• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    赣南黄沙铀矿区辉绿岩成因及其与铀成矿关系

    张熠阳 钟福军 潘家永 夏菲 祁家明 李海东 刘文泉

    张熠阳, 钟福军, 潘家永, 夏菲, 祁家明, 李海东, 刘文泉, 2022. 赣南黄沙铀矿区辉绿岩成因及其与铀成矿关系. 地球科学, 47(1): 206-223. doi: 10.3799/dqkx.2021.132
    引用本文: 张熠阳, 钟福军, 潘家永, 夏菲, 祁家明, 李海东, 刘文泉, 2022. 赣南黄沙铀矿区辉绿岩成因及其与铀成矿关系. 地球科学, 47(1): 206-223. doi: 10.3799/dqkx.2021.132
    Zhang Yiyang, Zhong Fujun, Pan Jiayong, Xia Fei, Qi Jiaming, Li Haidong, Liu Wenquan, 2022. Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province. Earth Science, 47(1): 206-223. doi: 10.3799/dqkx.2021.132
    Citation: Zhang Yiyang, Zhong Fujun, Pan Jiayong, Xia Fei, Qi Jiaming, Li Haidong, Liu Wenquan, 2022. Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province. Earth Science, 47(1): 206-223. doi: 10.3799/dqkx.2021.132

    赣南黄沙铀矿区辉绿岩成因及其与铀成矿关系

    doi: 10.3799/dqkx.2021.132
    基金项目: 

    国家自然科学基金项目 42002095

    国家自然科学基金项目 41772066

    国家自然科学基金项目 41862010

    核资源与环境国家重点实验室自主基金项目 Z1906

    核资源与环境国家重点实验室自主基金项目 2020Z08

    详细信息
      作者简介:

      张熠阳(1998-), 男, 硕士研究生, 研究方向为铀矿地质. ORCID: 0000-0001-9326-9014. E-mail: zyy292917338@163.com

      通讯作者:

      潘家永, ORCID: 0000-0002-6173-6009. E-mail: jypan@ecit.cn

    • 中图分类号: P612;P581

    Petrogenesis and Its Relationship with Uranium Mineralization of Diabase in Huangsha Uranium Ore-Field, South Jiangxi Province

    • 摘要:

      赣南黄沙铀矿区内发育的辉绿岩脉与铀矿化有着密切的空间关系,但其岩石成因研究薄弱,影响了对铀成矿过程的认识. 对辉绿岩进行了岩相学、主量元素、微量元素与Sr-Nd-Pb同位素分析. 结果显示,辉绿岩具有贫硅、贫碱、贫镁、Na2O > K2O、较富集大离子亲石元素、轻重稀土分馏不明显(LREE/HREE=2.81~2.97)、弱Eu异常(δEu=0.95~0.98)、典型Dupal异常铅、高(87Sr/86Sr)i(0.704 93~0.706 58)、低εNdt)(3.98~4.84)的地球化学特征,表明其属于大陆拉斑玄武岩系列,是在太平洋板块俯冲作用引起的岩石圈伸展减薄构造背景下,由软流圈物质与俯冲板片脱水产生的流体交代形成的岩石圈富集地幔相互作用后发生部分熔融形成的,岩浆在上升过程中经历了一定程度的结晶分异作用并与上地壳发生了混染. 综合研究认为矿区辉绿岩成岩作用(140 Ma)与铀成矿作用(100 Ma、63~76 Ma)存在巨大时差,辉绿岩为矿质沉淀提供了有利的赋矿空间和还原性环境. 通过与邻区诸广-下庄矿集区内辉绿岩对比,发现它们在成因上有相似性,与下庄矿田具有相似的控矿规律. 黄沙矿区成矿地质条件较优越,找矿潜力较好,下一步的找矿勘查应重点关注交点型铀矿化,重视NWW向辉绿岩脉与NE向破碎带交汇部位控矿.

       

    • 图  1  华南大地构造简图(改自Hu et al.,2008

      Fig.  1.  Geotectonic diagram of South China (modified from Hu et al., 2008)

      图  2  龙源坝岩体位置(a)和地质简图(b)

      a. 据Hu et al.,2008;b. 据钟福军等,2017

      Fig.  2.  Location (a) and geological sketch (b) of Longyuanba complex

      图  3  黄沙矿区地质简图

      据《南岭中段青嶂山矿集区铀矿找矿预测成果报告》,核工业二九〇研究所,2016

      Fig.  3.  Geological sketch of Huangsha ore-field

      图  4  上窖铀矿床16号带3号线(a)和15号带9号线剖面图(b)

      据《南岭中段青嶂山矿集区铀矿找矿预测成果报告》,核工业二九〇研究所,2016

      Fig.  4.  Section maps of prospecting line No.3 in the ore belt No.16 (a) and line No.9 in the ore belt No.15 (b) of Shangjiao uranium deposit

      图  5  黄沙矿区辉绿岩及铀矿石特征

      Amp.角闪石;Pl.斜长石;Mt.磁铁矿;Ptc.沥青铀矿;Hem.赤铁矿;Py.黄铁矿;Cal.方解石

      Fig.  5.  Pictures of diabase and uranium ore in Huangsha ore-field

      图  6  黄沙辉绿岩Zr/TiO2-Nb/Y图解(a)和Th-Co(b)图解

      图a据Winchester et al.1977),图b据Hastie et al.2007);诸广辉绿岩据田晓龙(2016);下庄辉绿岩据陆建军等(2006

      Fig.  6.  Zr/TiO2-Nb/Y (a) and Th-Co (b) diagrams of the Huangsha diabase

      图  7  黄沙辉绿岩微量元素蛛网图(a)和球粒陨石标准化稀土元素配分模式(b)

      MORB标准值据Pearce(1983);球粒陨石标准值据Taylor and McLennan(1985);诸广辉绿岩据田晓龙(2016);下庄辉绿岩据陆建军等(2006

      Fig.  7.  Trace element spider diagram (a) and chondrite-normalized rare earth element pattern (b) of the Huangsha diabase

      图  8  黄沙辉绿岩构造环境判别图解

      图a据Pearce and Cann(1973),其中A为岛弧拉斑玄武岩,B为MORB+岛弧拉斑玄武岩+钙碱性玄武岩,C为钙碱性玄武岩,D为板内玄武岩;图b据Pearce(1982);图c据Floyd et al.1975),其中A为碱性玄武岩,B为板内玄武岩,C为MORB;图d据Pearce et al.1979). 诸广辉绿岩据田晓龙(2016);下庄辉绿岩据陆建军等(2006

      Fig.  8.  Diagrams of discrimination for tectonic setting of the Huangsha diabase

      图  9  黄沙辉绿岩2Nb-Zr/4-Y(a)和Ta/Yb-Th/Yb(b)图解

      图a据Meschede(1986),其中WPA为板内碱性玄武岩,WPT为板内拉斑玄武岩,VAB为火山弧玄武岩;图b据Pearce(1983). 诸广辉绿岩据田晓龙(2016);下庄辉绿岩据陆建军等(2006

      Fig.  9.  2Nb-Zr/4-Y (a) and Ta/Yb-Th/Yb (b) diagrams of Huangsha diabase

      图  10  黄沙辉绿岩Pb-Pb(a)和Nd-Pb(b)图解

      DMMA、DMMB.亏损地幔端元;EMI、EMⅡ.富集地幔端元;HIMU.高U/Pb地幔端元;BSE.原始未分异地幔端元;PREMA.主流地幔端元;NHRL.北半球参考线(Zindler and Hart,1986);PPS.太平洋远洋沉积物(Chow and Patterson,1962);PFC.太平洋铁锰结壳(Ling et al.,1997);PT.太平洋浊积岩(Hemming and McLennan,2001);诸广辉绿岩据田晓龙(2016);下庄辉绿岩据陆建军等(2006

      Fig.  10.  Pb-Pb (a) and Nd-Pb (b) diagrams of the Huangsha diabase

      图  11  黄沙辉绿岩(La/Ta)N-(Th/Ta)N(a)、(La/Yb)N-δEu(b)、(Th/Ta)N-(La/Nb)N(c)和La/Ba-La/Nb(d)图解

      图c据Neal et al.2002);图d据Fitton et al.1991

      Fig.  11.  (La/Ta)N-(Th/Ta)N (a), (La/Yb)N-δEu (b), (Th/Ta)N-(La/Nb)N (c) and La/Ba-La/Nb (d) diagrams of Huangsha diabase

      图  12  黄沙辉绿岩Ba/La-Th/Yb(a)和Ba/Th-(La/Yb)N(b)图解

      Fig.  12.  Ba/La-Th/Yb (a) and Ba/Th-(La/Yb)N (b) diagrams of Huangsha diabase

      图  13  黄沙辉绿岩La-La/Sm图解

      Fig.  13.  La-La/Sm diagram of Huangsha diabase

      图  14  黄沙矿区交点型矿化示意图

      据《南岭中段青嶂山矿集区铀矿找矿预测成果报告》,核工业二九〇研究所,2016

      Fig.  14.  Schematic diagrams of intersection type mineralization in Huangsha ore-field

    • [1] Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010
      [2] Cao, H.J., Huang, G.L., Xu, L.L., et al., 2013. The Ar-Ar Age and Geochemical Characteristics of Diabase Dykes of the Youdong Fault Zone in South of Zhuguang Granite Pluton. Acta Geologica Sinica, 87(7): 957-966 (in Chinese with English abstract).
      [3] Chen, Y.C., Wang, D.H., Xu, Z.G., et al., 2014. Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China. Geotectonica et Metallogenia, 38(2): 219-229 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DGYK201402002.htm
      [4] Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2012. Element Geochemistry, Mineralogy, Geochronology and Zircon Hf Isotope of the Luxi and Xiazhuang Granites in Guangdong Province, China: Implications for U Mineralization. Lithos, 150: 119-134. https://doi.org/10.1016/j.lithos.2012.06.025
      [5] Cheng, H.H., Du, L.T., 1998. Study on Heavy Minerals of Some Uranium Deposits. Uranium Geology, 14(1): 26-31 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YKDZ199801006&dbcode=CJFD&year=1998&dflag=pdfdown
      [6] Chow, T. J., Patterson, C. C., 1962. The Occurrence and Significance of Lead Isotopes in Pelagic Sediments. Geochimica et Cosmochimica Acta, 26(2): 263-308. https://doi.org/10.1016/0016-7037(62)90016-9
      [7] Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1-2): 1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      [8] Cuney, M., 1978. Geologic Environment, Mineralogy, and Fluid Inclusions of the Bois Noirs-Limouzat Uranium Vein, Forez, France. Economic Geology, 73(8): 1567-1610. https://doi.org/10.2113/gsecongeo.73.8.1567
      [9] Cuney, M., 2009. The Extreme Diversity of Uranium Deposits. Mineralium Deposita, 44(1): 3-9. https://doi.org/10.1007/s00126-008-0223-1
      [10] Currie, K. L., Williams, P. R., 1993. An Archean Calc- Alkaline Lamprophyre Suite, Northeastern Yilgarn Block, Western Australia. Lithos, 31(1-2): 33-50. https://doi.org/10.1016/0024-4937(93)90031-7
      [11] Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015. Magmatic Arc and Ocean-Continent Transition: Discussion. Geological Review, 61(3): 473-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201503001.htm
      [12] Deng, P., Ling, H.F., Shen, W.Z., et al., 2005. A Discussion on Alkali Metasomatism in Shituling Uranium Deposit, Northern Guangdong Province. Geological Review, 51(5): 79-87 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200505011.htm
      [13] Deng, P., Shen, W.Z., Ling, H.F., et al., 2003. Uranium Mineralization Related to Mantle Fluid: A Case Study of the Xianshi Deposit in the Xiazhuang Uranium Orefield. Geochimica, 32(6): 520-528 (in Chinese with English abstract). http://www.researchgate.net/publication/313002281_Uranium_mineralization_related_to_mantle_fluid_A_case_study_of_the_Xianshi_deposit_in_the_Xiazhuang_uranium_orefield
      [14] Du, L.T., 1982. On the Granite-Type Uranium Deposits. Atomic Energy Press, Beijing (in Chinese).
      [15] Feng, Z.J., Lai, Z.X., Mo, J.H., et al., 2016. A Study of Metallogenic Mechanism of "Intersection" Type Uranium Deposit and Exploration Thinking of Xiazhuang Orefield. Mineral Deposits, 35(5): 1047-1061 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201605012.htm
      [16] Fitton, J. G., James, D., Leeman, W. P., 1991. Basic Magmatism Associated with Late Cenozoic Extension in the Western United States: Compositional Variations in Space and Time. Journal of Geophysical Research: Solid Earth, 96(B8): 13693-13711. https://doi.org/10.1029/91jb00372
      [17] Floyd, P. A., Winchester, J. A., 1975. Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, 27(2): 211-218. https://doi.org/10.1016/0012-821x(75)90031-x
      [18] Gan, C. S., Wang, Y. J., Zhang, Y. Z., et al., 2017. The Earliest Jurassic A-Type Granite in the Nanling Range of Southeastern South China: Petrogenesis and Geological Implications. International Geology Review, 59(3): 274-292. https://doi.org/10.1080/00206814.2016.1254574
      [19] Gao, P., Zhao, Z. F., Zheng, Y. F., 2016. Magma Mixing in Granite Petrogenesis: Insights from Biotite Inclusions in Quartz and Feldspar of Mesozoic Granites from South China. Journal of Asian Earth Sciences, 123: 142-161. https://doi.org/10.1016/j.jseaes.2016.04.003
      [20] Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341-2357. https://doi.org/10.1093/petrology/egm062
      [21] He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016
      [22] Hemming, S. R., McLennan, S. M., 2001. Pb Isotope Compositions of Modern Deep Sea Turbidites. Earth and Planetary Science Letters, 184(2): 489-503. https://doi.org/10.1016/s0012-821x(00)00340-x
      [23] Hofmann, A.W., 1986. Siderophile Element in Ozeanischen Basalten, Ihre V erarmung Imprimitiven Mutel und Ihre Bedeutung Bei der Entwicklung. Fortschritte der Mineralogie (Beiheft), 64(1): 79.
      [24] Hu, R.Z., 1990. A Possible Mineralization Model of Granite-Type Uranium Deposit. Chinese Science Bulletin, 35(7): 526-528 (in Chinese). doi: 10.1360/csb1990-35-7-526
      [25] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583
      [26] Hu, R. Z., Burnard, P. G., Bi, X. W., et al., 2009. Mantle-Derived Gaseous Components in Ore-Forming Fluids of the Xiangshan Uranium Deposit, Jiangxi Province, China: Evidence from He, Ar and C Isotopes. Chemical Geology, 266(1-2): 86-95. https://doi.org/10.1016/j.chemgeo.2008.07.017
      [27] Hu, R.Z., Li, C.Y., Ni, S.J., et al., 1993. Research on ΣCO2 Source in Ore-Forming Hydrothermal Solution of Granite-Type Uranium Deposit, South China. Science in China (Series B), 23(2): 189-196 (in Chinese).
      [28] Ibrahim, M. E., El-Tokhi, M. M., Saleh, G. M., et al., 2007. Geochemistry of Lamprophyres Associated with Uranium Mineralization, Southeastern Desert, Egypt. Chinese Journal of Geochemistry, 26(4): 356-365. https://doi.org/10.1007/s11631-007-0356-4
      [29] Jiang, Y.H., Jiang, S.Y., Ling, H.F., 2004. Mantle-Derived Fluids and Uranium Mineralization. Earth Science Frontiers, 11(2): 491-499 (in Chinese with English abstract).
      [30] Lai, Z.X., 2015. The Geochemical Character of Intermediate-Basic Dikes and Its Control on Uranium Deposits in Xiazhuang Ore Field. Uranium Geology, 31(3): 370-376 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YKDZ201503003&dbcode=CJFD&year=2015&dflag=pdfdown
      [31] Leroy, J., 1978. The Margnac and Fanay Uranium Deposits of the La Crouzille District (Western Massif Central, France): Geologic and Fluid Inclusion Studies. Economic Geology, 73(8): 1611-1634. https://doi.org/10.2113/gsecongeo.73.8.1611
      [32] Li, C. L., Wang, Z. X., Lü, Q.T., et al., 2021. Mesozoic Tectonic Evolution of the Eastern South China Block: A Review on the Synthesis of the Regional Deformation and Magmatism. Ore Geology Reviews, 131: 104028. https://doi.org/10.1016/j.oregeorev.2021.104028
      [33] Li, J., Huang, H.Y., Liu, Z.J., et al., 2021. 40Ar-39Ar Geochronological Characteristics of Diabase in Lujing Area of Middle Zhuguangshan. Journal of Jilin University (Earth Science Edition), 51(2): 442-454 (in Chinese with English abstract).
      [34] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 19-21, 25-36 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx702.003.htm
      [35] Li, X. H., McCulloch, M. T., 1998. Geochemical Characteristics of Cretaceous Mafic Dikes from Northern Guangdong, SE China: Age, Origin and Tectonic Significance. In: Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/gd027p0405
      [36] Li, Z.Y., Li, X.Z., Lin, J.R., 1999. On the Meso-Cenozoic Mantle Plume Tectonics, Its Relationship to Uranium Metallogenesis and Prospecting Directions in South China. Uranium Geology, 15(1): 10-18, 35 (in Chinese with English abstract).
      [37] Ling, H.F., 2011. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193-206 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201102005.htm
      [38] Ling, H. F., Burton, K. W., O'Nions, R. K., et al., 1997. Evolution of Nd and Pb Isotopes in Central Pacific Seawater from Ferromanganese Crusts. Earth and Planetary Science Letters, 146(1-2): 1-12. https://doi.org/10.1016/s0012-821x(96)00224-5
      [39] Lu, J.J., Wu, L.Q., Ling, H.F., et al., 2006. The Origin of the Huangpi-Zhangguangying Diabase-Dykes in the Xiazhuang Uranium Ore District of Northern Guangdong Province: Evidence from Trace Elements and Nd-Sr-Pb-O Isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract).
      [40] Luo, J. C., Hu, R. Z., Fayek, M., et al., 2015. In-Situ SIMS Uraninite U-Pb Dating and Genesis of the Xianshi Granite-Hosted Uranium Deposit, South China. Ore Geology Reviews, 65: 968-978. https://doi.org/10.1016/j.oregeorev.2014.06.016
      [41] Luo, J.C., Qi, Y.Q., Wang, L.X., et al., 2019. Ar-Ar Dating of Mafic Dykes from the Xiazhuang Uranium Ore Field in Northern Guangdong, South China: A Reevaluation of the Role of Mafic Dyke in Uranium Mineralization. Acta Petrologica Sinica, 35(9): 2660-2678 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.03
      [42] Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z
      [43] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4): 207-218. https://doi.org/10.1016/0009-2541(86)90004-5
      [44] Min, M. Z., Luo, X. Z., Du, G. S., et al., 1999. Mineralogical and Geochemical Constraints on the Genesis of the Granite-Hosted Huangao Uranium Deposit, SE China. Ore Geology Reviews, 14(2): 105-127. https://doi.org/10.1016/s0169-1368(98)00020-1
      [45] Neal, C. R., Mahoney, J. J., Chazey, W. J., 2002. Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7): 1177-1205. https://doi.org/10.1093/petrology/43.7.1177
      [46] Nie, B., Zhang, W.L., 2018. Ar-Ar Age of the Diabase and Its Relationship with Uranium Mineralization in Huangsha Mining District, Southern Jiangxi Province. Mineral Resources and Geology, 32(3): 390-396 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCYD201803002.htm
      [47] Pang, Y.Q., Fan, H.H., Gao, F., et al., 2019. Helium and Argon Isotopic Compositions of Fluid Inclusions and Tracing to the Source of Ore-Forming Fluids for the Southern Zhuguang Uranium Ore Field in Northern Guangdong Province. Acta Petrologica Sinica, 35(9): 2765-2773 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.09
      [48] Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, Chichester.
      [49] Pearce, J.A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. Continental Basalts and Mantle Xenoliths, 147(6): 2162-2173. https://doi.org/10.1149/1.1393502
      [50] Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      [51] Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
      [52] Ruzicka, V., 1993. Vein Uranium Deposits. Ore Geology Reviews, 8(3-4): 247-276. https://doi.org/10.1016/0169-1368(93)90019-u
      [53] Shang, P.Q., Hu, R.Z., Bi, X.W., et al., 2007. Discussion of Some Problems on the Hydrothermal Uranium Mineralization in South China. Bulletin of Mineralogy, Petrology and Geochemistry, 26(3): 290-294 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200703017.htm
      [54] Shao, F., Xu, J.J., Mao, Y.F., et al., 2013. Study on Mineral Discharge Mechanism of Granite Type Uranium Deposits in South China Uranium Metallogenic Province. Uranium Geology, 29(3): 146-151, 171 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ201303006.htm
      [55] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201207004.htm
      [56] Shu, L. S., Wang, Y., Sha, J. G., et al., 2009. Jurassic Sedimentary Features and Tectonic Settings of Southeastern China. Science China Earth Sciences, 52(12): 1969-1978. https://doi.org/10.1007/s11430-009-0159-z
      [57] Shu, T.T., Zhong, F.J., Qi, J.M., et al., 2017. Geological Characteristics of Mineralization of Huangsha Uranium Deposit of "Intersection" Type in Qingzhangshan Pluton. Mineral Resources and Geology, 31(2): 306-311 (in Chinese with English abstract).
      [58] Song, H., Xu, Z.Q., Song, S.W., et al., 2019. Geochemistry and LA-ICP-MS Zircon U-Pb Geochronological Dating of Diabase Dykes and Their Relationship with Mineralization of the Carbonate-Siliceous-Pelitic Rock Type Uranium Deposits in Daxin-Qinjia, Western Guangxi. Acta Petrologica Sinica, 35(9): 2845-2863 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.15
      [59] Tao, J.H., Li, W.X., Li, X.H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Scientia Sinica Terrae, 43(5): 770-788 (in Chinese).
      [60] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London.
      [61] Tian, X.L., 2016. Geochemistry Characteristics and Relationship with Uranium Deposite of Zhuguang Mountain and Guidong Region (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [62] Wang, L. X., Ma, C. Q., Lai, Z. X., et al., 2015. Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China): Implications for Tectonic Evolution and Uranium Metallogenesis. Lithos, 239: 71-85. https://doi.org/10.1016/j.lithos.2015.10.008
      [63] Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      [64] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [65] Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
      [66] Wang, Z.Q., Li, Z.Y., Wu, L.Q., et al., 2010. Geochemical Evidences for Mantle-Derived Uranium Metallogenesis: A Case Study of Xiaoshui Intersection-Type Uranium Deposit in Xiazhuang Area. Uranium Geology, 26(1): 24-34 (in Chinese with English abstract).
      [67] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [68] Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).
      [69] Xu, Z.J., Cheng, R.H., He, Y.Y., et al., 2019. Zircon U-Pb Ages, Sr-Nd Isotopes and Geological Significance of Early Jurassic Volcanic Rocks from Southwest Fujian. Earth Science, 44(4): 1371-1388 (in Chinese with English abstract).
      [70] Xu, Z. Q., Song, H., Li, P., et al., 2014. Diabase Dykes in Sanqisan Uranium Deposit and Its Relation with Uranium Mineralization, Guangxi. Acta Geologica Sinica (English Edition), 88(S2): 1414-1415. https://doi.org/10.1111/1755-6724.12381_36
      [71] Yan, Q. H., Wang, H., Wu, Y. M., et al., 2021. Simultaneous Development of Arc-Like and OIB-Like Mafic Dikes in Eastern Guangdong, SE China: Implications for Late Jurassic-Early Cretaceous Tectonic Setting and Deep Geodynamic Processes of South China. Lithos, 388-389: 106021. https://doi.org/10.1016/j.lithos.2021.106021
      [72] Yu, X. Q., Chen, Z. W., Hu, J., et al., 2021. Early Cretaceous Extension in South China: Constraints from East-West-Trending A-Type Granite Belts and Growth Strata in Terrigenous Basins. International Geology Review, 1-21. https://doi.org/10.1080/00206814.2021.1881920
      [73] Zhang, B., Guo, F., Zhang, X. B., et al., 2019a. Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos, 334-335: 8-24. https://doi.org/10.1016/j.lithos.2019.03.010
      [74] Zhang, C., Cai, Y. Q., Dong, Q., et al., 2019b. Genesis of the South Zhuguang Uranium Ore Field, South China: Fluid Inclusion and H-C-O-S-Sr Isotopic Constraints. Applied Geochemistry, 100: 104-120. https://doi.org/10.1016/j.apgeochem.2018.11.008
      [75] Zhang, D., Zhao, K. D., Chen, W., et al., 2018. Early Jurassic Mafic Dykes from the Aigao Uranium Ore Deposit in South China: Geochronology, Petrogenesis and Relationship with Uranium Mineralization. Lithos, 308-309: 118-133. https://doi.org/10.1016/j.lithos.2018.02.028
      [76] Zhang, G.Q., Hu, R.Z., Shang, P.Q., et al., 2007. An Overview on the Ore-Forming Mechanism of the Granite-Type Uranium Deposit in South China. Bulletin of Mineralogy, Petrology and Geochemistry, 26(4): 399-404 (in Chinese with English abstract).
      [77] Zhang, M., Chen, P.R., Huang, G.L., et al., 2006a. The Research on the Geochemical Characteristics of Longyuanba Composite Pluton in Nanling Region. Uranium Geology, 22(6): 336-344 (in Chinese with English abstract).
      [78] Zhang, M., Chen, P.R., Huang, G.L., et al., 2006b. Single-Zircon LA-ICP-MS Ages of the Longyuanba Pluton in the Eastern Nanling Region and Geological Implication. Acta Geologica Sinica, 80(7): 984-994 (in Chinese with English abstract).
      [79] Zhang, Y.Q., Dong, S.W., 2019. East Asia Multi-Plate Convergence in Late Mesozoic and the Development of Continental Tectonic Systems. Journal of Geomechanics, 25(5): 613-641 (in Chinese with English abstract).
      [80] Zhong, F.J., Pan, J.Y., Liu, G.Q., et al., 2014. Geological Characteristics of Mineralization of Xiazhuang "Intersection" Type Uranium Deposit and Its Significance for Prospecting. Mineral Resources and Geology, 28(5): 590-595 (in Chinese with English abstract).
      [81] Zhong, F.J., Pan, J.Y., Wu, J.H., et al., 2019. Petrogenesis and Its Relationship with Uranium Mineralization of Gabbro-Diorite in Changjiang Uranium Ore-Field, Northern Guangdong Province, China. Earth Science, 44(9): 3042-3059 (in Chinese with English abstract).
      [82] Zhong, F.J., Pan, J.Y., Xu, Y., et al., 2017. Mineral Chemistry of Biotites and Chlorites from Huangsha Uranium Mining Area in the Middle Nangling Range: Constraints on Petrogenesis and Uranium Mineralization. Geological Journal of China Universities, 23(4): 575-590 (in Chinese with English abstract).
      [83] Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated Ⅰ-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3
      [84] Zhu, B., 2010. The Study of Mantle Liquid and Uranium Metallogenesis: Take Uranium Ore Field of South Zhuguang Mountain as an Example (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [85] Zhu, Q.B., Jin, G.D., Zhao, X.L., et al., 2020. Petrogenesis of the Late Mesozoic Lingshang Ultramafic Intrusion in Northern Jiangxi Province: Chronologic and Geochemical Constraints. Geology in China, 47(4): 1092-1108 (in Chinese with English abstract).
      [86] Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      [87] 曹豪杰, 黄国龙, 许丽丽, 等, 2013. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征. 地质学报, 87(7): 957-966. doi: 10.3969/j.issn.0001-5717.2013.07.005
      [88] 陈毓川, 王登红, 徐志刚, 等, 2014. 华南区域成矿和中生代岩浆成矿规律概要. 大地构造与成矿学, 38(2): 219-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm
      [89] 程华汉, 杜乐天, 1998. 几个铀矿床碱交代作用中重砂矿物变化的研究. 铀矿地质, 14(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ199801006.htm
      [90] 邓晋福, 冯艳芳, 狄永军, 等, 2015. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm
      [91] 邓平, 凌洪飞, 沈渭洲, 等, 2005. 粤北石土岭铀矿床碱交代作用成因探讨. 地质论评, 51(5): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200505011.htm
      [92] 邓平, 沈渭洲, 凌洪飞, 等, 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例. 地球化学, 32(6): 520-528. doi: 10.3321/j.issn:0379-1726.2003.06.002
      [93] 杜乐天, 1982. 花岗岩型铀矿文集. 北京: 原子能出版社.
      [94] 冯志军, 赖中信, 莫济海, 等, 2016. 下庄矿田"交点"型铀矿床成矿机理研究及勘查思路探讨. 矿床地质, 35(5): 1047-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201605012.htm
      [95] 胡瑞忠, 1990. 花岗岩型铀矿床一种可能的成矿模式. 科学通报, 35(7): 526-528. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199007014.htm
      [96] 胡瑞忠, 李朝阳, 倪师军, 等, 1993. 华南花岗岩型铀矿床成矿热液中∑CO2来源研究. 中国科学(B辑), 23(2): 189-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199302011.htm
      [97] 姜耀辉, 蒋少涌, 凌洪飞, 2004. 地幔流体与铀成矿作用. 地学前缘, 11(2): 491-499. doi: 10.3321/j.issn:1005-2321.2004.02.019
      [98] 赖中信, 2015. 下庄铀矿田中基性脉岩地球化学特征及其控矿作用. 铀矿地质, 31(3): 370-376. doi: 10.3969/j.issn.1000-0658.2015.03.003
      [99] 李杰, 黄宏业, 刘子杰, 等, 2021. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学特征. 吉林大学学报(地球科学版), 51(2): 442-454. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202102011.htm
      [100] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 19-21, 25-36 https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.003.htm
      [101] 李子颖, 李秀珍, 林锦荣, 1999. 试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向. 铀矿地质, 15(1): 10-18, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ901.001.htm
      [102] 凌洪飞, 2011. 论花岗岩型铀矿床热液来源: 来自氧逸度条件的制约. 地质论评, 57(2): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201102005.htm
      [103] 陆建军, 吴烈勤, 凌洪飞, 等, 2006. 粤北下庄铀矿田黄陂‒张光营辉绿岩脉的成因: 元素地球化学和Nd-Sr-Pb-O同位素证据. 岩石学报, 22(2): 397-406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602012.htm
      [104] 骆金诚, 齐有强, 王连训, 等, 2019. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识. 岩石学报, 35(9): 2660-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909003.htm
      [105] 聂斌, 张万良, 2018. 赣南黄沙矿区辉绿岩Ar-Ar年龄及其与铀成矿关系. 矿产与地质, 32(3): 390-396. doi: 10.3969/j.issn.1001-5663.2018.03.002
      [106] 庞雅庆, 范洪海, 高飞, 等, 2019. 粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪. 岩石学报, 35(9): 2765-2773. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909009.htm
      [107] 商朋强, 胡瑞忠, 毕献武, 等, 2007. 华南热液铀矿成矿作用若干问题探讨. 矿物岩石地球化学通报, 26(3): 290-294. doi: 10.3969/j.issn.1007-2802.2007.03.017
      [108] 邵飞, 许健俊, 毛玉峰, 等, 2013. 华南铀成矿省花岗岩型铀矿矿质卸载机制研究. 铀矿地质, 29(3): 146-151, 171. doi: 10.3969/j.issn.1000-0658.2013.03.004
      [109] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      [110] 舒田田, 钟福军, 祁家明, 等, 2017. 青嶂山岩体黄沙铀矿区"交点"型铀矿成矿地质特征. 矿产与地质, 31(2): 306-311. doi: 10.3969/j.issn.1001-5663.2017.02.015
      [111] 宋昊, 徐争启, 宋世伟, 等, 2019. 桂西大新‒钦甲地区辉绿岩脉地球化学与锆石U-Pb同位素年代学及对碳硅泥岩型铀矿床成因的启示. 岩石学报, 35(9): 2845-2863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909015.htm
      [112] 陶继华, 李武显, 李献华, 等, 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究. 中国科学: 地球科学, 43(5): 770-788. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201305008.htm
      [113] 田晓龙, 2016. 诸广山‒贵东地区基性岩脉的地球化学特征及其与铀矿的关系(硕士学位论文). 北京: 中国地质大学.
      [114] 汪云亮, 张成江, 修淑芝, 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别. 岩石学报, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm
      [115] 王正其, 李子颖, 吴烈勤, 等, 2010. 幔源铀成矿作用的地球化学证据: 以下庄小水"交点型"铀矿床为例. 铀矿地质, 26(1): 24-34. doi: 10.3969/j.issn.1000-0658.2010.01.004
      [116] 徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
      [117] 许中杰, 程日辉, 何奕言, 等, 2019. 闽西南早侏罗世火山岩的锆石U-Pb年龄和Sr-Nd同位素特征及其地质意义. 地球科学, 44(4): 1371-1388. doi: 10.3799/dqkx.2018.201
      [118] 张国全, 胡瑞忠, 商朋强, 等, 2007. 华南花岗岩型铀矿床成矿机理研究进展. 矿物岩石地球化学通报, 26(4): 399-404. doi: 10.3969/j.issn.1007-2802.2007.04.013
      [119] 张敏, 陈培荣, 黄国龙, 等, 2006a. 南岭龙源坝复式岩体的地球化学特征研究. 铀矿地质, 22(6): 336-344. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200606002.htm
      [120] 张敏, 陈培荣, 黄国龙, 等, 2006b. 南岭东段龙源坝复式岩体LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质学报, 80(7): 984-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200607004.htm
      [121] 张岳桥, 董树文, 2019. 晚中生代东亚多板块汇聚与大陆构造体系的发展. 地质力学学报, 25(5): 613-641. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905004.htm
      [122] 钟福军, 潘家永, 刘国奇, 等, 2014. 下庄"交点"型铀矿成矿地质特征及找矿意义. 矿产与地质, 28(5): 590-595. doi: 10.3969/j.issn.1001-5663.2014.05.011
      [123] 钟福军, 潘家永, 巫建华, 等, 2019. 粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系. 地球科学, 44(9): 3042-3059. doi: 10.3799/dqkx.2017.592
      [124] 钟福军, 潘家永, 许幼, 等, 2017. 南岭中段黄沙铀矿区黑云母与绿泥石的矿物化学特征及其对成岩成矿的约束. 高校地质学报, 23(4): 575-590. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201704002.htm
      [125] 朱捌, 2010. 地幔流体与铀成矿作用研究: 以诸广山南部铀矿田为例(博士学位论文). 成都: 成都理工大学.
      [126] 朱清波, 靳国栋, 赵希林, 等, 2020. 赣北晚中生代岭上超镁铁岩的岩石成因: 年代学与地球化学制约. 中国地质, 47(4): 1092-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202004014.htm
    • 加载中
    图(14)
    计量
    • 文章访问数:  465
    • HTML全文浏览量:  108
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-05-25
    • 网络出版日期:  2022-02-11
    • 刊出日期:  2022-01-20

    目录

      /

      返回文章
      返回