Geochemical, U-Pb Age and Nd-Isotopic Characteristics of Titanite in Alkaline Rocks from Dazhuang Nb-REE Deposit in Southern Margin of North China Craton
-
摘要: 位于华北克拉通南缘河南省方城县的大庄铌-稀土矿是近年来新发现的一例具有中型规模的铌-稀土矿床.该矿床赋存于新元古代双山碱性侵入岩中,黑云母正长岩和角闪霞石正长岩是铌-稀土矿的主要赋矿岩石.通过电子探针与LA-ICP-MS等方法对大庄铌-稀土矿碱性岩中的榍石开展了主量、微量元素、U-Pb年代学和微区Nd同位素研究.大庄铌-稀土矿碱性岩中榍石的SiO2(28.597%~31.169%)、CaO(25.492%~28.949%)、TiO2(34.126%~38.940%)平均含量明显低于理论值,含有相对较高的F(0.141%~1.086%)、Al2O3(1.573%~2.817%)和FeO(0.446%~2.147%).榍石具有极高的稀土元素总量(∑REE=781.47×10-6~31 766.59×10-6),球粒陨石标准化稀土配分曲线呈明显的右倾型,轻重稀土分馏明显,样品具有明显的负δEu异常(0.27~0.86)和不明显的δCe异常(0.97~1.22),Th/U值介于1.40~11.86,暗示大庄铌-稀土矿碱性岩中榍石为岩浆成因榍石,榍石Zr温度计获得大庄碱性岩的形成温度为667~964 ℃,平均为933 ℃.大庄铌-稀土矿碱性岩中的榍石具有极高的Nb和REE含量,表明榍石是大庄铌-稀土矿的重要成矿矿物,铌、稀土等元素是伴随岩浆演化逐步富集的结果.富铌榍石样品获得848±35 Ma、849±22 Ma、843±30 Ma、845±20 Ma、845±24 Ma和849±40 Ma的形成年龄,限定大庄铌-稀土矿化富集的时代为新元古代,与Rodinia超大陆裂解事件相关.榍石具有较为均一的Nd同位素值(εNd(t)=-3.25~-0.66),表明方城地区霞石正长岩的原始岩浆形成于富金云母的地幔源区.Abstract: The Dazhuang deposit is a newly discovered medium-scale Nb-REE deposit which is located at the Fangcheng County of Henan Province on the southern margin of the North China craton. The Nb-REE orebodies are hosted in biotite syenite and hornblende nepheline syenite of Neoproterozoic Shuangshan alkaline pluton. In this paper, major and trace elements, U-Pb geochronology and in-situ Nd isotope studies were carried out on the titanite from the alkaline rocks by EPMA and LA-ICP-MS. The average contents of SiO2 (28.597%-31.169%), CaO (25.492%-28.949%) and TiO2 (34.126%-38.940%) in titanite are significantly lower than the theoretical values, whereas it contains relatively high contents of F (0.141%-1.086%), Al2O3 (1.573%-2.817%) and FeO (0.446%-2.147%). The titanite in Dazhuang deposit has a very high total amount of REE (∑REE=781.47×10-6-31 766.59×10-6). In the chondrite-normalized REE patterns, the rare earth distribution curve is obviously right-leaning, and the light and heavy rare earth fractionation is obvious. There are obvious negative δEu anomalies (0.27-0.86) and inconspicuous δCe anomalies (0.97-1.22), with Th/U values ranging from 1.40 to 11.86, suggesting that the titanite is magmatic origin. The formation temperature of Dazhuang alkaline rocks obtained by the titanite Zr thermometer is 667-964 ℃, with an average of 933 ℃. The titanite in Dazhuang deposit has very high Nb and REE contents, indicating that the titanite is an important ore-bearing mineral, and the Nb and REE are the result of the gradual enrichment of magma evolution. Formation ages of 848±35 Ma, 849±22 Ma, 843±30 Ma, 845±20 Ma, 845±24 Ma, and 849±40 Ma were obtained from the Nb-rich titanite samples, constraining that the mineralization age of Dazhuang Nb-REE deposit is Neoproterozoic, of which related to the breakup of the Rodinia supercontinent. Titanite has a relatively uniform Nd isotope (εNd(t)=-3.25 to -0.66) value, indicating that the original magma was derived from mantle where rich in phlogopite.
-
图 1 方城县大庄铌-稀土矿大地构造图和区域地质图
图a据Dong et al., 2011修改;图b据张哨波等,2020修改
Fig. 1. Simplified tectonic map and reginal geological map of Dazhuang Nb-REE deposit, Fangcheng County
图 3 方城县大庄铌-稀土矿区地质图(据李山坡等,2020修改)
Fig. 3. Geological map of the Dazhuang Nb-REE deposit in Fangcheng County (modified after Li et al., 2020)
图 5 大庄铌-稀土矿15线(a)和0线(b)勘探线剖面简图(据张哨波等,2020修改)
Fig. 5. No.15 (a) and No.0 (b) exploration line sections of the Dazhuang Nb-REE deposit (modified after Zhang et al., 2020)
图 8 大庄铌-稀土矿碱性岩中榍石球粒陨石标准化稀土配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)
Fig. 8. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for titanite in alkaline rocks from the Dazhuang Nb-REE deposit (normalized data after Sun and McDonough, 1989)
表 1 华北克拉通南缘及秦岭造山带新元古代岩浆活动记录
Table 1. Neoproterozoic magmatic activity records in the southern margin of North China craton and Qinling orogenic belt
构造背景 样品岩性 采样位置 时代(Ma) 方法 资料来源 同碰撞 花岗质脉体 北秦岭牛角山岩体 929±25 SHRIMP锆石U-Pb 王涛等,2005 片麻状花岗岩 北秦岭牛角山岩体 955±13 SHRIMP锆石U-Pb 二云母花岗片麻岩 北秦岭牛角山岩体 954.6±5.1 TIMS锆石U-Pb 陈志宏,2004 花岗闪长质片麻岩 北秦岭西涝峪 956±8 TIMS锆石U-Pb Chen et al., 2006 黑云母二长片麻岩 北秦岭德河岩体 923±23 LA-ICP-MS锆石U-Pb Wang et al., 2011a 964.4±5.2 TIMS锆石U-Pb 陈志宏,2004 943±18 SHRIMP锆石U-Pb 黑云斜长片麻岩 948.1±8.9 SIMS锆石U-Pb 刘丙祥等,2013 花岗质糜棱岩 北秦岭方庄岩体 933.4±9.2 SIMS锆石U-Pb 闪长岩 北秦岭拉鸡庙 973±60 LA-ICP-MS锆石U-Pb 刘军锋等,2009 石英二长片麻岩 北秦岭郭家坪 953.4±14 SHRIMP锆石U-Pb 陆松年等,2005 二云母花岗片麻岩 北秦岭卢氏狮子坪 954.6±5.1 TIMS锆石U-Pb 陈志宏,2004 黑云母花岗闪长质片麻岩 北秦岭李家庄 937±21 SHRIMP锆石U-Pb 花岗闪长质片麻岩 北秦岭西峡石槽沟 955.5±8.4 TIMS锆石U-Pb 黑云母花岗片麻岩 北秦岭西峡寨根 914±10 SHRIMP锆石U-Pb 花岗质片麻岩 西秦岭新阳岩体 981±5 LA-ICP-MS锆石U-Pb 丁仨平等,2006 938±4 黑云母花岗闪长质片麻岩 978.5±4.8 LA-ICP-MS锆石U-Pb 裴先治等,2007 黑云母二长花岗质片麻岩 935.5±3.5 LA-ICP-MS锆石U-Pb 花岗质片麻岩 西秦岭元龙岩体 924.2±2.7 LA-ICP-MS锆石U-Pb 刘会彬等,2006 黑云母二长花岗质片麻岩 914.7±7.6 LA-ICP-MS锆石U-Pb 裴先治等,2007 后碰撞 花岗闪长岩 北秦岭蔡凹岩体 889±10 LA-ICP-MS 张成立等,2004 二长花岗片麻岩 北秦岭两河口岩体 851.8±1.9 TIMS锆石U-Pb 陈隽璐等,2004 蚀变角闪辉绿(辉长)岩 中秦岭小茅岭复式岩体 864.4±1.7 LA-ICP-MS锆石U-Pb 刘仁燕等,2011 蚀变闪长岩 中秦岭小茅岭复式岩体 846.7±2.7 LA-ICP-MS锆石U-Pb 蚀变石英闪长岩 中秦岭小茅岭复式岩体 859.4±1.7 LA-ICP-MS锆石U-Pb 蚀变二长闪长岩 中秦岭小茅岭复式岩体 861.1±1.8 LA-ICP-MS锆石U-Pb 板内裂解 变辉长岩 华北克拉通南缘栾川软玉矿 849.5±5.1 SIMS锆石U-Pb Ling et al., 2015 辉长岩 华北克拉通南缘栾川群 830±6 LA-ICP-MS锆石U-Pb Wang et al., 2011b 830±7 LA-ICP-MS锆石U-Pb 826±34 LA-ICP-MS/SHRIMP锆石U-Pb 霓辉正长岩 华北克拉通南缘双山岩体 844.3±1.6 SHRIMP锆石U-Pb 包志伟等,2008 粗面岩 华北克拉通南缘栾川群 840±4 LA-ICP-MS锆石U-Pb 胡国辉等,2019 845±5 846±6 854±8 李振生等,2020 霞石正长岩 华北克拉通南缘大庄铌-稀土矿 848±35 LA-ICP-MS榍石U-Pb 本文 849±22 843±30 845±20 845±24 849±40 -
[1] Ai, L., Ping, X.Q., Zheng, J.P., et al., 2020. Geochronology and Geochemistry of Paleoproterozoic Granites in Xinyang Area: Implications for Crustal Evolution of Southern North China Craton. Earth Science, 45(6): 2044-2058(in Chinese with English abstract). [2] Anderson, M.O., Lentz, D.R., McFarlane, C.R.M., et al., 2013. A Geological, Geochemical and Textural Study of a LCT Pegmatite: Implications for the Magmatic versus Metasomatic Origin of Nb-Ta Mineralization in the Moose Ⅱ Pegmatite, Northwest Territories, Canada. Journal of Geosciences, 58(4): 299-320. https://doi.org/10.3190/jgeosci.149 [3] Bachmann, O., Dungan, M.A., Lipman, P.W., 2002. The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith. Journal of Petrology, 43(8): 1469-1503. https://doi.org/10.1093/petrology/43.8.1469 [4] Bao, Z.W., Wang, Q., Bai, G.D., et al., 2008. Geochronology and Geochemistry of the Fangcheng Neoproterozoic Alkali-Syenites in East Qinling Orogen and Its Geodynamic Implications. Chinese Science Bulletin, 53(6): 684-694(in Chinese). doi: 10.1360/csb2008-53-6-684 [5] Cao, M.J., Qin, K.Z., Li, G.M., et al., 2015. In Situ LA-(MC)-ICP-MS Trace Element and Nd Isotopic Compositions and Genesis of Polygenetic Titanite from the Baogutu Reduced Porphyry Cu Deposit, Western Junggar, NW China. Ore Geology Reviews, 65: 940-954. https://doi.org/10.1016/j.oregeorev.2014.07.014 [6] Chen, J.L., Zhang, Z.W., Li, H.P., et al., 2004. Characteristics of Metamorphic Intrusion in Qinling Complex. Northwestern Geology, 37(1): 34-39(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200401006.htm [7] Chen, Z.H., 2004. The Neoproterozoic Tectono-Thermal Events in the Eastern Qinling Orogen, and Their Geo-Tectonic Significances(Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [8] Chen, Z.H., Lu, S.N., Li, H.K., et al., 2006. Constraining the Role of the Qinling Orogen in the Assembly and Break-up of Rodinia: Tectonic Implications for Neoproterozoic Granite Occurrences. Journal of Asian Earth Sciences, 28(1): 99-115. https://doi.org/10.1016/j.jseaes.2005.03.011 [9] Cherniak, D.J., 1995. Sr and Nd Diffusion in Titanite. Chemical Geology, 125(3/4): 219-232. https://doi.org/10.1016/0009-2541(95)00074-V [10] Ding, S.P., Pei, X.Z., Liu, H.B., et al., 2006. LA-ICP-MS Zircon U-Pb Dating of the Xinyang Neoproterozoic Granitoid Gneisses in the Tianshui Area, Western Qinling, and Its Geological Significance. Geology in China, 33(6): 1217-1225(in Chinese with English abstract). [11] Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 [12] Dong, Y.P., Zhou, D.W., Zhang, G.W., 1997. The Emplacement Mechanism and Tectonic Evolution of Ultramafites in Songshugou Area, Eastern Qinling. Scientia Geologica Sinica, 32(2): 173-180 (in Chinese with English abstract). [13] Dostal, J., Chatterjee, A.K., 2000. Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218. https://doi.org/10.1016/S0009-2541(99)00113-8 [14] Downes, H., Balaganskaya, E., Beard, A., et al., 2005. Petrogenetic Processes in the Ultramafic, Alkaline and Carbonatitic Magmatism in the Kola Alkaline Province: A Review. Lithos, 85(1/2/3/4): 48-75. https://doi.org/10.1016/j.lithos.2005.03.020 [15] Eby, G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 [16] Foley, S.F., Venturelli, G., Green, D.H., et al., 1987. The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models. Earth-Science Reviews, 24(2): 81-134. https://doi.org/10.1016/0012-8252(87)90001-8 [17] Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2001. Sphene (Titanite): Phase Relations and Role as a Geochronometer. Chemical Geology, 172(1/2): 131-148. https://doi.org/10.1016/S0009-2541(00)00240-0 [18] Fu, Y., Sun, X.M., Zhou, H.Y., et al., 2016. In-Situ LA-ICP-MS U-Pb Geochronology and Trace Elements Analysis of Polygenetic Titanite from the Giant Beiya Gold-Polymetallic Deposit in Yunnan Province, Southwest China. Ore Geology Reviews, 77: 43-56. https://doi.org/10.1016/j.oregeorev.2016.02.001 [19] Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Developments in Geotectonics, 24: 237-262. https://doi.org/10.1016/S0419-0254(99)80014-7 [20] Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X [21] Harris, C., Marsh, J.S., Milner, S.C., 1999. Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia: Evidence for the Progressively Decreasing Effect of Crustal Contamination. Journal of Petrology, 40(9): 1377-1397. https://doi.org/10.1093/petroj/40.9.1377 [22] Hayden, L.A., Watson, E.B., Wark, D.A., 2008. A Thermobarometer for Sphene (Titanite). Contributions to Mineralogy and Petrology, 155: 529-540. doi: 10.1007/s00410-007-0256-y [23] Higgins, J.B., Ribbe, P.H., 1976. The Crystal Chemistry and Space Groups of Natural and Synthetic Titanites. American Mineralogist, 61(9-10): 878-888. http://www.minsocam.org/ammin/AM61/AM61_878.pdf [24] Horng, W.S., Hess, P.C., 2000. Partition Coefficients of Nb and Ta between Rutile and Anhydrous Haplogranite Melts. Contributions to Mineralogy and Petrology, 138(2): 176-185. https://doi.org/10.1007/s004100050016 [25] Hu, G.H., Zhang, S.H., Zhang, Q.Q., et al., 2019. New Geochronological Constraints on the Dahongkou Formation of the Luanchuan Group and Its Implications on the Neoproterozoic Tectonic Evolution of the Southern Margin of the North China Craton. Acta Petrologica Sinica, 35(8): 2503-2517(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.12 [26] Huang, D.M., Dong, C.Y., Wan, Y.S., 2020. Late Neoarchean-Late Paleoproterozoic Magmato-Tectonothermal Events in the Xiaoqinling Area, Southern Margin of the North China Craton, as Documented by Zircon U-Pb-Hf Isotope Analyses and Whole-Rock Geochemistry. Earth Science, 45(9): 3330-3340(in Chinese with English abstract). [27] Huang, X.L., Wang, R.C., Chen, X.M., et al., 2002. Vertical Variations in the Mineralogy of the Yichun Topaz-Lepidolite Granite, Jiangxi Province, Southern China. The Canadian Mineralogist, 40: 1047-1068. doi: 10.2113/gscanmin.40.4.1047 [28] Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3/4): 489-508. https://doi.org/10.1016/S0016-7037(99)00027-7 [29] Kennedy, A.K., Kamo, S.L., Nasdala, L., et al., 2010. Grenville Skarn Titanite: Potential Reference Material for SIMS U-Th-Pb Analysis. The Canadian Mineralogist, 48(6): 1423-1443. https://doi.org/10.3749/canmin.48.5.1423 [30] Lei, D.J., Xiang, M., 2017. Mineralization and Occurrence of Niobium and Tantalum of the Alkaline in Northern Fangcheng County, Henan Province. Geological Survey and Research, 40(1): 55-62(in Chinese with English abstract). [31] Li, C.D., Zhao, L.G., Xu, Y.W., et al., 2018. Chronology of Metasedimentary Rocks from Kuanping Group Complex in North Qinling Belt and Its Geological Significance. Geology in China, 45(5): 992-1010(in Chinese with English abstract). [32] Li, S.P., Qiao, X.X., Chen, J.K., et al. . Metallogenic Mechanism of Alkaline Syenite in Dazhuang Nb REE Deposit, Fangcheng, Henan Province. Geology in China(in Chinese with English abstract). https://kns.cnki.net/ kcms /detail/ 11.1167.P.20200629.1125.012.html [33] Li, Z.D., Xie, Y., Li, J.J., et al., 2021. Characteristics and Metallogenic Regularity of Lithium Resources in North China. North China Geology, 44(3): 41-49. [34] Li, Z.S., Jia, C., Zhao, Z.Y., et al., 2020. Depositional Age and Provenance Analysis of the Luanchuan Group in the Southern Margin of North China Craton and Its Significance for Regional Tectonic Evolution: Constraints from Zircon U-Pb Geochronology and Hf Isotopes. Acta Geologica Sinica, 94(4): 1046-1066(in Chinese with English abstract). [35] Ling, X.X., Schmädicke, E., Li, Q.L., et al., 2015. Age Determination of Nephrite by In-Situ SIMS U-Pb Dating Syngenetic Titanite: A Case Study of the Nephrite Deposit from Luanchuan, Henan, China. Lithos, 220/221/222/223: 289-299. . https://doi.org/10.1016/j.lithos.2015.02.019 [36] Liu, B.X., Nie, H., Qi, Y., et al., 2013. Genesis and Geological Significances of Neoproterozoic Granitoids in the North Qinling Terrain, SW Henan, China. Acta Petrologica Sinica, 29(7): 2437-2455(in Chinese with English abstract). https://www.researchgate.net/publication/283755584_Genesis_and_geological_significances_of_Neoproterozoic_granitoids_in_the_North_Qinling_terrain_SW_Henan_China [37] Liu, H.B., Pei, X.Z., Ding, S.P., et al., 2006. LA-ICP-MS Zircon U-Pb Dating of the Neoproterozoic Granitic Gneisses in the Yuanlong Area, Tianshui City, West Qinling, China, and Their Geological Significance. Geological Bulletin of China, 25(11): 1315-1320(in Chinese with English abstract). [38] Liu, J.F., Sun, Y., Sun, W.D., 2009. LA-ICP-MS Zircon Dating from the Lajimiao Mafic Complex in the Qinling Orogenic Belt. Acta Petrologica Sinica, 25(2): 320-330(in Chinese with English abstract). [39] Liu, R.Y., Niu, B.G., He, Z., et al., 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Eastern Part of the Xiaomaoling Composite Intrusives in Zhashui Area, Shaanxi, China. Geological Bulletin of China, 30(2): 448-460(in Chinese with English abstract). https://www.researchgate.net/publication/279908746_LA-ICP-MS_zircon_U-Pb_geochronology_of_the_eastern_part_of_the_Xiaomaoling_composite_intrusives_in_Zhashui_area_Shaanxi_China [40] Lu, S.N., Chen, Z.H., Li, H.K., et al., 2004. Late Mesoproterozoic-Early Neoproterozoic Evolution of the Qinling Orogen. Geological Bulletin of China, 23(2): 107-112(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200402001.htm [41] Lu, S.N., Chen, Z.H., Li, H.K., et al., 2005. Two Magmatic Belts of the Neoproterozoic in the Qinling Orogenic Belt. Acta Geologica Sinica, 79(2): 165-173(in Chinese with English abstract). [42] Lu, S.N., Li, H.K., Chen, Z.H., et al., 2003. Meso-Neoproterozoic Geological Evolution of the Qinling Orogen and the Response to Rodinia Supercontinent. Geological Publishing House, Beijing, 194 (in Chinese). [43] Ma, Q., Yang, Y.H., Zhao, Z.D., et al., 2020. Titanite Geochronology and Geochemistry of the Cenozoic Alkali-Rich Intrusions in the Ailaoshan-Red River Shear Zone, Yunnan Province. Acta Petrologica Sinica, 36(9): 2751-2764(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.09.09 [44] Pei, X.Z., Ding, S.P., Zhang, G.W., et al., 2007. Zircons LA-ICP-MS U-Pb Dating of Neoproterozoic Granitoid Gneisses in the North Margin of West Qinling and Geological Implication. Acta Geologica Sinica, 81(6): 772-786(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200706004.htm [45] Pei, X.Z., Li, H.M., Li, G.G., 1996. Geochemical Characteristics and Tectonic Environment of the Shangnan Granite Pluton in the North Qinling. Journal of Xi'an Engineering University, 18(3): 29-35(in Chinese with English abstract). [46] Pei, X.Z., Wang, T., Ding, S.P., et al., 2003. Geochemical Characteristics and Geological Significance of Neoproterozoic Adakitic Granitoids on the North Side of the Shangdan Zone in the East Qinling. Geology in China, 30(4): 372-381(in Chinese with English abstract). https://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200304009.htm [47] Pollard, P.J., 1989. Geologic Characteristics and Genetic Problems Associated with the Development of Granite-Hosted Deposits of Tantalum and Niobium. In: Moller, P., Cerny, P., Saupe, F., eds., Lanthanides, Tantalum and Niobium. Springer, Berlin, 240-256. [48] Ribbe, P.H., 1980. Titanite. Reviews in Mineralogy and Geochemistry, 5: 137-154. [49] Storey, C.D., Jeffries, T.E., Smith, M., 2006. Common Lead-Corrected Laser Ablation ICP-MS U-Pb Systematics and Geochronology of Titanite. Chemical Geology, 227(1/2): 37-52. https://doi.org/10.1016/j.chemgeo.2005.09.003 [50] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [51] Tilton, G.R., Grunenfelder, M.H., 1968. Sphene: Uranium-Lead Ages. Science, 159(3822): 1458-1461. https://doi.org/10.1126/science.159.3822.1458 [52] Wang, F., Zhu, L.M., Li, J.M., et al., 2011a. Zircon U-Pb Ages and Hf Isotopic Characteristics of the Dehe Biotite Monzonitic Gneiss Pluton in the North Qinling Orogen and Their Geological Significance. Chinese Journal of Geochemistry, 30(2): 204-216. https://doi.org/10.1007/s11631-011-0502-x [53] Wang, X.L., Jiang, S.Y., Dai, B.Z., et al., 2011b. Age, Geochemistry and Tectonic Setting of the Neoproterozoic (ca 830 Ma) Gabbros on the Southern Margin of the North China Craton. Precambrian Research, 190(1-4): 35-47. https://doi.org/10.1016/j.precamres.2011.08.004 [54] Wang, M., Zhou, H.R., Zhang, H., 2020. Detrital Zircon Geochronology and Tectonic Implications of the Mesoproterozoic Gaoshanhe Group in South Margin of North China Craton. Journal of Palaeogeography, 22(1): 39-55(in Chinese with English abstract). [55] Wang, T., Wang, X.X., Zhang, G.W., et al., 2003. Remnants of a Neoproterozoic Collisional Orogenic Belt in the Core of the Phanerozoic Qinling Orogenic Belt (China). Gondwana Research, 6(4): 699-710. https://doi.org/10.1016/S1342-937X(05)71018-2 [56] Wang, T., Zhang, Z.Q., Wang, X.X., et al., 2005. Neoproterozoic Collisional Deformation in the Core of the Qinling Orogen and Its Age: Constrained by Zircon SHRIMP Dating of Strongly Deformed Syn-Collisional Granites and Weakly Deformed Granitic Veins. Acta Geologica Sinica, 79(2): 220-231(in Chinese with English abstract). https://www.researchgate.net/publication/282304671_Neoproterozoic_collisional_deformation_in_the_core_of_the_Qinling_orogen_and_its_age_Constrained_by_zircon_SHRIMP_dating_of_strongly_deformed_syn-collisional_granites_and_weakly_deformed_granitic_vein [57] Wang, Y.R., Li, J.T., Lu, J.L., et al., 1982. Geochemical Mechanism of Nb-, Ta-Mineralization during the Late Stage of Granite Crystallization. Geochemistry, 1(2): 175-185. https://doi.org/10.1007/BF03180328 [58] Xiang, Z.Q., Lu, S.N., Li, H.K., et al., 2020. Mesoproterozoic Magmatic Events in the North China Craton. Geological Survey and Research, 43(2): 137-152(in Chinese with English abstract). [59] Yang, Y.H., Wu, F.Y., Yang, J.H., et al., 2014. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U-Th-Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012 [60] Zhang, C.L., Liu, L., Zhang, G.W., et al., 2004. Determination of Neoproterozoic Post-Collisional Granites in the North Qinling Mountains and Its Tectonic Significance. Earth Science Frontiers, 11(3): 33-42(in Chinese with English abstract). https://www.researchgate.net/publication/285237565_Determination_of_Neoproterozoic_post-collisional_granites_in_the_north_Qinling_Mountains_and_its_tectonic_significance [61] Zhang, H., Gao, L.Z., Zhou, H.R., et al., 2019. Chronology Progress of the Guandaokou and Luoyu Groups in the Southern Margin of North China Craton: Constraints on Zircon U-Pb Dating of Tuff by Means of the SHRIMP. Acta Petrologica Sinica, 35(8): 2470-2486(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.08.10 [62] Zhang, S.B., Zhang, B.P., Zhang, Y.M., et al., 2020. Discovery of Fergusonite from Dazhuang Niobium Rare Earth Deposit in Henan Province and Its Geological Significance. Global Geology, 39(2): 282-293(in Chinese with English abstract). https://oversea.cnki.net/kcms/detail/detail.aspx?filename=SJDZ202002004&dbcode=CJFD&dbname=CJFD2020&v= [63] Zhao, T.P., Zhai, M.G., Xia, B., et al., 2004. SHRIMP Dating of Zircon from Volcanic Rocks of the Xiong'er Group: Constraints on Beginning Time of the Cover Development in the North China Craton. Chinese Science Bulletin, 49(22): 2342–2349 doi: 10.1360/csb2004-49-22-2342 [64] Zhu, J.C., Li, R.K., Li, F.C., et al., 2001. Topaz-Albite Granites and Rare-Metal Mineralization in the Limu District, Guangxi Province, Southeast China. Mineralium Deposita, 36(5): 393-405. https://doi.org/10.1007/s001260100160 [65] Zhu, Y.X., 2019. Petrogenesis and Nb-Ta Mineralization of the Neoproterozoic Fangcheng Alkaline Magmatic Complex, East Qinling Orogen(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [66] Zhu, Y.X., Wang, L.X., Ma, C.Q., et al., 2020. The Neoproterozoic Alkaline Rocks from Fangcheng Area, East Qinling (China) and Their Implications for Regional Nb Mineralization and Tectonic Evolution. Precambrian Research, 350: 105852. https://doi.org/10.1016/j.precamres.2020.105852 [67] 艾磊, 平先权, 郑建平, 等, 2020. 华北南缘信阳古元古代花岗岩的年代学和地球化学特征及其对地壳演化的启示. 地球科学, 45(6): 2044-2058. doi: 10.3799/dqkx.2019.277 [68] 包志伟, 王强, 白国典, 等, 2008. 东秦岭方城新元古代碱性正长岩形成时代及其动力学意义. 科学通报, 53(6): 684-694. doi: 10.3321/j.issn:0023-074X.2008.06.012 [69] 陈隽璐, 张占武, 李海平, 等, 2004. 秦岭杂岩中变质侵入体特征. 西北地质, 37(1): 34-39. doi: 10.3969/j.issn.1009-6248.2004.01.006 [70] 陈志宏, 2004. 秦岭造山带东部新元古代热-构造事件及其地质意义(博士学位论文). 北京: 中国地质科学院. [71] 丁仨平, 裴先治, 刘会彬, 等, 2006. 西秦岭天水地区新阳新元古代花岗质片麻岩的锆石LA-ICP-MS定年及其地质意义. 中国地质, 33(6): 1217-1225. doi: 10.3969/j.issn.1000-3657.2006.06.004 [72] 董云鹏, 周鼎武, 张国伟, 1997. 东秦岭松树沟超镁铁岩侵位机制及其构造演化. 地质科学, 32(2): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX702.005.htm [73] 胡国辉, 张拴宏, 张琪琪, 等, 2019. 华北克拉通南缘栾川群大红口组形成时代及其对新元古代构造演化的制约. 岩石学报, 35(8): 2503-2517. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908012.htm [74] 黄道袤, 董春艳, 万渝生, 2020. 华北克拉通南缘小秦岭地区新太古代晚期-古元古代晚期岩浆构造热事件: 锆石U-Pb-Hf同位素和地球化学证据. 地球科学, 45(9): 3330-3340. doi: 10.3799/dqkx.2020.132 [75] 雷大景, 向媚, 2017. 河南省方城北碱性岩铌钽矿化及赋存状态. 地质调查与研究, 40(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201701009.htm [76] 李承东, 赵利刚, 许雅雯, 等, 2018. 北秦岭宽坪岩群变质沉积岩年代学及地质意义. 中国地质, 45(5): 992-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201805009.htm [77] 李山坡, 乔欣欣, 陈俊魁, 等, 2020. 河南方城大庄铌-稀土矿床碱性正长岩成矿机理研究. 中国地质. https://kns.cnki.net/kcms/ detail/ 11.1167.P.20200629.1125.012.html https://kns.cnki.net/kcms/ detail/ 11.1167.P.20200629.1125.012.html [78] 李志丹, 谢瑜, 李俊建, 等, 2021. 华北地区锂资源特征及成矿规律概要. 华北地质, 44(3): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202103005.htm [79] 李振生, 贾超, 赵卓娅, 等, 2020. 华北克拉通南缘栾川群的形成时代、物源及其对区域构造演化的意义: 锆石U-Pb年代学和Hf同位素制约. 地质学报, 94(4): 1046-1066. doi: 10.3969/j.issn.0001-5717.2020.04.004 [80] 刘丙祥, 聂虎, 齐玥, 等, 2013. 豫西南地区北秦岭地体新元古代花岗岩类岩石成因及其地质意义. 岩石学报, 29(7): 2437-2455. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201307014.htm [81] 刘会彬, 裴先治, 丁仨平, 等, 2006. 西秦岭天水市元龙地区新元古代花岗质片麻岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 25(11): 1315-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200611010.htm [82] 刘军锋, 孙勇, 孙卫东, 2009. 秦岭拉鸡庙镁铁质岩体锆石LA-ICP-MS年代学研究. 岩石学报, 25(2): 320-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902007.htm [83] 刘仁燕, 牛宝贵, 和政军, 等, 2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年. 地质通报, 30(2): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1033.htm [84] 陆松年, 陈志宏, 李怀坤, 等, 2004. 秦岭造山带中-新元古代(早期)地质演化. 地质通报, 23(2): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402001.htm [85] 陆松年, 陈志宏, 李怀坤, 等, 2005. 秦岭造山带中两条新元古代岩浆岩带. 地质学报, 79(2): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502006.htm [86] 陆松年, 李怀坤, 陈志宏, 等, 2003. 秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应. 北京: 地质出版社, 194. [87] 马倩, 杨岳衡, 赵志丹, 等, 2020. 云南哀牢山-红河剪切带新生代富碱侵入岩中榍石年代学和地球化学特征. 岩石学报, 36(9): 2751-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009010.htm [88] 裴先治, 丁仨平, 张国伟, 等, 2007. 西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质学报, 81(6): 772-786. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706004.htm [89] 裴先治, 李厚民, 李国光, 1996. 北秦岭商南花岗岩体地球化学特征及其形成的构造环境. 西安工程学院学报, 18(3): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX603.004.htm [90] 裴先治, 王涛, 丁仨平, 等, 2003. 东秦岭商丹带北侧新元古代埃达克质花岗岩及其地质意义. 中国地质, 30(4): 372-381. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200304009.htm [91] 王淼, 周洪瑞, 张恒, 2020. 华北南缘中元古界高山河群碎屑锆石U-Pb年代学及其地质意义. 古地理学报, 22(1): 39-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202001003.htm [92] 王涛, 张宗清, 王晓霞, 等, 2005. 秦岭造山带核部新元古代碰撞变形及其时代: 强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定. 地质学报, 79(2): 220-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502010.htm [93] 相振群, 陆松年, 李怀坤, 等, 2020. 华北克拉通中元古代岩浆事件群. 地质调查与研究, 43(2): 137-152. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202002008.htm [94] 张成立, 刘良, 张国伟, 等, 2004. 北秦岭新元古代后碰撞花岗岩的确定及其构造意义. 地学前缘, 11(3): 33-42. doi: 10.3321/j.issn:1005-2321.2004.03.005 [95] 张恒, 高林志, 周洪瑞, 等, 2019. 华北克拉通南缘官道口群和洛峪群的年代学研究新进展: 来自凝灰岩SHRIMP锆石U-Pb年龄的新证据. 岩石学报, 35(8): 2470-2486. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908010.htm [96] 张哨波, 张保平, 张玉明, 等, 2020. 河南大庄铌稀土矿床褐钇铌矿的发现及其地质意义. 世界地质, 39(2): 282-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202002004.htm [97] 朱煜翔, 2019. 东秦岭新元古代方城碱性杂岩体的成因及Nb-Ta富集机制(硕士学位论文). 武汉: 中国地质大学. -
李志丹 附表1-4.doc