国, 等, 2011. 巫溪南门湾危岩体稳定性分区研究. 工程地质学报, 19(3): 397-403. doi: 10.3969/j.issn.1004-9665.2011.03.016 [189] 胡卸文, 梅雪峰, 杨瀛, 等, 2019. 落石冲击荷载作用下的桩板拦石墙结构动力响应. 工程地质学报, 27(1): 123-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901013.htm [190] 黄达, 黄润秋, 周江平, 等, 2007. 雅砻江锦屏一级水电站坝区右岸高位边坡危岩体稳定性研究. 岩石力学与工程学报, 26(1): 175-181. doi: 10.3321/j.issn:1000-6915.2007.01.025 [191] 黄达, 谢周州, 宋宜祥, 等, 2021. 软硬互层状反倾岩质边坡倾倒变形离心模型试验研究. 岩石力学与工程学报, 40(7): 1357-1368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107004.htm [192] 黄润秋, 李渝生, 严明, 2017. 斜坡倾倒变形的工程地质分析. 工程地质学报, 25(5): 1165-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201705001.htm [193] 黄诗冰, 刘泉声, 刘艳章, 等, 2018. 低温热力耦合下岩体椭圆孔(裂)隙中冻胀力与冻胀开裂特征研究. 岩土工程学报, 40(3): 459-467. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803011.htm [194] 黄雨, 孙启登, 许强, 2010. 滚石运动特性研究新进展. 振动与冲击, 29(10): 31-35. doi: 10.3969/j.issn.1000-3835.2010.10.007 [195] 靳亚峰, 2014. 大型崩塌(滑)体应急处置措施及治理设计. 西南公路, (4): 52-54. [196] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110 [197] 兰恒星, 张宁, 李郎平, 等, 2021. 川藏铁路可研阶段重大工程地质风险分析. 工程地质学报, 29(2): 326-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102004.htm [198] 李滨, 殷跃平, 高杨, 等, 2020. 西南岩溶山区大型崩滑灾害研究的关键问题. 水文地质工程地质, 47(4): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202004002.htm [199] 李萌, 2018. 毕织铁路地质灾害危险性评价研究(硕士学位论文). 成都: 西南交通大学. [200] 李鹏, 苏生瑞, 黄宇, 等, 2015. 震裂‒滑移式崩塌形成机制及变形规律研究. 岩土力学, 36(12): 3576-3582. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512030.htm [201] 李玉生, 谭开鸥, 王显华, 1994. 武隆县鸡冠岭岩崩特征. 中国地质灾害与防治学报, (2): 92-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH402.015.htm [202] 梁靖, 裴向军, 何宇航, 等, 2020. 四川九寨沟地震区芦苇海危岩崩塌成因机理分析. 水利水电技术, 51(7): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202007016.htm [203] 梁正召, 肖东坤, 李聪聪, 等, 2014. 断续节理岩体强度与破坏特征的数值模拟研究. 岩土工程学报, 36(11): 2086-2095. doi: 10.11779/CJGE201411015 [204] 刘传正, 葛永刚, 江兴元, 等, 2016. 鲁甸地震红石岩崩塌触发机理分析. 防灾减灾工程学报, 36(4): 601-608. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604015.htm [205] 刘传正, 肖锐铧, 2021. 湖北远安盐池河1980年"6.3"山崩灾难成因分析. 灾害学, 36(2): 130-133. doi: 10.3969/j.issn.1000-811X.2021.02.022 [206] 刘传正, 杨冰, 2001. 西藏昌都芒康县318国道镜山山体崩塌特征. 水文地质工程地质, 28(6): 37-38. doi: 10.3969/j.issn.1000-3665.2001.06.012 [207] 刘泉声, 黄诗冰, 康永水, 等, 2016. 裂隙冻胀压力及对岩体造成的劣化机制初步研究. 岩土力学, 37(6): 1530-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606002.htm [208] 刘子侠, 陈剑平, 王凤艳, 等, 2019. 基于活动控制的岩体结构面几何信息快速获取. 吉林大学学报(地球科学版), 49(4): 1192-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201904026.htm [209] 吕庆, 周春锋, 于洋, 等, 2017. 滚石坡面碰撞破裂效应的试验研究. 岩石力学与工程学报, 36(S1): 3359-3366. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1027.htm [210] 罗刚, 胡卸文, 顾成壮, 2013. 强震作用下顺层岩质斜坡动力失稳机制及启动速度研究. 岩土力学, 34(2): 483-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302028.htm [211] 罗刚, 梅雪峰, 师陆冰, 等, 2018. 石灰岩高速滚动摩擦特性. 岩土力学, 39(2): 474-482. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802009.htm [212] 任光明, 夏敏, 李果, 等, 2009. 陡倾顺层岩质斜坡倾倒变形破坏特征研究. 岩石力学与工程学报, 28(S1): 3193-3200. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1093.htm [213] 沈位刚, 赵涛, 唐川, 等, 2018. 落石冲击破碎特征的加载率相关性研究. 工程科学与技术, 50(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201801006.htm [214] 申艳军, 杨更社, 王婷, 等, 2019. 岩石内孔隙/裂隙冻胀力模型及其适用性评价. 冰川冻土, 41(1): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201901013.htm [215] 盛豪, 胡卸文, 熊冲冲, 2020. 基于DAN3D的五花海泥石流运动过程模拟研究. 四川水力发电, 39(3): 11-16. doi: 10.3969/j.issn.1001-2184.2020.03.003 [216] 宋义敏, 张悦, 许海亮, 等, 2020. 基于非均匀特征的岩石蠕滑与黏滑变形演化研究. 岩土力学, 41(2): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202002002.htm [217] 唐红梅, 韩明明, 闫凝, 2019. 基于GIS的重庆巫山县崩塌灾害危险性分区评价. 重庆师范大学学报(自然科学版), 36(5): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201905010.htm [218] 唐尧, 王立娟, 王志军, 等, 2019. "8.14"成昆铁路山体崩塌灾害应急遥感监测及其应用思考. 国土资源信息化, (5): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZX201905004.htm [219] 铁道第二勘测设计院, 1991. 铁路工程设计技术手册‒隧道. 北京: 中国铁道出版社, 141-191. [220] 王东坡, 何思明, 欧阳朝军, 等, 2013. 滚石冲击荷载下棚洞钢筋混凝土板动力响应研究. 岩土力学, 34(3): 881-886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303046.htm [221] 汪平生, 周国庆, 2017. 基于孔扩张理论的裂隙岩体冻胀力特性研究. 煤炭科学技术, 45(11): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201711018.htm [222] 王全才, 王兰生, 李宗有, 等, 2009. 柔性框架石笼在大型崩塌体治理工程中的应用: 以5·12汶川地震区豆芽坪崩塌错落体为例. 山地学报, 27(5): 631-636. doi: 10.3969/j.issn.1008-2786.2009.05.018 [223] 王坛华, 陈剑平, 安鹏程, 2008. 边坡滚石灾害的作用机理与防治对策. 世界地质, 27(1): 68-72. doi: 10.3969/j.issn.1004-5589.2008.01.013 [224] 王毅, 陈又麟, 余业, 2020. 九寨沟景区"8·8" 震后崩塌灾害发育特征及影响因素. 科学技术与工程, 20(3): 1250-1255. doi: 10.3969/j.issn.1671-1815.2020.03.056 [225] 邬海艳, 詹丹志, 2001. 山体崩塌埋十人贵州兴义千余村民大转移. 羊城晚报, [2001-06-03]. [226] 吴永, 何思明, 李新坡, 等, 2015. 裂缝冰胀力作用下高寒危岩体失稳破坏机理. 四川大学学报(工程科学版), 47(6): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201506005.htm [227] 肖福燕, 2020. 乌江边的"超级工程"给大山危岩穿"钢衣". 重庆日报, [2020-08-21]. [228] 肖锐铧, 陈红旗, 冷洋洋, 等, 2018. 贵州纳雍"8·28"崩塌破坏过程与变形破坏机理初探. 中国地质灾害与防治学报, 29(1): 3-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201801002.htm [229] 许强, 2020. 对地质灾害隐患早期识别相关问题的认识与思考. 武汉大学学报(信息科学版), 45(11): 1651-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011001.htm [230] 许强, 董秀军, 李为乐, 2019. 基于天‒空‒地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907002.htm [231] 徐锡伟, 陈桂华, 王启欣, 等, 2017. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论. 地球物理学报, 60(10): 4018-4026. doi: 10.6038/cjg20171028 [232] 杨强根, 王晓蕊, 马维峰, 等, 2021. 基于微服务架构的地质灾害监测预警预报系统设计. 地球科学, 46(4): 1505-1517. doi: 10.3799/dqkx.2020.128 [233] 杨其新, 关宝树, 1996. 落石冲击力计算方法的试验研究. 铁道学报, 18(1): 101-106. doi: 10.3321/j.issn:1001-8360.1996.01.017 [234] 杨天鸿, 张锋春, 于庆磊, 等, 2011. 露天矿高陡边坡稳定性研究现状及发展趋势. 岩土力学, 32(5): 1437-1451. doi: 10.3969/j.issn.1000-7598.2011.05.025 [235] 姚文莉, 岳嵘, 2015. 有争议的碰撞恢复系数研究进展. 振动与冲击, 34(19): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201519008.htm [236] 叶四桥, 陈洪凯, 唐红梅, 2010. 落石冲击力计算方法. 中国铁道科学, 31(6): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201006011.htm [237] 叶阳, 曾亚武, 杜欣, 等, 2020. 球形砾石碰撞损伤破碎三维离散元模拟研究. 岩土力学, 41(S1): 368-378. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1042.htm [238] 叶阳, 曾亚武, 彭志雄, 等, 2018. 大理岩球砾法向碰撞恢复系数及损伤破碎试验研究. 岩石力学与工程学报, 37(7): 1680-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807012.htm [239] 殷跃平, 柳源, 2000. 中国地质灾害防治研究(1990-2000)的思索对国际减灾十年活动. 工程地质学报, 8(S1): 1-10. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ000000001000.htm [240] 余长慧, 于海威, 张文, 等, 2019. 神经网络支持下的Sentine l-2卫星影像自动云检测. 测绘通报, (8): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201908008.htm [241] 袁进科, 黄润秋, 裴向军, 2014. 滚石冲击力测试研究. 岩土力学, 35(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401007.htm [242] 章广成, 唐辉明, 吕庆, 等, 2017. 斜坡落石研究. 北京: 科学出版社. [243] 章广成, 向欣, 唐辉明, 2011. 落石碰撞恢复系数的现场试验与数值计算. 岩石力学与工程学报, 30(6): 1266-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106026.htm [244] 张路, 廖明生, 董杰, 等, 2018. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例. 武汉大学学报(信息科学版), 43(12): 2039-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812031.htm [245] 张勤, 黄观文, 杨成生, 2017. 地质灾害监测预警中的精密空间对地观测技术. 测绘学报, 46(10): 1300-1307. doi: 10.11947/j.AGCS.2017.20170453 [246] 张玉芳, 袁坤, 张彩亮, 等, 2020. 多次分段控制注浆斜向预应力钢锚管锚固机制研究. 岩石力学与工程学报, 39(7): 1297-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007001.htm [247] 赵升, 郑明新, 王全才, 2009. 汶川地震引起的老虎嘴山体崩塌形成机理与治理方案分析. 隧道建设, 29(2): 243-245. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD200902025.htm [248] 赵艳华, 2014. 宝成铁路K400+000~170崩塌稳定性分析及防治措施研究(硕士学位论文). 成都: 西南交通大学. [249] 钟振, 胡云进, 2015. 石灰岩裂隙摩擦滑动特性试验研究. 岩土力学, 36(11): 3085-3093. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511007.htm [250] 周翠英, 李伟科, 向中明, 等, 2015. 水‒应力作用下软岩细观结构摩擦接触分析. 岩土力学, 36(9): 2458-2466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509005.htm [251] 周家文, 杨兴国, 符文熹, 等, 2010. 脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究. 岩石力学与工程学报, 29(6): 1172-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006013.htm [252] 周小军, 崔鹏, 葛永刚, 等, 2010. 崩滑体动力学机理分析及全过程速度计算: 以四川省汉源县"8·6" 大型崩塌滑坡为例. 四川大学学报(工程科学版), 42(Z1): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1021.htm